LEAF-WISE INTERSECTIONS IN COISOTROPIC SUBMANIFOLDS

SATOSHI UEKI*

Abstract

The leaf-wise intersection on a coisotropic submanifold of a symplectic manifold is a generalization of the Lagrangian intersection investigated by Weinstein. In a similar way as Weinstein's argument, we replace the leaf-wise intersections by zero points of some closed 1-form, and show the same result as Moser's on the existence of leaf-wise intersections under different conditions.

1. Introduction

In [7], Weinstein considered the existence problem of periodic orbits of Hamiltonian systems. He combined the problem with Lagrangian intersections, and reduced it to find zero points of some closed 1-form.

On the other hand, Moser generalized Lagrangian intersections to leaf-wise intersections on coisotropic submanifolds, and obtained the following theorem:

THEOREM 1.1 (Moser [6]). Let $(P, \omega = d\lambda)$ be a simply connected exact symplectic manifold and M be a compact coisotropic submanifold of P. If a symplectomorphism $\psi \in \text{Symp}(P, \omega)$ is C^1 -close to the identity $id_P : P \to P$, then ψ has at least cat(M) leaf-wise intersections.

Here, cat(M) is the Lusternik-Schnirelmann category of M (see Definition 3.6).

In this paper, using Theorem 3.4 below proved by Weinstein, we show the following:

THEOREM 1.2 (Main theorem). Let (P, ω) be a symplectic manifold and Mbe a coisotropic submanifold of P. If $\psi \in \text{Symp}(P, \omega)$ is C^1 -close to the identity $id_P : P \to P$, then there exist a closed 1-form Γ on M and an embedding $G : M \to P \times P$ so that $pr_1 \circ G(p)$ is a leaf-wise intersection of ψ for each $p \in \text{Zero}(\Gamma)$.

Here, $\operatorname{Zero}(\Gamma)$ is the set of zero points of Γ and $\operatorname{pr}_i : P \times P \to P$ is the projections to the *i*-th component.

^{*} Partially supported by GCOE.

Received January 24, 2012; revised June 20, 2012.

By this theorem and Theorem 3.7 below, we obtain the same conclusion as Moser's theorem under different conditions:

COROLLARY 1.3. Let (P, ω) be a symplectic manifold and M be a coisotropic submanifold of P. Assume that M is compact and the first de Rham cohomology $H^1(M, \mathbb{R})$ vanishes. If a symplectomorphism $\psi \in \text{Symp}(P, \omega)$ is C^1 -close to the identity $id_P : P \to P$, then ψ has at least cat(M) leaf-wise intersections.

There are many results on leaf-wise intersections by other researchers. These results were given for more restricted class of coisotropic submanifolds under a weaker condition on ψ . In [4], Hofer proved the existence of leaf-wise intersections for restricted contact type hypersurfaces in \mathbf{R}^{2n} . He introduced the norm on the space of compactly supported Hamiltonian diffeomorphisms as follows. For a compactly supported Hamiltonian function H, the norm of H is defined by

$$||H|| := \sup H - \inf H$$

and for a compactly supported Hamiltonian diffeomorphism ψ , the norm of ψ is defined by

$$\|\psi\| := \inf\{\|H\| | \psi = \phi_H^1\}$$

where ϕ_H^t is the flow of the Hamiltonian vector field X_H . He replaced the C^1 -closeness assumption by the condition that the norm of ψ is smaller than a certain symplectic capacity. Recently, this result has been generalized by many researchers. For example, Ginzburg [3] generalizes the ambient space \mathbf{R}^{2n} to subcritical Stein manifolds, and Albers and Frauenfelder [1] to generic symplectic manifolds. Moreover, Albers and Frauenfelder give a bound for the number of the leaf-wise intersections by the total Betti number using Rabinowitz Floer homology.

Acknowledgments. I would like to express my gratitude to Professor R. Miyaoka for helpful advice and encouragement.

2. Preliminaries

Let (P, ω) be a 2*n*-dimensional symplectic manifold, namely, *P* is a smooth manifold and ω is a nondegenerate closed 2-form on *P*. For a submanifold *M* of *P* and a point *p* in *M*, we define $(T_p M)^{\omega}$ by

$$(T_p M)^{\omega} := \{ v \in T_p P \mid \omega(v, w) = 0 \text{ for all } w \in T_p M \}.$$

Note that the dimension of $(T_p M)^{\omega}$ is equal to the codimension of M since ω is nondegenerate.

DEFINITION 2.1. A submanifold M is said to be Lagrangian if $(T_p M)^{\omega} = T_p M$ holds for each $p \in M$, and is said to be *coisotropic* if $(T_p M)^{\omega} \subset T_p M$ holds for each $p \in M$.

92

DEFINITION 2.2. A diffeomorphism $\psi: P \to P$ is called *symplectomorphism* if $\psi^* \omega = \omega$ holds. We denote the set of symplectomorphisms by $\text{Symp}(P, \omega)$.

DEFINITION 2.3. Let $H: P \to \mathbf{R}$ be a smooth function. The Hamiltonian vector field X_H is defined by

$$i(X_H)\omega = dH.$$

We denote the flow of X_H by ϕ_H^t .

.

Let $\mathscr{L}(P,\omega)$ be the set of all Lagrangian submanifolds of (P,ω) . Now, we introduce the C^1 -topology on $\mathscr{L}(P,\omega)$.

First, we recall the definition of C^1 -topology on $C^{\infty}(M, N)$ for manifolds Mand N. Embed M and N in Euclidean spaces and consider the induced metrics on M and N. For each $f \in C^{\infty}(M, N)$ and $\delta \in C^0(M, \mathbf{R}_{>0})$, define $W(f, \delta)$ by

$$\begin{split} W(f,\delta) &:= \bigg\{ g \in C^{\infty}(M,N) \, | \, d(f(x),g(x)) < \delta(x) \ (x \in M), \\ & \frac{\|df_x(v) - dg_x(v)\|}{\|v\|} < \delta(x) \ (x \in M, \, v \in T_x M \backslash \{0\}) \bigg\}. \end{split}$$

The C¹-topology on $C^{\infty}(M,N)$ is the topology generated by $\{W(f,\delta)\}_{f,\delta}$.

Next, we define the C^1 -topology on $\mathscr{L}(P,\omega)$. Let M be a manifold such that dim M = (1/2) dim P. For a closed subset $A \subset M$ and a C^1 -open subset $\mathscr{A} \subset C^{\infty}(A, P)$, define $\mathscr{N}_{A,\mathscr{A}}$ by

$$\mathcal{N}_{A,\mathscr{A}} := \{ L \in \mathscr{L}(P, \omega) \mid f(A) \subset L \text{ for some } f \in \mathscr{A} \}.$$

The C^1 -topology on $\mathscr{L}(P,\omega)$ is the topology generated by $\{\mathscr{N}_{A,\mathscr{A}}\}_{A,\mathscr{A}}$.

3. Weinstein's theorem on Lagrangian intersections

DEFINITION 3.1. Let M and N be submanifolds of P. Then M and N intersect cleanly if $\Sigma := M \cap N$ is a submanifold of P satisfying

$$T_x \Sigma = T_x M \cap T_x N$$

for each $x \in \Sigma$. In this case, Σ is called a *clean intersection* of M and N.

Remark 3.2. When $\Sigma = M \cap N$ is a submanifold of *P*, we always have the inclusion $T_x \Sigma \subset T_x M \cap T_x N$.

Example 3.3. (1) Let M and N be submanifolds of P. If M and N intersect transversely, then they intersect cleanly.

(2) Let P be a vector space. Then any linear subspaces M and N of P intersect cleanly.

(3) Define $P = \mathbf{R}^3$, $M = \{(x, y, z) \in P \mid y = x^2\}$, and $N = \{(x, y, z) \in P \mid y = 2x^2\}$. Then M and N do not intersect cleanly since $T_p(M \cap N) = T_pM \cap T_pN$ does not hold for every $p \in M \cap N$.

THEOREM 3.4 (Weinstein [7]). Let L_1 and L_2 be Lagrangian submanifolds of a symplectic manifold (P, ω) and assume that they intersect cleanly. Then there exists a C^1 -neighborhood $\mathcal{N}_1 \times \mathcal{N}_2$ of $(L_1, L_2) \in \mathcal{L}(P, \omega) \times \mathcal{L}(P, \omega)$ such that for each $(L'_1, L'_2) \in \mathcal{N}_1 \times \mathcal{N}_2$ there exists a closed 1-form Γ on $\Sigma := L_1 \cap L_2$ and an embedding $G : \Sigma \to P$ which satisfy $G(p) \in L'_1 \cap L'_2$ for each $p \in \text{Zero}(\Gamma)$.

This theorem is based on the following example:

Example 3.5. Consider the cotangent bundle $P := T^*M$ of a manifold M. We have the natural symplectic structure ω_M on T^*M locally written by

$$\omega_M = \sum_{j=1}^n dx_j \wedge dy_j$$

Here, (x_1, \ldots, x_n) is a local coordinate on M and (y_1, \ldots, y_n) is the fiber coordinate with respect to $(\partial/\partial x_1, \ldots, \partial/\partial x_n)$.

Let α be a 1-form on M. Then $\alpha(M) \subset T^*M$ is a Lagrangian submanifold if and only if α is a closed form. Such a Lagrangian submanifold is said to be horizontal. Let $L_1 = \alpha_1(M)$ and $L_2 = \alpha_2(M)$ be horizontal Lagrangian submanifolds. Define a closed 1-form Γ on M and an embedding $G: M \to T^*M$ by

$$\Gamma := \alpha_2 - \alpha_1,$$

 $G := \frac{1}{2}(\alpha_1 + \alpha_2)$

Then, it is easy to see that $G(p) \in L_1 \cap L_2$ holds for each $p \in \text{Zero}(\Gamma)$.

Now, we estimate the number of elements of Lagrangian intersections.

DEFINITION 3.6. Let M be a topological space. The Lusternik-Schnirelmann category (or simply LS category) of M is the least number of contractible open sets which cover M. We denote the LS category by cat(M). If we cannot cover M by finite contractible open sets, then we define $cat(M) = +\infty$.

THEOREM 3.7 (Lusternik-Schnirelmann [5]). Let M be a compact manifold. Then, any smooth function $f \in C^{\infty}(M)$ has at least cat(M) critical points.

Thus we obtain the following from Theorem 3.4:

COROLLARY 3.8 (Weinstein [7]). Let L_1 and L_2 be Lagrangian submanifolds of (P, ω) intersecting cleanly. Assume that $\Sigma := L_1 \cap L_2$ is compact and the first de Rham cohomology $H^1(\Sigma, \mathbb{R})$ vanishes. Then there exists a C^1 -neighborhood $\mathcal{N}_1 \times \mathcal{N}_2$ of $(L_1, L_2) \in \mathcal{L}(P, \omega) \times \mathcal{L}(P, \omega)$ so that the set $L'_1 \cap L'_2$ has at least cat (Σ) points for each $(L'_1, L'_2) \in \mathcal{N}_1 \times \mathcal{N}_2$.

Remark 3.9. This corollary is obvious when dim $(L'_1 \cap L'_2) \ge 1$.

4. Leaf-wise intersections

In this section, we introduce leaf-wise intersections and give some examples. Let M be a coisotropic submanifold of P whose codimension is r. $(TM)^{\omega}$ defines a distribution on M of rank r which satisfies the following property.

LEMMA 4.1. For a coisotropic submanifold M, $(TM)^{\omega}$ is a completely integrable distribution on M.

Proof. Let V_1 and V_2 be vector fields on M which is tangent to the distribution $(TM)^{\omega}$. It is sufficient to show that the vector field $[V_1, V_2]$ also belongs to $(TM)^{\omega}$ by the Frobenius Theorem. For any vector field W on M, we have

$$\omega([V_1, V_2], W) = -d\omega(V_1, V_2, W) + V_1\omega(V_2, W) - V_2\omega(V_1, W) + W\omega(V_1, V_2) + \omega([V_1, W], V_2) - \omega([V_2, W], V_1).$$

The first term vanishes since ω is closed. We remark here that $\omega(\tilde{V}, \tilde{W}) = 0$ for any vector fields $\tilde{V} \in TM$ and $\tilde{W} \in (TM)^{\omega}$. Therefore all the other terms vanish and then we obtain $[V_1, V_2] \in (TM)^{\omega}$.

By this lemma, $(TM)^{\omega}$ defines a foliation on M. We call this foliation the characteristic foliation. We denote the leaf of $(TM)^{\omega}$ through p by L_p . The dimension of the leaf L_p is equal to the rank r of $(TM)^{\omega}$.

DEFINITION 4.2. Let *M* be a coisotropic submanifold of *P*. Then $p \in M$ is called a *leaf-wise intersection* of $\psi \in \text{Symp}(P, \omega)$ if $\psi(p) \in L_p$.

Example 4.3. (1) M = P is a coisotropic submanifold of P with r = 0. If $p \in M$ is a leaf-wise intersection of $\psi \in \text{Symp}(P, \omega)$, then the point p is a fixed point of ψ since the characteristic leaf is given by $L_p = \{p\}$.

(2) Let M be a connected Lagrangian submanifold of P. Then M is a coisotropic submanifold of P with r = n and the characteristic leaf L_p is nothing but M. If $p \in M$ is a leaf-wise intersection of $\psi \in \text{Symp}(P, \omega)$, then the point p belongs to $M \cap \psi^{-1}(M)$. Note that $\psi^{-1}(M)$ is also a Lagrangian submanifold of P since ψ^{-1} preserves the symplectic structure ω . Thus the leaf-wise intersections of ψ are the Lagrangian intersections of M and $\psi^{-1}(M)$.

(3) Let $H_1, \ldots, H_r \in C^{\infty}(P)$ be Poisson commuting functions and assume that dH_1, \ldots, dH_r are linearly independent. Then, a regular level set $M = H^{-1}(c)$ of $H = (H_1, \ldots, H_r)$ is a coisotropic submanifold and the characteristic leaf is given by

$$L_p = \{\phi_{H_1}^{t_1} \circ \cdots \circ \phi_{H_r}^{t_r}(p) \mid t_1, \ldots, t_r \in \mathbf{R}\}.$$

5. Proof of the main theorem

For a leaf-wise intersection $p \in M$, the pair $(p, \psi(p)) \in M \times M$ satisfies $\psi(p) \in L_p$. Then, we consider $\tilde{\mathcal{M}} := \{(p,q) \in M \times M \mid q \in L_p\}$. In general, $\tilde{\mathcal{M}}$ is not an embedded submanifold but immersed submanifold in $M \times M$. So we define \mathcal{M} by the set of pairs $(p,q) \in \tilde{\mathcal{M}}$ with p and q being connected by a path in L_p of length less than $\varepsilon(p)$. Here ε is a suitable positive continuous function on M such that \mathcal{M} is an embedded submanifold in $M \times M$. Note that the dimension of \mathcal{M} is 2n.

First, we show that \mathcal{M} is a Lagrangian submanifold of $(P \times P, \omega_{\times})$, where ω_{\times} is defined by $\omega_{\times} = \operatorname{pr}_{1}^{*} \omega - \operatorname{pr}_{2}^{*} \omega$. It is sufficient to show $\omega_{\times} = 0$ on $T_{(p,q)}\mathcal{M}$ at each points $(p,q) \in \mathcal{M}$. From now on, we fix a point $(p,q) \in \mathcal{M}$. Choose a diffeomorphism $\phi : \mathcal{M} \to \mathcal{M}$ which satisfies $\phi(p) = q$ and preserves the leaves. Note that it is sufficient to define ϕ in a neighborhood of p.

CLAIM 1. $\phi^* \omega|_M = \omega|_M$ holds on some neighborhood $M \cap U$ of p.

We choose a family of leaf-preserving diffeomorpfisms $\phi_s: M \to M$ $(0 \le s \le 1)$ which satisfies $\phi_0 = \mathrm{id}_M$ and $\phi_1 = \phi$. Define a vector field W_s by

$$W_s := \frac{d}{ds}\phi_s$$

then W_s belongs to $(TM)^{\omega}$ because every ϕ_s preserves leaves. On the other hand, since ω is a closed 2-form, there is a local 1-form α on some neighborhood U of p such that $\omega = d\alpha$. We abbreviate $\alpha_M = \alpha|_{(M \cap U)}$, then

$$\begin{split} \phi^* \alpha_M - \alpha_M &= \int_0^1 \left(\frac{d}{ds} \phi_s^* \alpha_M \right) ds \\ &= \int_0^1 (\phi_s^* \mathscr{L}_{W_s} \alpha_M) ds \\ &= \int_0^1 (\phi_s^* (i(W_s) d\alpha_M) + d\phi_s^* (i(W_s) \alpha_M)) ds \\ &= d \int_0^1 \phi_s^* (i(W_s) \alpha_M) ds \end{split}$$

holds and therefore we obtain $\phi^* \omega|_M = \omega|_M$ on $M \cap U$.

LEAF-WISE INTERSECTIONS IN COISOTROPIC SUBMANIFOLDS

Claim 2. For any $\zeta = (\xi, \eta) \in T_{(p,q)}\mathcal{M}, \ \eta - d\phi(\xi) \in (T_q M)^{\omega}$ holds.

In fact, choose a curve $\gamma(t) = (p(t), q(t))$ on \mathcal{M} such that

$$\gamma(0) = (p,q), \quad \dot{\gamma}(0) = \zeta.$$

Since $\gamma(t)$ is a curve on \mathcal{M} , q(t) lies on the leaf $L_{p(t)}$ for each t. On the other hand, since ϕ preserves the leaves, $\phi(p(t))$ also lies on the leaf $L_{p(t)}$. Then q(t) and $\phi(p(t))$ always lie on the same leaf. Therefore, we obtain

$$\eta - d\phi(\xi) = \frac{dq}{dt}(0) - \frac{d(\phi \circ p)}{dt}(0) \in T_q L_p = (T_q M)^{\omega}.$$

CLAIM 3. *M* is a Lagrangian submanifold of the symplectic manifold $(P \times P, \omega_{\times})$.

For
$$\zeta = (\xi, \eta), \ \tilde{\zeta} = (\tilde{\xi}, \tilde{\eta}) \in T_{(p,q)}\mathcal{M},$$

$$\omega_{\times}(\zeta, \tilde{\zeta}) = \omega|_{M}(\xi, \tilde{\xi}) - \omega|_{M}(\eta, \tilde{\eta})$$

$$= \omega|_{M}(\xi, \tilde{\xi}) - \omega|_{M}(d\phi(\xi), d\phi(\tilde{\xi}))$$

$$= \omega|_{M}(\xi, \tilde{\xi}) - \phi^{*}\omega|_{M}(\xi, \tilde{\xi})$$

$$= 0.$$

Thus $\omega_{\times} = 0$ holds on $T_{(p,q)}\mathcal{M}$, and we can see that \mathcal{M} is a Lagrangian submanifold of the symplectic manifold $(P \times P, \omega_{\times})$.

CLAIM 4. Two Lagrangian submanifolds \mathcal{M} and $\Delta_P := \{(p, p) \mid p \in P\}$ intersect cleanly along $\mathcal{M} \cap \Delta_P = \Delta_M$.

It is sufficient to show

$$T_{(p,p)}\Delta_M \supset T_{(p,p)}\mathcal{M} \cap T_{(p,p)}\Delta_P$$

holds at each points $(p, p) \in \Delta_M$ (see Remark 3.2). For any vector $\zeta = (\xi, \eta) \in T_{(p,p)} \mathcal{M} \cap T_{(p,p)} \Delta_P$, ξ is equal to η since $\zeta = (\xi, \eta)$ is tangent to Δ_P . In addition, ξ belongs to $T_p M$ since $\zeta = (\xi, \xi)$ is tangent to $\mathcal{M} \subset M \times M$. Therefore $\zeta = (\xi, \xi) \in T_{(p,p)} \Delta_M$ which implies the claim.

If $\psi \in \operatorname{Symp}(P, \omega)$ is C^1 -close to the identity $\operatorname{id}_P : P \to P$, then Δ_P and $\operatorname{Graph}(\psi)$ are also C^1 -close to each other. Applying Theorem 3.4 to $(L_1, L_2) = (\mathcal{M}, \Delta_P)$ and $(L'_1, L'_2) = (\mathcal{M}, \operatorname{Graph}(\psi))$, we know that there exists a closed 1-form Γ on M and an embedding $G : M \to P \times P$ such that $G(p) \in \mathcal{M} \cap \operatorname{Graph}(\psi)$ for all $p \in \operatorname{Zero}(\Gamma)$. On the other hand, we obtain

$$\mathcal{M} \cap \operatorname{Graph}(\psi) \subset \{(p, \psi(p)) \in M \times M \mid \psi(p) \in L_p\}.$$

Thus $\psi(\operatorname{pr}_1 \circ G(p)) \in L_{\operatorname{pr}_1 \circ G(p)}$ follows for each $p \in \operatorname{Zero}(\Gamma)$. Therefore $\operatorname{pr}_1 \circ G(p)$ is a leaf-wise intersection of ψ for each $p \in \operatorname{Zero}(\Gamma)$.

97

References

- P. ALBERS AND U. FRAUENFELDER, Leaf-wise intersections and Rabinowitz Floer homology, Journal of Topology and Analysis 2 (2010), 77–98.
- [2] A. BANYAGA, On fixed points of symplectic maps, Invent. Math. 56 (1980), 215-229.
- [3] V. L. GINZBURG, Coisotropic intersections, Duke Math. J. 140 (2007), 111-163.
- [4] H. HOFER, On the topological properties of symplectic maps, Proc. of the Royal Soc. of Edinbragh 115A (1990), 25–38.
- [5] L. LUSTERNIK AND L. SCHNIRELMANN, Méthodes topologiques dans les problèmes variationnels, Hermann, Paris, 1934.
- [6] J. MOSER, A fixed point theorem in symplectic geometry, Acta. Math. 141 (1978), 17-34.
- [7] A. WEINSTEIN, Lagrangian submanifolds and hamiltonian systems, Ann. Math. 98 (1973), 377-410.

Satoshi Ueki Mathematical Institute Graduate School of Sciences Tohoku University Aoba-ku, Sendai 980-8578 Japan E-mail: sa9m04@math.tohoku.ac.jp