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COLLAPSE OF THE MEAN CURVATURE FLOW
FOR ISOPARAMETRIC SUBMANIFOLDS IN NON-COMPACT
SYMMETRIC SPACES

Naoyuk1 KOIKE

Abstract

It is known that principal orbits of Hermann actions on a symmetric space of
non-compact type are curvature-adapted isoparametric submanifolds having no focal
point of non-Euclidean type on the ideal boundary of the ambient symmetric space.
In this paper, we investigate the mean curvature flows for such a curvature-adapted
isoparametric submanifold and its focal submanifold. Concretely the investigation
is performed by investigating the mean curvature flows for the lift of the submani-
fold to an infinite dimensional pseudo-Hilbert space through a pseudo-Riemannian
submersion.

1. Introduction

Let f’s (t€[0,T)) be a one-parameter C*- family of immersions of a mani-
fold M into a Riemannian manifold N, where T is a positive constant or 7' = .
Define amapf M x [0, T) — N by f(x,0) = fi(x) (x,0) e M x [0, T)). I, for
each 1[0, 7), f. ((w)(Y t>) is the mean curvature vector of f; : M — N, then f;’s
(te]0,7)) is called a mean curvature flow. In particular, if f;’s are embeddings,
then we call M, := f,(M)’s (0€[0,T)) rather than f’s (0€[0,7)) a mean
curvature flow. Liu-Terng [LT] investigated the mean curvature flows for an
isoparametric submanifold in a Euclidean space and its focal submanifold and
obtained the following facts.

Fact 1 ([LT])). Let M be a compact isoparametric submanifold in a
Euclidean space. Then the following statements (i) and (ii) hold:

(i) The mean curvature flow M, for M collapses to a focal submanifold F of
M in finite time. If the natural fibration of M onto F is spherical, then lhe mean
curvature flow M, has type I singularity, that is, lim,_.7_o maX,c sy, || A} || —1)
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: t
|, is the sup norm of Al and

< o0, where Al is the shape operator of M, for v, || A}
St M, is the unit normal bundle of M,.

(i) For any focal submanifold F of M, the set of all parallel submanifolds of
M collapsing to F along the mean curvature flow is a one-parameter C*-family.

Fact 2 ([LT]). Let M be as in Fact 1, C the Weyl domain of M at xo(e M)
and o a simplex of dimension greater than zero of 0C. Then the following state-
ments (i) and (i) hold:

(i) For any focal submanifold F (of M) through o, the maen curvature flow F,
for F collapses to a focal submanifold F' (of M) through 0o in finite time. If the
natural fibration of F onto F' is spherical, then the mean curvature flow F, has type
1 singularity.

(i) For any focal submanifold F (of M) through 0o, the set of all focal
submanifolds of M through o collapsing to F along the mean curvature flow is a
one-parameter C*-family.

Since the focal submanifold of M through the only 0-dimensional simplex
of 0C is a one-point set, it follows from the statement (i) of Facts 1 and 2 that
M collapses to a one-point set after finitely many times of collapsings along the
mean curvature flows.

As a generalized notion of compact isoparametric hypersurfaces in a sphere
and a hyperbolic space, and a compact isoparametric submanifolds in a
Euclidean space, Terng-Thorbergsson [TT] introduced the notion of an equifocal
submanifold in a symmetric space G/K. This notion is defined as a compact
submanifold (which we denote by M) in G/K with flat section, trivial normal
holonomy group and parallel focal structure. Here the parallel focal structure
means that the tangential focal structures of M move to one another under the
parallel translations with respect to the normal connection of M. For a compact
submanifold M with flat section and trivial normal holonomy group, it is
equifocal if and only if, for any parallel normal vector field v of M, the set
of all the focal radii of M along the normal geodesic y; with y{ (0) =1, is
independent of the choice of xe M. On the other hand, Heintze-Liu-Olmos
[HLO] introduced the notion of isoparametric submanifold with flat section in
a (general) Riemannian manifold as a (properly embedded) submanifold with
flat section and trivial normal holonomy group whose sufficiently close parallel
submanifolds are of constant mean curvature with respect to the radial direction.
In the sequel, we assume that all isoparametric submanifolds with flat section are
complete.

TeErRMINOLOGY. In this paper, we shall call an isoparametric submanifold
with flat section an isoparametric submanifold simply.

For a compact submanifold in a symmetric space G/K of compact type, the
isoparametricness is equivalent to the equifocality (see [HLO]). The author has
recently investigated the mean curvature flows for an equifocal submanifold in a
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symmetric space of compact type and its focal submanifold, and obtained the
following facts.

Facr 3 ([Koil0]). Let M be an equifocal submanifold in a symmetric space
G/K of compact type. Then the following statements (i) and (ii) hold:

(i) If M is not minimal, then the mean curvature flow M, for M collapses to a
focal submanifold F of M in finite time. Furthermore, if M is irreducible, if the
codimension of M is geater than one and if the natural fibration of M onto F is
spherical, then M, has type I singularity.

(i) For any focal submanifold F of M, the set of all parallel submanifolds
of M collapsing to F along the mean curvature flow is a one-parameter C%-

family.

Fact 4 ([Koil0]). Let M be as in Fact 3, C the image of the fundamental
domain of the Coxeter group of M at xo(e M) by the normal exponential map and
o a stratum of dimension greater than zero of 0C (which is a stratified space).
Then the following statements (i) and (i) hold:

(i) For any non-minimal focal submanifold F of M through o, the mean
curvature flow F, for F collapses to a focal submanifold F' of M through dc in
finite time. If M is irreducible, if the codimension of M is greater than one and if
the natural fibration of F onto F' is spherical, then the mean curvature flow F, has
type I singularity.

(i) For any focal submanifold F of M through 0o, the set of all focal sub-
manifolds of M through o collapsing to F along the mean curvature flow is a one-
parameter C*-family.

Since focal submanifolds of M through the lowest dimensional stratum of
0C are minimal, it follows from the statement (i) of Facts 3 and 4 that M
collapses to a minimal focal submanifold of M after finitely many times of
collapsings along the mean curvature flows.

AssUMPTION. In the sequel, we assume that all submanifolds are real analytic.

We [Koil,2] introduced the notion of a complex equifocal submanifold as
a (properly embedded) complete submanifold with flat section, trivial normal
holonomy group and parallel complex focal structure, where the parallel complex
focal structure means that the tangential focal structures of the complexification
M®(= G¥/KT) of M(= G/K) move to one another under the parallel transla-
tions with respect to the normal connection of MT. For a submanifold M with
flat section and trivial normal holonomy group, it is complex equifocal if and
only if, for any parallel normal vector field v of M, the set of all the complex
focal radii of M along the normal geodesic y; with y; (0) = v, is independent of
the choice of xe M. '

We ([Koi3]) introduced the notion of a proper complex equifocal submani-
fold as a complex equifocal submanifold having a good complex focal structure,
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where “good complex focal structure” means that the focal structure of the
complexification of the submanifold at any point x, consists of infinitely many
complex hyperplanes in the normal space at xo and that the group generated by
the complex reflections of order two with respect to the complex hyperplanes is
discrete.

Next we recall the notion of a focal point of non-Euclidean type on the ideal
boundary N(o0) of a submanifold M in a Hadamard manifold N which was
introduced in [Koi6]. Let v be a unit normal vector of M and y,: [0,00) — N
the normal geodesic of M of direction v. If there exists a AM-Jacobi field
Y along p, satisfying lim,_ . I I()” 0, then we call y,(o0)(e N(0)) a focal
point of M on the ideal boundary N(oo) along y,, where yp,(c0) is the asymp-
totic class of y,- Also, if there exists a M-Jacobi field Y along p, satisfying
lim,_,, 1Y@l ( =0 and Sec(v Y(0)) # 0, then we call y,(c0) a focal point of non-
Euclidean' type of M on N(0) along v,, where Sec(v, Y(0)) is the sectional
curvature for the 2-plane spanned by v and Y(0). If, for any unit normal vector
v of M, y,(c0) is not a focal point of non-Euclidean type of M on N(c0), then
we say that M has no focal point of non-Euclidean type on the ideal boundary
N(o0). It is known that principal orbits of Hermann actions on symmetric
spaces of non-compact type are curvature-adapted isoparametric submanifolds
and they have no focal point of non-Euclidean type on the ideal boundary (see
Theorem B in [Koi3] and its proof and so on). According to Theorem 15 in
[Koi2] and Theorem A in [Koi6], we have the following fact.

FAct 5. For a curvature-adapted isoparametric submanifold M in a sym-
metric space N of non-compact type, it has no focal point of non-Euclidean type on
the ideal boundary N(oo) if and only if it is proper complex equifocal.

Let M be a curvature-adapted isoparametric submanifold in a symmetric space
N = G/K of non-compact type having no focal point of non-Euclidean type on
the ideal boundary N (o) of N. Assume that a focal submanifold of M exists.
Note that a focal submanifold of M exists if G/K is other than a hyperbolic
space. Let F; be one of the lowest dimensional focal submanifolds of M.
Without loss of generality, we may assume that eK € F;. Note that F; passes
through exp () for one & of the lowest dimensional simplex of the boundary 0C
of the fundamental domain C of the real Coxeter group associated with M. See
the next paragraph about the definition of the real Coxeter group associated with
M. Set p:=Tx(G/K) and p’:= T i F;. Take a maximal abelian subspace b
of p’ and a maximal abelian subspace a of p containing b. Let A be the root
system of G/K with respect to a and A’ be that of F;* with respect to b. Also,
let p, be the root space for « € A. Note that, if rank F;* = rank(G/K), then we
have a = b and A" = A. Since M is curvature-adapted, so is also F;. Hence
we have p' =3 . (p,Np’), where A, is the positive root system of A with
respect to a lexicographic ordering of b*. In this paper, we prove the fol-
lowing fact for the mean curvature flows for a curvature-adapted isopara-
metric submanifold in a symmetric space N = G/K of non-compact type having
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no focal point of non-Euclidean type on the ideal boundary N(co) and its focal
submanifold.

THEOREM A. Let M be a curvature-adapted isoparametric submanifold in a
symmetric space N = G/K of non-compact type having no focal point of non-
Euclidean type on the ideal boundary N(o0), M, (0 <t < T) the mean curvature
flow for M, A, p, and p’ be as above. Assume that codim M = rank N and that
dim(p,Np’) > L dimp, (x€ A). Then the following statements (i), (ii) and (iii)
hold.

(i) M is not minimal and M, collapses to a focal submanifold of M in finite
time.

(1) If M, collapses to a focal submanifold F of M in finite time and if the
natural fibration of M onto F is spherical, then M, has type I singularity.

(iii) For any focal submanifold F of M, the set of all parallel submani-
folds of M collapsing to F along the mean curvature flow is a one-parameter
C®-family.

Remark 1.1. The principal orbits of the isotropy action (of a symmetric
space of non-compact type) and Hermann actions in Table 1 (see Section 5)
satisfy all the conditions in Theorem A.

The focal set of a curvature-adapted proper complex equifocal submanifold
M at any point x(e M) consists of the images of finitely many (real) hyperplanes
in the normal space 7.°M by the normal exponential map exp* of M and the
group generated by the reflections with respect to the hyperplanes is a (finite)
Coxeter group. In [Koi6], we called this group the real Coxeter group associated
with M.

THEOREM B. Let M be a curvature-adapted isoparametric submanifold in a
symmetric space N = G/K of non-compact type having no focal point of non-
Euclidean type on the ideal boundary N(o0) and M, (0 <t<T) the mean
curvature flow for M. Assume that codim M =rank N and that the lowest
dimensional focal submanifold of M is an one-point set. Let G be a stratum
of dimension greater than zero of the fundamental domain C (which is a stratified
space) of the real Coxeter group of M. Then, the following statements (i) and (ii)
hold.

(i) Any focal submanifold F of M through exp*(g) is not minimal and the
mean curvature flow F, for F collapses to a focal submanifold F' of M through
expt(0a) in finite time. If the natural fibration of F onto F' is spherical, then F,
has type I singularity.

(i) For any focal submanifold F of M through exp*(0a), the set of all focal
submanifolds of M through exp*(a) collapsing to F along the mean curvature flow
is a one-parameter C*-family.
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According to the statement (i) of Theorems A and B, if M is a curvature-
adapted isoparametric submanifold having no focal point of non-Euclidean type
on the ideal boundary, if codim M = rank(G/K) and if F; is one-point set, then
M collapses to one-point set after finitely many times of collapsings along the
mean curvature flows.

M, —— F!
([*?T])
Ft1 — 5 F?
(t—T»)
F}F=! — one point set
(1—=Tk)
F':a focal submanifold of M
F':a focal submanifold of F'™! (i=2,... k—1)

2. Basic notions and facts

In this section, we briefly recall the notions of a proper complex equifocal
submanifold in a symmetric space G/K of non-compact type and a proper
complex isoparametric submanifold in an (infinite dimensional) pseudo-Hilbert
space. First we recall the notion of a complex equifocal submanifold in G/K.
Let M be a submanifold with flat section in G/K, where “M has flat section”
means that, for each x = gK € M, exp (T L M) is a flat totally geodesic sub-
manifold in G/K. Denote by A the shape tensor of M and R the curvature
tensor of G/K. Let ve T:M and X e T\M (x=gK). Set R(v):= R(-,v)o.
Denote by y, the geodesic in G/K with y/(0) =v. The strongly M-Jacobi field
Y along y, with Y(0) = X (hence Y'(0) = —A4,X) is given by

sin(sy/R(v))
Y(s)=|P,,  o|cos(sy/R(v)) - —F——">04A, X),
® <| ( (V/R@) - (x)
where  Y'(0) =V,Y, Pyl is the parallel translation along 7,[,,, and

cos(sy/R(v)) and sin(sy/R(v)) are defined by

sv/R(v)

« )k 2"R( )k sin(s\/R(v)) % )k 2"R( )k
cos(s and ,
2; 4/ R(v) ; 2k+

respectively. Since M has flat section, all focal radii of M along y, are given
as zero points of strongly M-Jacobi fields along y,. Hence all focal radii of M
along y, coincide with the zero points of the real-valued function F, over R
defined by

F,(s) := det <cos(s R(v)) — sin(sy/R(v)) AU>.
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So we defined the notion of a complex focal radius of M along p, as the zero
points of the complex-valued function FT over € defined by

. / C
FO) = det | cos(y/R@) ) - MEVAOT) o]
R(v)®

where R(v)® (resp. A%) is the complexification of R(v) (resp. 4,). Also, for a
complex focal radius z of M along y,, we call

R(»)Y) — Sm(zi VR(U)C)OAC

dimg Ker | cos(z »
R(v)®

the multiplicity of the complex focal radius z. Here we note that complex focal
radii along y, indicate the positions of focal points of the extrinsic complexifica-
tion MT(— G/K®) of M along the complexified geodesic 7, where G¥/K® is
the anti-Kaehlerian symmetric space associated with G/K and ! is the natural
embedding of G/K into G¥/KT. See [Koi2] about the definitions of GT/KT,
M®(— G%/K®) and »%,. Furthermore, assume that the normal holonomy
group of M is trivial. Let v be a parallel unit normal vector field of M. As-
sume that the number (which may be o) of distinct complex focal radii along y;
is independent of the choice of xe M. Let {r;.|i=1,2,...} be the set of all
complex focal radii along y;, where |r; | <|rij1x| or “|riy| = |rit1<| & Rer;
>Reripry” or “rix| = [riy1x] & Rerjx =Reryc &Imr = —Imry <0
Let r; (i=1,2,...) be complex valued functions on M defined by assigning r; ,
to each xe M. We call these functions r; (i=1,2,...) complex focal radius
functions for v. 1If, for each parallel unit normal vector field v of M, the set of
all complex focal radii along y; is independent of the choice of x e M, if each
complex focal radius function for v is constant on M and if it has constant
multiplicity, then we call M a complex equifocal submanifold.

Next we recall the notion of a proper complex isoparametric submanifold in
an (infinite dimensional) pseudo-Hilbert space. Let M be a pseudo-Riemannian
submanifold of finite codimension in a pseudo-Hilbert space (V,<,)). See
[Koil] about this definition. We call M a Fredholm pseudo-Riemannian sub-
manifold (or simply Fredholm submanifold) if there exists an orthogonal time-
space decomposition V' = V_ @ V, such that (V,{,)y,) is a Hilbert space and
that, for each ve T-M, A, is a compact operator with respect to /*{, >, , where
an orthogonal time-space decomposition V' = V_ @ V. means that {,>|, ., is
negative definite, <, )|} . 1is positive definite and that {,}|, ., =0, and
oy = —nyp Gy +myp () (my. (resp. my,): the orthogonal projection of V/
onto V_ (resp. V,)). Since 4, is a compact operator with respect to f*<{, >y,
for each ve T+ M, the operator id — 4, is a Fredholm operator with respect
to f*{, >y, and hence the normal exponential map expt: T*M — V of M is
a Fredholm map with respect to the metric of T+-M naturally defined from
™ >y, and <, )y, where id is the identity transformation of 7M. In the
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sequel, set <,>:= f*<¢,>. The set of all eigenvalues of the complexification
AL of 4, is described as {0} U{y;|i=1,2,...}, where “|g;| > | 4]” or “|| =
1] & Re g; > Re g7 or “luy| = [p;y| & Re gy = Re gy & Im g = —Im g,
> 07”. We call g the i-th complex principal curvature for v. Assume that the
normal holonomy group M is trivial. Fix a parallel normal vector field v on M.
Assume that the number (which may be oo) of distinct complex principal cur-
vatures of v, is independent of x € M. Then we define functions g; (i=1,2,...)
on M by assigning the i-th complex principal curvature for v, to each x e M.
We call this function z; the i-th complex principal curvature function for v. A
Fredholm submanifold M is called a complex isoparametric submanifold if the
normal holonomy group of M is trivial and if, for each parallel normal vector
field v, the number of distinct complex principal curvatures of direction v, is
independent of the choice of x e M and if each complex principal curvature
function of direction v is constant on M. Assume that M is a complex iso-
parametrlc submanifold. If, for each v e T+ M, the complexified shape operator
AT is diagonalizable with respect to a pseudo orthonormal base of (7 M)
(x the base point of v), that is, there exists a pseudo-orthonormal base of
(T M ) consisting of the eigenvectors of AT, then we call M a proper complex
isoparametric submanifold, where a pseudo-orthonormal base means a linearly
independent system {e;};2, of a pseudo-Hilbert space (7yM,<,)) such that, for
each i € N, there exists 7 € N satisfying [<v;,v;)| = 95 (J € N) (0. : the Kronecker’s
symbol) and that (", Span{v;} = T.M (=: the closure of - with respect to the
original topology of T7yM). Then, for each xe M, ALs (ve T:M) are
51mu1taneous1y diagonalizable with respect to a pseudo- orthonormal base of
(T.M)® because 4%’s commute. There exists a family {E;|ie I} (I = N) of
parallel subbundles of (7M)® such that, for each xe M, (T\M)® = @D, (Ei )x
holds and that this decomposition is a common-eigenspace decomposmon of A4,
(ve TFM). Also, there exist smooth sectlons A (iel) of (THM)®)* such that
AT 7/1( )id on ( i), for each ve (T+M)®, where x is the base point of v.
The subbundles E; (iel) are called complex curvature distributions of M and 1,
(i e I) are called complex principal curvatures of M. Define a complex normal
vector field n; (ieI) by 4i(-) = <n;,->%, where (,>% is the complexification of
{,>. Note that each n; is parallel with respect to the complexification V¢ of
V+. The normal vector fields n; (i e I) are called complex curvature normals
of M.

Let G/K be a symmetric space of non-compact type and n: G — G/K be
the natural projection. The parallel transport map ¢ for the semi-simple Lie
group G is defined by ¢(u) := g,(1) (ue H°([0,1],9)), where g, is the element
of H'(]0,1],G) with g,(0) =e (e,: the identity element of G) and ¢,,'g, = u.
Here we note that H°([0,1],g) is a pseudo-Hilbert space. See [Koil] the detail
of the definition of the pseudo-Hilbert space H°([0,1],q) and ¢. Let M be a
complex equifocal submanifold in G/K. Since M is complex equifocal, M :=
(mo @) '(M) is complex isoparametric. In particular, if M is proper complex
isoparametric, then M is called a proper complex equifocal submanifold. Let M
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be a proper complex equifocal submanifold in a symmetric space G/K of non-
compact type. Denote by A (resp. A) the shape tensor of M (resp. M). Since
M is proper complex isoparametric, the complexified shape operators of M is
simultaneously diagonalizeble with respect to a pseudo-orthonormal base. Hence
the complex focal set of M at any point u(e M) consists of infinitely many
complex hyperplanes in the complexified normal space (7, L) ® and the group
generated by the complex reflections of order two with respect to the complex
hyperplanes is discrete. From this fact, it follows that, for the complex focal set
of the proper complex equifocal submanifold M, the following fact holds:

(x) The complex focal set of M at any point x(€ M) consists of infinitely
many complex hyperplanes in the complexified normal space (T M ) and the
group generated by the complex reflections of order two with respect to the
complex hyperplanes is discrete.

Let H be a symmetric subgroup of G (i.e., there exists an involution of G
with (Fix 7), « H < Fix 1), where Fix 7 is the fixed point group of = and (Fix 1),
is the identity component of Fix . The natural action H on G/K is called a
Hermann type action. It is shown that a principal orbit of a Hermann type
ation is a proper complex equifocal and curvature-adapted ([Koi3]), where the
curvature-adaptedness means that, for each normal vector v of M, R(-,v)v
preserves TyM (x:the base point of v) invariantly and that [R(-,v)v, 4,
=0 (R:the curvature tensor of G/K). Let P(G,H x K) :={ge H'([0,1],G)|
(g(0),g(1)) e H x K}, where H'([0,1],G) is a pseudo-Hilbert Lie group of all
H'-paths in G having [0, 1] as the domain. See [Koil] about the detail of the
definition of H'([0,1],G). This group P(G,H x K) acts on H°([0,1],g) as
gauge action. It is shown that orbits of the P(G, H x K)-action are the inverse
images of the H-orbits by mo ¢ (see [Koi2]).

3. The regularized mean curvature vector of Fredholm submanifold with
proper shape operators

In this section, we shall define the regularized mean curvature vector of a
certain kind of Fredholm submanifold in a pseudo-Hlbert space. Let M be a
Fredholm submanifold in a pseudo-Hilbert space (V,{,»). Denote by 4 the
shape tensor of M. Fix ve T+M. If the complexified shape operator A is
diagoalizable with respect to a pseudo-orthonormal base, then AT is said to be
proper. If AT is proper for any v e T+ M, then we say that M has proper shape
operators. Assume that M has proper shape operators. Fix ve T M. Let
{uili=1,2,. .} (Il > I " or || = lpiy| & Re gy > Re gy or | =
|y€1| & Re y; =Re y; ) & Im y; = —Im g, > 07) be the set of all eigenvalues of

other than zero and m; the multiplicity of x;,. Then we define the regularized
trace Tr, AT of AT by Tr, A‘r S mip;. Also, we define the trace Traps(45)?
by Trabs(A‘F) Z myl;|*. If there exist Tr, AT and Trus(AS)? for each
ve T+ M, then we say that M is regularizable. 1t is shown that, if 4 is an
eigenvalue of A% with multiplicity m, then so is also the conjugate ji of



364 NAOYUKI KOIKE

u. Hence we have Tr, ATeR. Define H,eT:M by {(H,v)=Tr AL
(Vve T-M). We call the normal vector field H(: x — H,) of M the regularized
mean curvature vector of M. Let f,: M —V (0<t<T) be a C*-family of
regularizable Fredholm submanifolds with proper shape operators and H; be
the regularized mean curvature vector of f;. Define by f: M x [0,T) — V by
flxt) = filx) (x,)) e M x[0,T)). If f.(£) = H, then we call f; (0<t<T)
the regularized mean curvature flow. 1In the sequel, we call this flow the mean
curvature flow for simplicity.

Let G/K be a symmetric space of non-compact type, 7: G — G/K the
natural projection and ¢ : H°([0,1],g) — G the parallel tansport map for G. Let
M be a curvature-adapted isoparametric submanifold in G/K having no focal
point of non-Euclidean type on the ideal boundary of G/K and set M :=
(7‘[0(/5)71(M), which is proper complex isoparametric (hence has proper shape
operators). Denote by H the mean curvature vector of M. Then we have the
following fact.

LemMa 3.1.  The submanifold M s regularizable and the regularized mean
curvature vector H is equal to the horizontal lift H™ of H.

Proof. Without loss of generality, we may assume that ¢eK € M. For sim-
plicity, set m:= T,xM and b:= T, M. Since M is flat section (hence b is
abelian), the normal connection of M is flat and since M is curvature-adapted,
the operators R(-,v)v’s (veb) and A4,’s (veb) commute to one another. Also
they are diagonalizable with respect to an orthonormal base, respectively. There-
fore they are simultaneously diagonalizable with respect to an orthonormal
base. Let m=mf+ >, ;xmX be the common eigenspace decomposition of
R(-,v)v’s (veb) and m=mgl +>°, ;. m? be the common eigenspace decompo-
sition of A4,’s (veb), where mf := ﬂLEbKer R(-,v)v and mg' := ) _ Ker 4,.
Set mR := dim m® and m? :=dim m/!. Also, set [/ :={je 11U {0} T mA NmR
# {0}} (ie IRU{0}). Since R(-,v)v (veDb) and Ay’s (ve b) are snnultaneously
diagonalizable, we have m = Z,GIRU{O} EIE,A(m NmR). Let B(=0) (ielX)
and J; (iel4) be linear functions over b defined by R(-,0)v|,r = —B,(v)*id
(veb) and A4,|,.« = 4(v)id (veb). Denote by b, the set of all veb such that
Bi(v) #0, A:(v) #0, B:(v)’s (ieIR) are mutually distinct and that so are also
4i(v)’s (ieI?). Note that b, is open and dense in b. Fix veb,. Denote by
A the shape tensor of M and Spec A‘r the spectrum of AS oo, Where vl s
the horizontal lift of v to the constant path 0 at the zero vector 0 of g. Set
IA = eI |40 > B} 14 = {je Il |14()] < |B()]} and T4, =
{ je I A112;(v)| = |B;(v)|}. Since M is a curvature-adapted isoparametric sub-
mamfold having no focal point of non-Euclidean type on the ideal boundary of
G/K, we can show that I ; =0 (see Theorem A of [Koil]) and that /%, , and
IA  are at most one point sets, respectlvely (see the proof of Theorems B and
C of [Koi6]). When IIAD L #0 (resp A _ #0), denote by j, (resp Ji») the only
element. Set IF := {zeIR\ ot ;é@} and I} = ={ieIR|IA _#0}. For

simplicity, set m;f, := J}il- NmR and mljv = dim m;v Accordlng to Theorem 5.9
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in [Koil], Spec 4G\ {0} is given by

Bi(v)
(3.1)  Spec AG\{0} = arctanh(f;(v)/4;+ (v)) IX ke
U { Bi(v) ke Z}
arctanh(%;- (v)/f,(v)) + (k +3)
Hence we have
Tr’AszZ ﬁi(v) % mF

' ielk, kez arctanh(f;(v) /2 (v)) + knv/—1
Bi(v) _
'+i£§;,2§;=uctanh< /B0) + (k+ a1

Z ml ot )+ Z miTv)"jfv(v)

ielR, ielR

—Zm, =Tr A4, (e R)

jel4
1 V-1
in terms of coth 0 =3, .5 ———and coth| 0 + V") = tanno. Also, we
have TR0+ jnv—1 2
(%) o G
SRR SD I 3D S
ielR keZ ielR keZ

Hence M is regularizable and Tr, A‘EL =Tr A, holds. This implies <P~Iﬁ,vL> =
(Heg,v)(= <(HL)0, vly).  Since this “relation holds for any v e b, and b, is dense
in b, we obtain Hy = (H%);. Similarly we can show H, = (H*), for any ue M.
Thus we obtain ﬁ =HE. q.e.d.

By using Lemma 3.1 and imitating the proof of Lemma 3.1 of [Koil0], we
can show the following fact.

LemMa 3.2, The mean curvature flow M, (resp. M) for M (resp. M) exists
in short time and M, = (mo @)~ (M,) holds.

4. Proofs of Theorems A and B

Let M be a curvature-adapted isoparametric submanifold in a symmetric
space G/K of non-compact type as in Theorem A. Without loss of generality,
we may assume that eK € M. We use the notations in the previous section.
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Denote by & the focal set of M at eK. Since mo¢ is a pseudo- Rlemanman
submersion, the focal set & of M at 0 is equal to {UOL |exp*(v) € &}, where exp*

is the normal exponential map of M and 1;0 is the horizontal lIft of v to 0. Here
we regard the normal space TLM of M at 0 as a subspace of HO([O 1],g). In

the sequel, we identify Uo w1th v through (7o ¢),4. The focal set ‘{g is equal to
{v|Ker(4, —id) # {0}}(= b). The complex focal structure F& of M at 0 is

defined by ¢ := {v|Ker(4® —id) # {0}}(= b%). According to the proof of
Theorems B and C of [Koi6], by using (3.1) and discussing delicately, we can
show that §;(v)/4;+ (v) and 4;; (v)/B;(v) are independent of the choice of v (in the
sequel, we denote these constants by ¢ and ¢;, respectively), ILRJr and IR are
1ndependent of the choice of v (in the sequel we denote these sets by /X and I )

and that T is described as follows:

iclR jeZ

U <igR ‘,-yz pE! (arctanh ¢ + (j +;> n\/:>>

. 1 , . .
Since ’lfﬁ :cjﬁi and /;- = ¢; B, they are independent of the choice of veb.

(4.1) FC = ( U U BF '(arctanh ¢; +j7r\/—_l))

1 ~
Hence we denote 4 by ),i Therefore, § is given by
(4.2) F= U g (arctanh ¢;").
ielR
Denote by A the set of all complex principal curvatures of M. According to
(3.1), A is given by
i R,
A= ! iel', jekZ
{arctanh i+ jnv—1 +J
B R
U L iel®, jelZ,
{arctanh ¢+ (j+ V-1 -/

where BT is the parallel section of ((T L))" with (/5"5)0 =pY. From the
assumptlon M admits a focal submanifold. Hence we have I f #0 and
(Viesz B !(arctanh ¢;") # 0 (see the proof of Theorems B and C in [Koi6]). Fix

Oe ﬂielf B '(arctanh ¢;F).  Set
N = B, e IRV U=, ie 17,
V= {Bilie IfYU{-pilie I},
" (f, i e IRV U{—f, i e IR},
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Let a be a maximal abelian subspace of p containing b(= T;x M) and A be
the root system of G/K with respect to a. Then we have A" = {«|, |a € A s.t.
al, #0}. Let F; be the focal submanifold of M through xo := exp*(0), which is
one of the lowest dimensional focal submanifolds of M. For simplicity, we set

T+ /}E R
A= el

" 7 arctanh ¢ (el
7o B o IR
A = ! iel

' arctanh ¢; +1nv/—1 el

and

b= e IR
' arctanh ¢ (iel)
by = n (ielk).

arctanh ¢; +17nv/—1

Then we have

I+
v ot/ ielf jeZ

Ul icr® jez!.
{l—i-b,-_j\/—l -/ }
L ~ /li ~
For simplicity, we set /F :—W (ie If, j€Z). Take veb,\§ where
+

we note that & = Uzeﬂ* Pha )71(1). We have dim Ker(4L — (Il]i)o(v) id) = m;
(ielf, jeZ). Set Ej: Ker(A‘F (/1+) (v)id) (ieIf, jeZ), which are in-
dependent of the choice of veb, \3- Take another we b, \F. Let w be the
parallel normal vector field of M with wy = w. Denote by #; the end-point map
for w and M,, :=#;(M), which is a parallel submanifold of M. We have

]—'WMW = ”W*(T()M)

= (@ S ﬂw*(Eif)) ® (@ @ ﬂw*(Eij)>.
ieltjeZ iclR jeZ

Denote by A" the shape tensor of M,,. We have
(45)o(0) . (1), (0) .
e id= — =~ id
1= (45)5(w) (1+b5V=1) = (47)5(w)

Hence the set A" of all complex principal curvatures of M, is given by

€
(A t)v |n$(E$) =
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¥
Aw: + ielfajez
1-— (i;)o(w)
Fin
U{+ ieIR;jGZ}
1= (4;)5(w)
Y
_ i ielR jez
{1+bi+j\/wf(/1i+)o(‘1’) o }
i
U A ielR jez
{1+bij\/—1—(/1f)o(w) ’ }
BE R
_ i el’, jel
{arctanhci*Jrjnvlﬁi(W) e

B
U{arctanh ¢ + (j+%)ﬂ\/j*ﬁi(w)

Hence we have

ieIR,jeZ}.

. Bi(v)
43)  Tr(A")" = ’ x m;’
(4.3) (47) l;WeZZarctanh ¢+ jnv/—=1—=pi(w) '

Bi(v) -
* Z Zarctanh ¢ + (j+%)7l\/:—1—ﬂi(w) o

iclRjel
= Z m;" coth(arctanh ¢;” — ;(w))B:(v)
ielR
+ Z m;” tanh(arctanh ¢;” — g,(w))B,(v) (veDb),
ielR
where we use ) _ coth ¢ and coth | 0+~ -1 _ tanh 0. Hence
we have TR0+ jr/-1 2

<(ﬁw>w7 vy = <Z mf coth(arctanh C;r - ﬂi(”i))ﬂl#’ U>

ielR
+ < Z m; tanh(arctanh ¢; — B;(w))p7, v>,
ielR

where é,# is defined by f;(-) = <B7,-> (i€ I®). Since this relation holds for any
veb\F, we have
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(4.4) (H"), Z m;" coth(arctanh ¢;” — B;(w))p7

ielR

+ Z m; tanh(arctanh ¢; — f,(w))B7.

ielR
Set
— (web|(F)yw) <1 (ielk)}
= {web|p;(w) <arctanh ¢; (ieIF)},

which is a fundamental domain of the real Coxeter group associated with ]\Z .
Each parallel submanifold of M passes through the only one point of expi(NC)
and each focal submanifold of M passes through the only one point of exp*(dC).
Define a vector field X on C by X, := (H"), (we C). Let {y,} be the local
one-parameter transformation group of X. Now we shall prove the statements
(i) and (iii) of Theorem A.

Proof of (i) and (iii) of Theorem A. First we shall show the statement (i).
Denote by 6; (i € I®) the maximal dimensional s1rnplex of 0C contained in
i 1(arctanh ¢;"). Fix iy el R Take wyea, and wjy € C near wy such that
wo — wy, is normal to o;,. Set w§ = ewj + (1 —¢e)wo for e € (0,1). Then we have
lim,_ o f5;,(w§) = arctanh ¢ and sup,_,; f; (w§) < arctanh ¢;" for each ie
IR\ {ip}. "Hence we have

lim coth(arctanh ¢ — f; (w§)) =
e—+0

and

sup coth(arctanh ¢; — B,(wg)) < oo (i e IF\{io}).

0<e<1

Therefore, we have lim,_, — is the outward unit normal vector of ;. Also

IIXu ||
we have lim,_o|| Xy || = oo. From these facts, X is as in the first figure of
Figure 1 on a sufficiently small collar neighborhood of ;. Define a function p
over C by

pw) == — Z m;" log sinh(arctanh ¢;” — f;(w))
ielR
- Z m; log cosh(arctanh ¢; — f;(w)) (we C).

ielR

From the definition of X and (4.4), we have grad p = X. For simplicity, set
0;:== (i=1,...,r). Then we have

0x;
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?
o X
[1X1]
X
FIGURE 1
0;0 mit ) ;
4.5 ) w) = ; o
@) @AM =D e canh o7 — iy )
m
- ) (9)B:(00)-
Py cosh2(arctanh ¢ — ﬁ,—(w))ﬂ’( i)B:(0k)
~ 1 o |
v aC’ sinh’(arctanh ¢ =B;(w) — oo for at least one i € I+ and cosh?(arctanh ¢ =Bi(w)

<1 for all ieIR. Hence we see that p is downward convex on a sufficiently
small collar neighborhood of dC. Furthermore, since codim M = rank(G/K)
and dim(p,Np’) > 1 dimp, (xeA) by the assumption, we have IR =1I~K,
m >m; and ¢ =¢; (ielIX). From the relation (4.5), we have

mi |
(0;0kp) (W) = ie;ﬁ sinh® (arctanh ¢ _ﬂi(w))ﬂi(a/)ﬁi(ak)
+
s i B0 (0)

£ sinh? 2(arctanh ¢;" — f;(w))

Hence we see that p is downward convex on the whole of C. Also, it is clear
that p(w) — oo as w— dC and that p(tw) — —co as t — oo for each we C.
From these facts, p and X are as in Figure 2. Hence ¢ — ,(0) converges to a
point wy of 0C in a finite time 7. Therefore M is not minimal and the mean
curvature flow M, collapses to the focal submanifold of M through exp*(w,) in
finite time. Thus the statement (i) is shown.
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Next we shall show the statement (iii) of Theorem A. Since X is as in the
second figure of Figure 2, we obtain the following fact:
(x1) For each w € 0C, there exists w’ € C such that the flow ,(w’) converges
to w.

the graph of p

FIGURE 2

Now we shall show the following statement:
(x2) For any we dC, the set {w’ e C|the flow y,(w’) converges to w} is
equal to the image of a flow of X.
That is, we shall show that the situation as in Figure 3 cannot happen. Let
W be the real Coxeter group of M at 0, that is, the group generated by the
reflections with respect to the (real) hyperplanes /’s (i€ IX) in b containing
g;. This group W is a finite Coxeter group. Set V := Span{p7 |ie If} and
Cy := CNYV (see Figure 4). This space V' is W-invariant and W acts trivially
on the orthogonal complement V+ of V. Let {¢,,...,¢,,} be a base of the
space of all W-invariant polynomial functions over V, where we note that
r'=dim V. Set ®:=(¢,..., ¢.), which is a polynomial map from V to
]R"/;_ It is shown that ® is a homeomorphism of the closure~6V of 5;/ onto
®(Cy). Set &,(1) := y,(w) and &,(f) := ®(,(w)), where we Cy. Let (xi,...,
x) be a Euclidean coordinate of ¥ and (yi,...,y) the natural coordinate
of R”. Set & (1) :=x,(¢,(1)) and EL(t) == »i(&, (1)) (i=1,...,¢). Then we
have
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FIGURE 4

(Eviu)/(l) = <grad(yi o (D)éw([)v ngw(t)>
= Z m_;” coth(arctanh ¢;” — f,(¢,,(1)))f;(grad(yi o D): ()

jelR

+ Z m; tanh(arctanh ¢ - ﬁj(fw(t)))ﬂj(grad(yi o (D)g““,(z))'

Jjelk

Let f; be the W-invariant C*-function over V' such that
fi(v) :== > m;’ coth(arctanh ¢/ — §;(v))B;(grad(y; o ®),)
jelR

+ > m; tanh(arctanh ¢; — f;(v))B;(grad(y; o ®),)
jelR

for all ve Cy. It is easy to show that such a W-invariant C*-function exists
uniquely. According to the Schwarz’s theorem in [S], we can describe f; as
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fi=Y;o® in terms of some C*-function Y; over R”. Set Y := (Y1,...,Yn),
which is regarded as a C*-vector field on R”'. Then we have Yo = O (Xy)
(we Cy), that is, Y|<1>(c =®.(X). Also we can show that Y|aq>(c ) has no zero
point. From these facts we see that, for any we oCy, the set {w'e CV|the
flow y,(w’) converges to w} is equal to the image of a flow of X (see Figure 5).
In more general, we obtain the statement (x;) from this fact.

Cvy
-1
(@l5)

—_—

Flows of X|&
Y

(The extension of @, (X))

FIGURE 5

Take an arbitrary focal submanifold F of M. Let exp:(w;) be the only
intersection point of F and expt(dC). According to the above fact (x;), the
set of all parallel submanifolds of M collapsing to F along the mean curvature
flow is a one-parameter C*-family. Thus the statement (iii) of Theorem A is
shown. q.e.d.

Next we prove the statement (ii) of Theorem A.

Proof of (ii) of Theorem A. Let M and F be as in (ii) of Theorem A.
Since the natural fibration of M onto F is spherical, so is also the natural
fibration of M onto F. Hence F meets one of (6C N B! (arctanh ¢;7))*’s
(ieIf) (at one point). Assume that F meets (0CN B !(arctanh ¢i))°. Let
up be the intersection point. Let 7 be the explosion tlmg of the flow M,.
Denote by A’ (rep. A’) the shape tensor of M, (resp. M;), H' the mean
curvature vector of M, and H' the regularized mean curvature vector of M,. We
have
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Bi(v)
arctanh ¢;” + jav—1 — B:(1,(0))

U Bi(v)
arctanh ¢;” + (j +%)n\/—_1 — Bi(¥,(0))

(4.6) Spec(A4!)"\{0} ={

ielf,jel}

ieIR,jeZ}

M,(= Téﬂ). Since

1
for each v e Tl//’(())

li;no ,(0) = up € (0“6‘0 [}l.;l(arctanh )’
ST

we have lim,_7_o f; (1,(0)) = arctanh ¢ and lim, .7 B:(,(0)) < arctanh ¢;*
(ie I”\{ip}). Hence we have

@7 dim AT -0
2
= lim Ful0) (T —1)
t—T—0 (arctanh C;]r — ﬁio(‘//z(o)))
| 1

2 4.
= §ﬁi0 (v) tl‘EO

(arctanh ¢; — ﬂio(lpt(())))ﬂi() (% ‘Pt(())> |

Since <y,(0) = (I—NI’)W()), it follows from (4.4) that

i faretanh ¢ 3, (OB, (50))

t—T-0
ie TR
iel]

= lim ( S m coth(arctanh ¢ — §,(6,(0)))< B, 7 (arctanh ¢ — B, (44(0)))

+ Y m; tanh(arctanh ¢; — B,(,(0)))<Bf, B >(arctanh ¢;} — ﬁ,b(wf(f)))))

ielR
= mi B ALY Tim coth(arctanh ¢ — f, (44(0))) (arctanh ¢ — , (4(0)))
. 2 A
= m{CBL AL lim cosh*(arctanh ¢ — f, (1,(0)))
=m BE B,
which together with (4.7) deduces

ﬂio(v)z

lim (A (T = 1) =
t—T—0 2m;:<ﬁf)ﬁf>
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and hence

(4.8) lim  max_ [[(4) )2 (T —1) =

t—T-0

+

veSt, M: 2m;;

Thus M, has type I singularity. Denote by exp, the exponential map of G
and Exp the exponential map of G/K at eK. Also, denote by S(1) the unit
hypersphere in b centered at 0. Set g, := exps(,(0)) and 7, := g,.(v) for each
ve S(1). The relation 7, = (no¢)*w0)(v) holds. Since M is proper complex
equifocal and curvature-adapted by the assumption and since M, is a parallel
submanifold of M, M, is also proper complex equifocal and curvature-adapted
(see Lemma 3.4 of [Koi9]). It is easy to show that Ty, ()>M, = ¢gu(m) and
that T ) M = gu(MmP) + X /r gis(MF) is the common-eigenspace decom-
position of R(-,,)d,’s (veb). In similar to B; (ielR), i° (zeIR) and 4,
(i € I®), we define linear functions B (i e I®), (/)" (ie IF) and ()" (ieI®) on
Tl/i_(())Mt = gnb by

R(-,00)d g,y = Bl(5)*id (veb),

{4 € Spec(Aj |y, m) 121 > 1B (@]} = {(4)) " (3)} (veb)
{4 € Spec(Al,, omr) 12 < 1B} = {(4) (@)} (veb).

It is clear that ! =p;0g;' (ieI®). The values B!(5,)/(2)"(5) (ieIR) and
()" (8)/Bl(®) (i € IR) are independent of the choice of veb. Denote by (c/)"

and (c/)” these constants, respectively. If ie IXNIR then we have (ci’)+ =
(¢/)”. Hence we shall denote (c!)" (i e IR) and (ci’)f (ieI®) by ¢! for simpli-

1 1

city. In the sequel, we use this notation. The spectrum of (AL’.)‘E other than
zero is given by

Bi(v)
arctanh ¢/ + jav—1

Spec(4!) T\ {0} :{ ielf, jel}

ﬂi(u) . R
U iel” jel;.
{arctanh e+ (j+1)nv-1 -/

On the other hand, we have lim, .7 o max,cs)|(4; )+(5,)| = oo and hence
lim,_.7_g c =0. Also we have lim, .7 o max,cg)|(4 )+(l7,)| < oo and hence
lim, 7 0|c | >0 (ieIf\{ip}). Therefore we obtain

(4.9) lim (T —1) max (4112

t—T-0 veS(1) *®

2
= lim (7 —¢) max G
(—~T—0 ves(1) \ arctanh ¢}/
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T—1t
2

= max f; (v lim ———
ves(l) Bi(v) =T-0 arctanh? ¢!

2
= T—t ﬁ% U) N+ /=2
T A 0(arctanhzwm<v)/<i,;>*<at>> ((z,-; *(a)) (a2 )

= lim (T - 1) max (2})"(z,)°

t—T-0 vesS(1)
= lim (7 —¢) max ||4}||5, = lim (T —¢) max |4} 2
im (7= 1) max 4%, = tim (7' =) max 4]

From this relation and (4.8), we obtain

lim (T — 1) msax |4

t—T—-0

u||oc zyn;%
Thus the mean curvature flow M; (0 <t < T) has type I singularity. g.e.d.

For each S < IR, we set
Gs:={weaC| (/l+) (w) <1 (ielf\S) & ( Dew) =1 (ieS)}
= {we C|B;(w) < arctanh ¢ (ieIR\S) & B;(w) = arctanh ¢/ (i € S)},

which is a s1mplex of C. Take wedgs. Let w be the parallel normal vector field
of M with wy = w. Denote by My the end-point map for w and F, = Ny (M ),

which is a focal submanifold of M. We have

= ( D D ﬂw*(E,f)) ® ((—D &) ng*(E,j))
ielf\S jeZ icIR jeZ

Denote by A" the shape tensor of F,. In similar to (4.3), we have

(4.10) (A ") Z m; coth(arctanh ¢;” — B;(w))B;(v)
ielR\S
+ Z m,; tanh(arctanh ¢;” — B;(w))B;(v) (€ R)
ielR

for any v € b, where b is regarded as a subspace of TLF’“ Set L:= MnN Tif‘w,
which is a focal leaf of M. For any u € L, let b, be the section of M through u.
We can show (H") w € ﬂu ; bu. Hence, from (4.10), the regularized mean cur-

vature vector H" of F, ex1sts and (H"),, is given by

(4.11) (H"), Z m;" coth(arctanh ¢;” — B;(w))p7
ielR\S

+ > m; tanh(arctanh ¢ — B,(w))B.

ielR
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Define a vector field X on g5 by X7s := (H"), , (weas). This vector field X7s
is tangent to gs. Let {y7} be the local one- parameter transformation group
of X0,

Proof of Theorem B. First we shall show the statement (i) of Theorern B.
Let F be as in the satement (i) of Theorem B. Set F:= (mo¢) '(F). Since
the lowest dimensional focal submanifold F; of M is a one-point set by the
assumption, we have IR = (. Let wy be the intersection point of F and G. Set
So == {i e IR(=I®) | B:(wo) = arctanh ¢;"}. Since dim ¢ > 1, we have IR\ Sy # 0.
According to (4.11), we have

(4.12) (X%),=(H"),= > m; coth(arctanh ¢; — B,(w))p¥ (weq).

iEIR\S(]

We can show that X7 is as in Figure 6 on a sufficiently small collar neighbor-
hood of each maximal dimensional stratum of dg. Define a function p; over &
by

ps(w) = — Z m; log sinh(arctanh ¢;” — f;(w)) (w € a).
ieIR\S()
Easily we can show grad p- = X?. Let (xy,...,x) be the Euclidean coordinate

of (;es, A ' (arctanh ¢f).  For simplicity, set d;:=# (i=1,...,r"). Then we
have l

+

Qorpz) W) = > = o B:(07)B:(0x).-

TR, sinh?(arctanh ¢; — B,(w))

Hence we see that p; is downward convex on &¢. Also, it is clear that
ps(w) — oo as w— do and that pz(tw) — —c0 as t— oo for each wea.
From these facts, it follows that y/7(wy) converges to a point w; of Jdo in a
finite time. The mean curvature flow F; collapses to the focal submanifold of
M through exp®(w;)(e exp(0s)). This completes the proof of the first-half
part of the statement (i). The second-half part of the statement (i) is proved by
imitating the proof of the statement (ii) of Theorem A.

Next we shall show the statement (ii) of Theorem B. Set V :=
Span{p7?|ie IR} and Gy :=GNV. Denote by V; be the affine subspace of
V containing gy as an open subset. Let W5 be a finite Coxeter group generated
by the reflections with respect to the (real) hyperplanes /s (i e I®\Sp) in V;

containing ¢; N V5. Let {¢1~, . ,(/f} be a base of the space of all Ws-invariant
polynomial functions over V3 where we note that r =dim V5. Set ®;:=
( ,...,¢") which is a polynomial map from V; to R, Tt is shown that @ is

a homeomorphlsm of the closure g of g onto ®;(ay). Set &, (¢) := ,(w) and
E,(t) = @5(Y(w)), where weay. Let (x1,...,x) be a Euclidean coordinate
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of Vz and (y1,..., y~) the natural coordinate of R". Set & (£) := x;(&,(f)) and

EL() = yi(&,(0) (i=1,...,¢"). Then we have
(£1)'(1) = Cgrad(yi0 3); () XZ ()
Z m coth(arctanh ¢;” — f,(&,,(1)));(grad(y; o D3)e, )

JjeI®\Sy
Let f be the Wj-invariant C*-function over V3 such that

f7() ==Y mj coth(arctanh ¢;” — B;(v))B;(grad(y; o ®7),)

JeIR\S

for all veagy. It is easy to show that such a Wj-invariant C*-function exists
uniquely. According to the Schwarz’s theorem in [S], we can describe £ as
f7 = Y7 o®; in terms of some C*-function Y7 over R”. Set Y7:=(Y7,...,
Y?), which is regarded as a C*-vector field on R”. Then we have Yo oy =
(©5),(X7) (weay), that is, Y|g ;) = (P;),(X?). Also we can show that
Y?|;0.(7,) has no zero point. From these facts and the fact that X7 is as in
Figure 6 on a sufficiently small collar neighborhood of each maximal dimensional
stratum of day, we see that, for any w € day, the set {w’' € ) | the flow Y7 (w’)
converges to w} is equal to the image of a flow of X?. In more general, the
same fact holds for any w e dg. From this fact, the statement (ii) of Theorem B
follows. q.e.d.

FIGURE 6

We shall explain that, in the statement of Theorem B, we cannot weaken the
condition that F; is a one-point set to the condition (A’ = A and dim(p, Np’) >
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1 dimp, (x€ A)) in the statement of Theorem A. Assume that M satisfies the
condition in the statement of Theorem A. Let S; be as above and & := gg,.
Define a function p; over g by

pz(w) = — Z m;" log sinh(arctanh ¢;" — B;(w))
ielR\S,
- Z m; log cosh(arctanh ¢;” — B;(w)) (w € a).
ielR

We have grad p; = X°. Also, it follows from m;" > m; and ¢ =¢; (ieIF)
that

(910p7) (W) = ;) i (arctanh & — g0y P20
4m;f |
i ie(l’%)ﬂ]ﬁ sinh’ 2(arctanh ¢;" — B;(w)) PlaB
+
- m BA(3)BA5)-

i SR cosh?(arctanh ¢ — B;(w))

Thus we cannot conclude whether p is downward convex or not bacause of
the existence of the third term in the right-hand side of this relation. Hence, in
Theorem B, we cannot weaken the condition that F; is a one-point set to the
condition in the statement of Theorem A.

5. Examples

Principal orbits of Hermann actions on a symmetric space G/K of non-
compact type are curvature-adapted isoparametric submanifolds and they have
no focal point of non-Euclidean type on the ideal boundary of G/K. In par-
ticular, principal orbits of the isotropy action K ~ G/K and those of Hermann
actions H ~ G/K as in Table 1 satisfy the additional conditions “‘codim M =
rank G/K and dim(p,Np’) > 1 dim p, (x€A)” in the statement of Theorem
A. In Table 1, L is the fixed point group of for, where 6 is a Cartan
involution of G with (Fix 0), c K < Fix 0 and 7 is an involution of G with
(Fix7)y, « H c Fix 7. Then, for a Hermann action H ~ G/K, F;:= H(eK)
is one of the lowest dimensional focal submanifolds of principal orbits of
H ~ G/K. The submanifolds F; and Fj*:=exp' (T, H(eK)) are reflective
and hence they are symmetric spaces. Explicitly they are described as F; =
H/HNK and F* =L/HNK, respectively (see Figure 7). In particular, in
case of the isotropy action K ~v G/K, F; is a one-point set. Hence the prin-
cipal orbits of the isotropy action satisfy the conditions in the statement of
Theorem B.
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H G/K F=H/HNK Fr=L/HNK
S0*(2n) SU*(2n)/Sp(n) S0*(2n)/ U (n) SL(n,©)/SU(n)
S0*(2p) SU(p. p)/S(U(p) x U(p)) S0*(2p)/U(p) Sp(p,R)/U(p)
S0(n, ) SL(n,)/SU(n) S0(n, T)/SO(n) SL(n,R)/SO(n)

SU*(2p) - U(1)

Sp(p, p)/Sp(p) x Sp(p)

SU*(2p)/Sp(p)

Sp(p,€)/Sp(p)

SL(n,T) - SO(2,T)

Sp(n, €)/Sp(n)

SL(n,C)/SU(n)
x SO(2,C)/SO(2)

Sp(n,R)/U(n)

Sp(1,3) EZ/SU(6) - SU(2) Sp(1,3)/Sp(1) x Sp(3) F{/Sp(3) - Sp(1)
SU(1,5) - SL(2,R) E;'/Spin(10) - U(1) SU1,5)/S(U1) x U(5)) |  SO*(10)/U(5)
x SL(2,IR)/SO(2)
Sp(4,C) E{ /Es Sp(4,€)/Sp(4) E¢/Sp(4)
SU(2,6) Ey5/S0'(12) - SU(2) SU2,6)/S(UQ2) x U(6)) | EZ/SU(6) - SU(2)
SL(8,C) ES/E; SL(8,C)/SU(8) E]/SU(8)
50(16,T) EL/Es 50(16,C)/SO(16) E§/S0(16)
Sp(3,€) - SL(2,C) Ff/F, Sp(3,€)/Sp(3) F{/Sp(3) - Sp(1)
x SL(2,C)/SU(2)
SL(2,C) x SL(2,T) GE/G, SL(2,C)/SU(2) G2/S0(4)

x SL(2,@)/SU(2)

Table 1

F = H(eK)= H/HNK

expt(b)

in fact ",

P

exp* (b

)

M = H(gK)

F'=L/HNK
ol

FIGURE 7
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