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THE IDEALS OF THE HOMOLOGICAL GOLDMAN LIE ALGEBRA

Kazuki Toda

Abstract

We determine all the ideals of the homological Goldman Lie algebra, which reflects

the structure of an oriented surface.

1. Introduction

By a surface, we mean an oriented two-dimensional smooth manifold
possibly with boundary. It is well known that the first homology group and
the intersection form of a surface reflect the topological structure of the
surface. For example, they have information about the genus and the boundary
components of the surface.

To study them in detail, we consider a Lie algebra coming from them. We
call it the homological Goldman Lie algebra. Goldman introduced the Lie
algebra for study of the moduli space of GL1ðRÞ-flat bundles over the surface
[G] p. 295–p. 297. We define the Lie algebra in more general setting. Let H be
a Z-module, i.e., an abelian group, which is not necessarily finitely generated, and
h�;�i : H �H ! Z, ðx; yÞ 7! hx; yi, an alternating Z-bilinear form. For ex-
ample, we consider that H is the first homology group, and h�;�i is the
intersection form of a surface. We define a Z-linear map m : H ! HomZðH;ZÞ
by mðxÞðyÞ ¼ hx; yi. Denote by Q½H� the Q-vector space with basis the set H;

Q½H� :¼
Xn

i¼1

ci½xi� j n A N; ci A Q; xi A H

( )
;

where ½�� : H ! Q½H� is the embedding as basis. Here, we remark that
c½x�0 ½cx� for any c0 1 and x A H. We define a Q-bilinear map ½�;�� :
Q½H� �Q½H� ! Q½H� by ½½x�; ½y�� :¼ hx; yi½xþ y� for x; y A H. It is easy to
see that this bilinear map is skew and satisfies the Jacobi identity [G] p. 295–
p. 297. The Lie algebra ðQ½H�; ½�;��Þ is called the homological Goldman Lie
algebra of ðH; h�;�iÞ. The Lie algebra Q½H� is equipped with a product
Q½H� �Q½H� ! Q½H�, ð½x�; ½y�Þ 7! ½x�½y� ¼ ½xþ y� as a group ring. Then Q½H�
is a Poisson algebra.
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The homological Goldman Lie algebra is infinite dimensional and we can
define this Lie algebra only from algebraic information. So, it is interesting
in an algebraic context. The homological Goldman Lie algebra comes from
the first homology group and its intersection form. So, it is also interesting in
a geometric context. For example, the homological Goldman Lie algebra is
exactly the subalgebra of all Fourier polynomials in the Poisson algebra on the
symplectic torus if the surface is closed [G] p. 295–p. 297. Namely, the corre-
spondence ½

Pg
i¼1ðaiAi þ biBiÞ� 7! expð

Pg
i¼1ðai pi þ biqiÞÞ is an injective homomor-

phism of Poisson algebras, where g is the genus of the surface, fAi;Bigg
i¼1 a

symplectic basis of the first homology group of the surface, and fpi; qigg
i¼1

symplectic coordinates of R2g. Moreover, we can consider a more complicated
Lie algebra coming from free loops and the intersection form. Take two
free loops a and b on the surface in general position. We define ½a; b� :¼P

p A aVb eðp; a; bÞa �p b, where eðp; a; bÞ is the local intersection number of a and b
at p, and a �p b is the free homotopy class of the product in the fundamental
group with base point p. The bracket induces a well-defined operator in the free
module with basis the set of homotopy classes of free loops, and it is easy to
show that the bracket is skew and satisfies the Jacobi identity. We call this Lie
algebra the Goldman Lie algebra. We have a surjective Lie algebra homo-
morphism from the Goldman Lie algebra onto the homological Goldman Lie
algebra [G] p. 295–p. 297.

The purpose of this paper is to study the algebraic structure of the
homological Goldman Lie algebra. More precisely, we determine the ideals
of the homological Goldman Lie algebra. Here an ideal h of a Lie algebra g is
a subspace of g with ½g; h�H h, namely, ½X ;Y � A h for X A g and Y A h. In
particular, we will show the following. If the surface is closed, the number of
all the ideals of the homological Goldman Lie algebra is finite (see Corollary
4.4). In the forthcoming papers, we determine the minimal number of generators
of the Lie algebra [K], and compute its second cohomology [T].

To state our result, let us prepare some notations. For x A H, we de-
note x :¼ xþ ker m. The Lie algebra Q½H� is a graded Lie algebra of type
H :¼ H=ker m [B] Chapter II §11. Namely, we have Q½H� ¼ 0

x AH Q½x� and
½Q½x�;Q½y��HQ½xþ y�. Here Q½x� ¼ f

Pn
i¼1 ci½xi� A Q½H� j n A N; ci A Q; xi A xg.

The ker m-degree is the degree induced by grading of type H. For X A Q½x�, we
denote deg X ¼ x.

For x A H, we define TðxÞ : Q½H� ! Q½H� by TðxÞð½y�Þ ¼ ½xþ y�, where
y A H. The map T : H ! GLðQ½H�Þ induces an action of H on Q½H�. For
x; y A H and Y A Q½y�, we have ½½x�;Y � ¼ hx; yiTðxÞðY Þ ¼ hx; yi½x�Y .

Let A be a subgroup of H, and V a subspace of Q½H�. We say that V is
A-stable if TðAÞðVÞHV .

Our main theorem is the following.

Theorem 1.1 (Classification of the ideals of the homological Goldman
Lie algebra). For any ideal h of Q½H�, there exists a unique pair ðV0;VÞ
such that
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(1) V0 and V are subspaces of Q½0� ¼ Q½ker m�,
(2) V is ker m-stable, and
(3) h ¼ V0 l0

x AHnf0g TðxÞðVÞ,
where TðxÞðVÞ :¼ TðxÞðVÞ, which is well-defined by (2). If m ¼ 0, we define
V ¼ 0.

Conversely, if a pair ðV0;VÞ satisfies (1) and (2), then the subspace h of Q½H�
defined by (3) is an ideal of Q½H�.

This means that any ideal of Q½H� is a graded Lie algebra of type H.
The author sincerely thanks the referee for his/her many helpful suggestions.

2. Preparations for our main theorem

Lemma 2.1 (Key lemma). If x1; . . . ; xn A Hnker m, there exists z A H that
satisfies hx1; zi0 0; . . . ; and hxn; zi0 0.

Proof. We prove this by induction on n. It is clear in the case n ¼ 1.
Consider the case n > 1. By the inductive assumption, we can take u A H
satisfying hxi; ui0 0 for i ¼ 1; . . . ; n� 1. If hxn; ui0 0, the element u is a
desired one. Suppose hxn; ui ¼ 0. We can choose v A H such that hxn; vi0 0,
since xn B ker m. We shall prove that

z :¼ uþ ð1þ jhx1; uij þ � � � þ jhxn�1; uijÞv

is a desired one. We have

hxn; zi ¼ ð1þ jhx1; uij þ � � � þ jhxn�1; uijÞhxn; vi0 0:

For k < n, hxk; zi ¼ hxk; ui0 0 if hxk; vi ¼ 0.
If hxk; vi0 0, we also have hxk; zi0 0, because

jhxk; zijb ð1þ jhx1; uij þ � � � þ jhxn�1; uijÞjhxk; vij � jhxk; uij > 0: r

Let h be an ideal of Q½H�. Then we have

Proposition 2.2 (Decomposition of an ideal with respect to ker m-degree).

h ¼ 0
x AH

ðhVQ½x�Þ

Proof. It is clear that the sum SðhVQ½x�Þ is a direct sum and h includes
0

x AHðhVQ½x�Þ. Let X A hnf0g. Since X A hHQ½H� ¼ 0
x AH Q½x�, there ex-

ist nb 1, xi A H and Xi A ðQ½xi�Þnf0g for i ¼ 1; . . . ; n such that xi 0 xj if i0 j
and X ¼ X1 þ � � � þ Xn. It su‰ces to show Xi A h for all i ¼ 1; . . . ; n.

Step 1. If xi 0 0 for all i ¼ 1; . . . ; n, then Xk A h for all k A f1; . . . ; ng.
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We show this case by induction on n, the number of the non-zero
components.

Claim. Suppose n > 1. For any k A f1; . . . ; ng, there exist c1; . . . ; cn A Q
such that (1) ck 0 0, (2) there exists some j A f1; . . . ; ng with cj ¼ 0, and (3)
c1X1 þ � � � þ cnXn A h.

Proof of Claim. We may assume k ¼ 1. First we consider the case
hx2; x1i0 0. Set

Y :¼ adð½�x2�Þadð½x2�ÞðXÞ ¼
Xn

i¼1

hx2; xiih�x2; xi þ x2iXi:

Since hx2; x1ih�x2; x1 þ x2i0 0, hx2; x2i ¼ 0, and Y A h, this claim holds.
Second we consider the other case, i.e., hx2; x1i ¼ 0. Since x1 0 0, x2 0 0,

and x1 0 x2, by Lemma 2.1, we can choose z A H that satisfies hx1; zi0 0,
hx2; zi0 0, and hx1 � x2; zi0 0. Set

Y :¼ adð½x2 � z�Þadð½z�Þadð½�z�Þadð½z� x2�ÞðXÞ

¼
Xn

i¼1

hz� x2; xiih�z; xi þ z� x2ihz; xi � x2ihx2 � z; xi � x2 þ ziXi:

Since hz� x2; x1ih�z; x1 þ z� x2ihz; x1 � x2ihx2 � z; x1 � x2 þ zi0 0,
hz; x2 � x2i ¼ 0, and Y A h, this claim holds. r

Proof of Step 1. Induction on n. If n ¼ 1, X1 ¼ X A h. Suppose n > 1.
For any k A f1; . . . ; ng, we can take c1; . . . ; cn A Q as in Claim. By the as-
sertions (2) and (3) of Claim, we can apply the inductive assumption to
c1X1 þ � � � þ cnXn. Then we have ckXk A h. By the assertion (1) of Claim,
we have Xk A h. This completes the induction and proves Step 1. r

Step 2. If xi ¼ 0 for some i ¼ 1; . . . ; n, then Xj A h for all j ¼ 1; . . . ; n.

Proof of Step 2. The index i with xi ¼ 0 is unique since xj 0 0 if j0 i.
We can assume i ¼ 1. If n ¼ 1, we have X1 ¼ X A h. Suppose n > 1. Since
x2 0 0; . . . , and xn 0 0, by Lemma 2.1, there exists z A H such that hx2; zi0
0; . . . , and hxn; zi0 0. Set Y :¼ adð½�z�Þadð½z�ÞðX Þ ¼

Pn
j¼1hz; xjih�z; xj þ ziXj.

Since hz; x1i ¼ 0, we have Y ¼
Pn

j¼2 hz; xjih�z; xj þ ziXj. Thus we can apply
Step 1 to Y , so we have hz; xjih�z; xj þ ziXj A h for all j ¼ 2; . . . ; n. Since
hz; xjih�z; xj þ zi0 0, we obtain Xj A h for all j ¼ 2; . . . ; n. Moreover, X1 ¼
X � X2 � � � � � Xn A h.

This proves Step 2. r

Step 1 and Step 2 complete the proof Proposition 2.2. r
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Proposition 2.3 (Homogeneity of an ideal). For x; y A Hnker m,

Tð�xÞðhVQ½x�Þ ¼ Tð�yÞðhVQ½y�Þ

Proof. Let X 0 A Tð�xÞðhVQ½x�Þ. Then there exists X A hVQ½x� with
X 0 ¼ Tð�xÞðXÞ. Since X 0 ¼ Tð�yÞðTðy� xÞðX ÞÞ and deg Tðy� xÞðXÞ ¼
y� xþ x ¼ y, it is su‰cient to prove Tðy� xÞðX Þ A h.

By x; y A Hnker m and Lemma 2.1, we can choose z A H with hx; zi0 0 and
hy; zi0 0. We obtain Tðy� xÞðXÞ A h because

adð½�z�Þadð½y�Þadð½�x�Þadð½z�ÞðX Þ ¼ ðhz; xihy; ziÞ2Tðy� xÞðX Þ:

We can prove the other inclusion by replacing the role of x and y. r

Corollary 2.4 (ker m-stability of an ideal). For x A Hnker m and v A ker m,

TðvÞðTð�xÞðhVQ½x�ÞÞ ¼ Tð�xÞðhVQ½x�Þ; that is; TðvÞðhVQ½x�Þ ¼ hVQ½x�:

Proof. We apply Proposition 2.3 to x and x� v. Then

Tð�xÞðhVQ½x�Þ ¼ Tð�ðx� vÞÞðhVQ½x� v�Þ ¼ TðvÞðTð�xÞðhVQ½x�ÞÞ: r

3. Proof of Theorem 1.1

Proof. Existence: When m ¼ 0, 0 ¼ H. So we can define V0 ¼ h and
V ¼ 0. Assume m0 0. Then we can choose x0 A Hnker m.

By Proposition 2.2, we have

h ¼ 0
x AH

ðhVQ½x�Þ:

Let V0 :¼ hVQ½0� and V :¼ Tð�x0ÞðhVQ½x0�Þ. By Corollary 2.4, V is ker m-
stable. For all y A Hnker m, we have

hVQ½y� ¼ TðyÞðTð�yÞðhVQ½y�ÞÞ ¼ TðyÞðTð�x0ÞðhVQ½x0�ÞÞ ¼ TðyÞðVÞ

by Proposition 2.3. So we obtain

h ¼ V0 l 0
x AHnf0g

TðxÞðVÞ:

Uniqueness: We assume that ðV0;VÞ and ðW0;WÞ satisfy (1), (2), and

V0 l 0
x AHnf0g

TðxÞðVÞ ¼ W0 l 0
x AHnf0g

TðxÞðWÞ:
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Then we obtain

V0 ¼ Q½0�V V0 l 0
x AHnf0g

TðxÞðVÞ

0
@

1
A

¼ Q½0�V W0 l 0
x AHnf0g

TðxÞðWÞ

0
@

1
A¼ W0:

If m ¼ 0, then V ¼ 0 ¼ W by definition. Suppose m0 0. Take x0 A Hnf0g.
We obtain V ¼ W because

Tðx0ÞðVÞ ¼ Q½x0�V V0 l 0
x AHnf0g

TðxÞðVÞ

0
@

1
A

¼ Q½x0�V W0 l 0
x AHnf0g

TðxÞðWÞ

0
@

1
A¼ Tðx0ÞðWÞ:

Converse: Assume that ðV0;VÞ satisfies (1) and (2), and let h be the subspace of
Q½H� defined by (3).

For X A Q½H� and Y A V0, we have ½X ;Y � ¼ 0 A h since Y A V0 HQ½0�.
For x A H, v A V and y A Hnker m, we define Z :¼ ½½x�;TðyÞðvÞ�. We have

Z ¼ hx; yiTðxþ yÞðvÞ since v A V HQ½0�. If xþ y0 0, Z A Tðxþ yÞðVÞH h.
If xþ y ¼ 0, we have Z ¼ 0 A h because 0 ¼ hxþ y; yi ¼ hx; yi. Hence, we
obtain ½Q½H�; h�H h. r

4. Corollaries

Lemma 4.1. For X A Q½H�, X ¼ 0 if and only if X 2 ¼ 0.

Proof. It is enough to show the lemma for X A C½H� since Q½H�HC½H�.
We can take a finitely generated subgroup A of H with X A C½A�. Hence we
may assume H is a finitely generated abelian group. Then there exist a finitely
generated free abelian group F and a finite abelian group T with HGF � T .
Since the group T is a finite abelian group and C is algebraically closed, we have
an isomorphism C½T �GCaT of C-algebras [S] p. 48, Proposition 10. We may
assume H is free because

C½H�GC½F �nC C½T �GC½F �nC CaT G ðC½F �ÞaT :

Let H ¼ Zr. Then we have an isomorphism C½H� ! C½ZG1
1 ; . . . ;ZG1

r � of C-
algebras by ½ðx1; . . . ; xrÞ� 7! Zx1

1 � � �Zxr
r for xi A Z. The Laurent polynomial ring

C½ZG1
1 ; . . . ;ZG1

r � is an integral domain. Hence the lemma holds. r
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Proposition 4.2. Let h be an ideal of Q½H�, and ðV0;VÞ the pair of h in
Theorem 1.1. Then, h is abelian if and only if V ¼ 0.

Proof. Suppose V ¼ 0. Then, since h ¼ V0 HQ½ker m�, h is abelian.
Conversely, suppose V 0 0. Then, since m0 0, there exist x; y A H with

hx; yi0 0. Take Z A Vnf0g. Then, h is not abelian, since TðxÞðZÞ;
TðyÞðZÞ A h and ½TðxÞðZÞ;TðyÞðZÞ� ¼ hx; yiTðxþ yÞðZ2Þ0 0 by Lemma 4.1.

r

We define the descent sequences Q½H�ðmÞ and Q½H�ðmÞ by Q½H�ð1Þ ¼
Q½H�ð1Þ ¼ ½Q½H�;Q½H��, Q½H�ðmÞ ¼ ½Q½H�ðm�1Þ;Q½H�ðm�1Þ�, and Q½H�ðmÞ ¼
½Q½H�;Q½H�ðm�1Þ�, respectively. We can calculate the center zðQ½H�Þ, the derived

subalgebra ½Q½H�;Q½H�� and the descent sequences Q½H�ðmÞ and Q½H�ðmÞðm > 0Þ;
zðQ½H�Þ ¼ Q½ker m�, ½Q½H�;Q½H�� ¼ Q½Hnker m�, and Q½H�ðmÞ ¼ Q½H�ðmÞ ¼
Q½Hnker m�. In particular, we can decompose Q½H� into the center and the
derived Lie algebra; Q½H� ¼ Q½ker m�lQ½Hnker m� ¼ zðQ½H�Þl ½Q½H�;Q½H��.
Moreover, we have the abelianization of Q½H�; Q½H�ab ¼ Q½H�=½Q½H�;Q½H��G
Q½ker m�.

We say h�;�i is non-degenerate if ker m ¼ 0.

Example 4.3. Let S be a surface with ap0ðqSÞa 1. We consider H ¼
H1ðS;ZÞ and the intersection form h�;�i on H. Then, H is a free Z-module,
and h�;�i is a non-degenerate alternating Z-bilinear form.

Corollary 4.4. If h�;�i is non-degenerate and H0 0, all the ideals of
Q½H� are

0; Q½0�; Q½Hn0�; and Q½H�:

Proof. Since h�;�i is non-degenerate, ker m ¼ 0. So all the subspace of
Q0 are 0 and Q½0�, and they are ker m-stable.

Since TðxÞðQ½0�Þ ¼ Q½x�, we obtain this Corollary. r

Remark 4.5. We can define the homological Goldman Lie algebra R½H�
over an arbitrary commutative ring R instead of Q. We can prove all the results
in this paper for R½H� if R is a commutative ring including Q except for Lemma
4.1. Lemma 4.1 holds if R is an ideal domain.
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