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ANOTHER IMPROVEMENT OF MONTEL’S CRITERION*
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Abstract

Let 7 be a family of meromorphic functions defined in a domain D < C, let ¥, ¥,
and Y5 be three meromorphic functions such that ;(z) # ¥;(z) (i # j) in D, one of
which may be oo identically, and let /;, /, and /5 be positive integers or oo with
1/l +1/h+1/3 < 1. Suppose that, for each f € # and z € D, (1) all zeros of f —y;
have multiplicity at least /; for i =1,2,3; (2) f(z0) # ¥;(z0) if there exist i, j € {1,2,3}
(i # j) and zp € D such that y,(z0) = ¥;(z0). Then # is normal in D. This improves
and generalizes Montel’s criterion.

1. Introduction

Let D be a domain in the complex plane C, and % be a family of
meromorphic functions defined on D. . is said to be normal on D, in the sense
of Montel, if for any sequence {f,} € # there exists a subsequence {f,}, such
that {f, } converges spherically locally uniformly on D, to a meromorphic func-
tion or oo (see [3, 6, 10]).

The most celebrated theorem in the theory of normal families is the follow-
ing criterion of Montel [5] (cf [3, 6, 10]), which is the local counterpart of Picard
theorem and plays an important role in complex dynamics.

THEOREM A. Let & be a family of meromorphic functions defined in a
domain D < C, and let a\, ay and as be three distinct complex numbers in C.
If, for each fe %, f(z) #a; (i=1,2,3) in D, then & is normal in D.

Montel’s criterion has undergone various extensions and improvements (see
[1,2,4,6,7, 8, 10], etc.). The next are two extensions of Montel’s criterion (see
[6, 10]).

THEOREM B. Let & be a family of meromorphic functions defined in a
domain D < C, ay, ay and az be three distinct complex numbers in C, and let I, I,
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and Iy be positive integers or oo with 1/l + 1/L+ 1/l < 1. If, for each f e F,
all zeros of f — a; have multiplicity at least I; for i =1,2,3, then & is normal
in D.

THEOREM C. Let F be a family of meromorphic functions defined in a
domain D = C, and let a\(z), a»(z) and a3(z) be three meromorphic functions in
D such that aj(z) #a;i(z) (1<i<j<3). If, for each feF, f(z)#alz)
(i=1,2,3) in D, then & is normal in D.

Remark 1. Bonk, Hinkkanen and Martin [1] proved that Montel’s criterion
is still valid if a, b, ¢ are replaced by three arbitrary continuous functions
avoiding each other in D.

A natural problem arise: What can we say if three distinct complex numbers
ay, a; and as in Theorem B are replaced by three meromorphic functions ,(z),
Ws(z) and Y5(z) such that ;(z) £ ;(z) (1<i<j<3)in D?

In this paper, we prove the following result.

THEOREM 1. Let & be a family of meromorphic functions defined in a domain
D <= C, let ,, Y, and Y5 be three meromorphic functions such that y,;(z) # ;(z)
(1<i<j<3)in D, one of which may be oo identically, and let I\, I, and I3
be positive integers or oo with 1/l +1/hL+ 1/l < 1. Suppose that, for each
feF and ze D, (1) all zeros of f — ; have multiplicity at least I; for i =1,2,3;
(2) f(z0) #Y(z0) if there exist i,je{1,2,3} (i# j) and zye D such that
¥i(z0) = ¥;(z0).  Then F is normal in D.

Remark 2. Condition (2) cannot be omitted in Theorem 1, as is shown by
the following examples.

Example 1. Let D={z:|z| <1}, ¥;(2) =0, y,(z) = 0 and y(z) = zF,
where k > 3 is a positive integer, and
F ={fu(z) =nz*,n=2,3,...,z€ D}.

Since f;,(z) —53(z) = 23 (n — z¥3), I =3, L, = o0 and 5 = 3, then condition (1)
in Theorem 1 is satisfied. But % is not normal in D. Note that f,(0) = ,(0)
= y3(0).

Example 2. Let D= {z:|z| < 1}, y,;(2) = i/zF (i=1,2,3), where k > 1 is a

positive integer, and

gz*:{fn(z):L,n:2,3,...7zeD}.

nz

Since
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in D, Iy =5 =13 = o0, and thus condition (1) in Theorem 1 is satisfied. But %
is not normal in D. Note that f,(0) = ;(0) = ,(0) = 5(0).

Letting [, =L, = /3 = oo in Theorem 1, we obtain

COROLLARY. Let & be a family of meromorphic functions defined in a
domain D < C, and let W, (z), Y,(z) and \45(z) be three meromorphic functions such
that Y;(z) #y;(z) (1 <i<j<3)in D, one of which may be <o identically. I,
Jor each feF, f(z) #Y,(z) (i=1,2,3) in D, then F is normal in D.

2. Some Lemmas

The following is one local version of Zalcman’s lemma due to Xue and Pang
[9]-

LemMma 1. Let F be a family of functions meromorphic in a domain D such
that [ #0 for each f e Z. If F is not normal at zy € D, then, for each o > 0,
there exist a sequence of points z, € D, z, — zy, a sequence of positive numbers
pp — 0, and a sequence of functions f, € & such that

gn({) = pr 9(8)

locally uniformly with respect to the spherical metric, where g is a nonconstant
meromorphic function on C.

LemmA 2. Let I, I and Iy be positive integers or oo with 1/l + 1/L+ 1/ <
1.  Then there does not exist nonconstant rational function f such that all zeros of
[ have multiplicity at least 1y, all poles of [ have multiplicity at least b, and all
zeros of f — ¢ have multiplicity at least I5, except for at most one point, where c is
nonzero constant.

Proof. If no exception points exist, then the conclusion follows directly
from Nevanlinna’s second fundamental theorem since 1//, +1/hL +1/5 < 1.

Next suppose that there is a nonconstant rational function f satisfying the
conditions in Lemma 2, with one exception point. Without loss of generality, we
may assume that all zeros of f have multiplicity at least /;, all poles of f have
multiplicity at least 5, and all 1-points f have multiplicity at least /5 in C, with
the exception of one 1-point a € C, of multiplicity s < /5. Note that a zero of f
of multiplicity N is then a zero of f’ of multiplicity N — (= N(1 — 1/1})).

We may assume further that infinity is either a zero of f of multiplicity
r < I, a pole of f of multiplicity r < h, or a 1-point of f of multiplicity r < /3,
because if not then the function g(z) = f(1/(a —z)) is a rational function for
which all zeros, poles and 1-points in C have multiplicity at least /1, b, I3
respectively, and Nevanlinna’s second fundamental theorem can be applied to g.



72 YAN XU

Let ¢ be the degree of f, where the degree of a rational function f(z) is
defined as max{deg P(z),deg Q(z)}, if f(z) = P(z)/Q(z), and P(z), Q(z) are two
coprime polynomials. Then Riemann-Hurwitz formula implies that f has 2¢ — 2
critical points in the extended complex plane, counting multiplicities.

Let f have m zeros, n poles and p 1-points in C, counting multiplicities.
Thus the number of critical points, counting multiplicities, of f in the extended
complex plane is at least

m 1—l +n 1—l +(p—ys) 1—l +s—1+r—1
ll 12 13

Hence
1 1 1
2q-2z2m(l——|+n|ll——)4+(p=—s){1—=|+s—14+r—1,
h b h
that is,
(1) mantprr<2g+oplp 78
L b I

On the other hand, it is not difficult to see that if m >n then m=
n+r=p=g¢q; if m<n then m+r=n=p=gq; and finally if m=n then
m=n=p-+r=gq. Thus, in all cases, we have

(2) m+n+p+r=3q.
From (1) and (2), we obtain
m n p-—s I 1 1
3g<2g+—+-—+——<2 —+—+—
dEMtp LT q+(ll+lz+l3>q’
so that we arrive at a contradiction since 1/L +1/L+ 1/ <1. Lemma 2 is
thus proved. O

3. Proof of Theorem 1

Since normality is a local property, it is enough to show that & is normal at
each zp e D. We distinguish three cases.

Case 1. ¥ (20), W¥s(z0), Ws(zo) are distinct.
Suppose that # is not normal at zyp. By Lemma 1, there exist functions
fn € F, points z, — zyp and positive numbers p, — 0, such that

3) 9n(C) = fa(zn + pul) — 9(0)

converges spherically uniformly on compact subsets of C, where ¢g({) is a non-
constant meromorphic function on C. We from (3) have

In(Zn 4 pal) = Vi(2n + pul) — 9(C) = ¥i(=0),
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for i =1,2,3. By Hurwitz’s theorem, all zeros of ¢g({) — ¥,(z0) have multiplicity
at least /; for i=1,2,3.

In view of 1/l +1/h + 1/l3 < 1, Nevanlinna’s first and second fundamental
theorems imply that g({) is a constant, a contradiction.

Case 2. Exactly two of y;(z0), ¥»(20), ¥3(z0) are equal.

Without loss of generality, we assume that v, (z0) = ¥,(z0), and ;(z0) #
Vi (zo0) or Yy(zo). Then, f(zo) # Y,(2z0) for each f e #. Now we consider two
subcases.

Cask 2.1. (z0) and y,(zo) are finite.

There exists r > 0 such that y,(z) # ;(z) (1 <i<j<3) and (z), ¥,(2)
are holomorphic in D’(zg,r) = {z: 0 < |z — zo| <r} = D, and y3(z) # ¥,(2), ¥»(2)
in D(zo,r) ={z:|z—zo| <r}.

Then & is normal in D’(zy,r) by Case 1.

Set
B N C e C R
@ g‘&” %@—%@“é“}

Note that ,(z0) — ¥, (z0) =0 and f(z0) — ¥ (z0) # 0 for all f e # Thus, for
each ge ¥, g(zp) = oo.
Obviously, all zeros of g in D(zp,r) have multiplicity at least /;. Since

=W
g l_lp27¢17
L o=t (o= )0 )

g vi— _(¢3_¢1)(f_l//1)’

all zeros of g—1 in D(zy,r) have multiplicity at least /,, and all zeros of
1/g— Wy =)/ (W3 — ;) in D(zp,r) have multiplicity at least /3 with the
possible exception at z.

We first prove that ¢ is normal at z;. Suppose not; then by Lemma 1,
there exist functions g, € ¢, points z, — zy and positive numbers p, — 0, such
that

(5) Gu(C) = gnlzn + puC) — G(0)

converges spherically uniformly on compact subsets of C, where G({) is a non-
constant meromorphic function on C.

By Hurwitz’s theorem, all zeros of G have multiplicity at least /;, and all
zeros of G — 1 have multiplicity at least /.

We claim: all poles of G have multiplicity at least /3, except possibly one
pole.

Indeed, for the case /3 = co, we know that all poles of g in D(zg,r) have
multiplicity at least /5, then the conclusion follows from Hurwitz’s theorem.
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For y; # oo, we from (5) have

1 _ ‘//2(2:1 +pnc) — lpl (Zn +pn£)
GH(Z:) l//3 (Zn + pné:> - l//l (Zl’l + /)nC)

1 _ lpz(zn + pnC) - lpl (Zn + pnc) N 1

- gn(Zn + pné) lﬂ3 (Zl’l + pnc) - lpl (Zﬂ + pné’) G '

Note that all zeros of 1/g, — (Y, — ¥;)/(¥3 — ;) in D(zo,r) have multiplicity at
least /3 with the possible exception at zj.

If (z, — z0)/p, — o0, the zero of the right part of (6) corresponding to that of
1/gn — (Yy — 1)/ (Y5 — ;) at zq drifts off to infinity since 1/G,(—(zx — 20)/p,) =
1/gn(z0). It follows that all zeros of 1/G have multiplicity at least /5. Thus, all
poles of G have have multiplicity at least /53 in C.

If (z, — z0)/p, 7 0, taking a subsequence and renumbering, we assume that
(zy — z0)/p, — o (a finite complex number). By (6), we have

(6)

1 ~Va(pal + 20) — Y1 (Pl + 20)
In (png + ZO) lp3 (pnc + ZO) - lpl (pnc + ZO)
1

B Gu(C— (20 — 20)/Pn)

_ ¥z 4 pu(€ = (20 = 20) /pn)) = i (2n + (€ = (20 = 20)/Pn))
V320 + P8 = (20 = 20)/Pu) = Y1 (20 + Pu(E = (20 = 20)/Py))
1

TGl —w)

Then all zeros of 1/G have multiplicity at least /3, except the zero at —a, and
hence all poles of G have have multiplicity at least /3, except the pole at —o.

Therefore, by Nevanlinna’s first and second fundamental theorems, G({) is a
rational function. However, such nonconstant rational function does not exist
by Lemma 2, a contradiction. We thus have proved that ¥ is normal at z.

Now we turn to prove that . is normal at zy. Since ¥ is normal at z, then
the family % is equicontinuous at z; with respect to the spherical distance. On
the other hand, g(zo) = oo for each g€ 4. Thus, there exists 0 < r; <r such
that |g(z)| > 1 for all g€ @ and z € D(zg,r;). It follows that f(z) — iy, # 0 for
all fe# and ze D(zp,r1), and then the family 7 ={1/(f —,): feF} is
holomorphic in D(zp,r;). Suppose that & is not normal at zp; then % is
normal in D’(zo,r;), but not normal at z,. So, there exists a sequence
{1/(fu —¥,)} = 1 which converges locally uniformly in D’(zy,r;), but none
of whose subsequences converges uniformly in a neighborhood of z,. The
maximum modulus principle implies that 1/(f, — ;) — oo on compact subsets
in D'(zg,r), and hence f, —y; — 0 uniformly on compact subsets of D’(zg,r).
Note that g, = (fu(z) — ¥;(2))/(Wa(z) — ¥ (2)), we see that g, — 0 uniformly
on compact subsets of D’(zg,r;). But we already prove that |g,(z)|>1 for
z € D(zg,r1) in the above, a contradiction.
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CASE 2.2. lpl (Z()) = lpz(Z()) = 0.

There exists » > 0 such that y,(z), ¥,(z) are holomorphic in D’(zy,r) < D,
and Y,(z) #0 (i=1,2), Y3(z) # oo in D(zy,r).

Set p; =1/, (1 <i<3)and g=1/f, where f € %. Then ¢,(z0) = p,(z0)
= 0, (p3(20) # 0.

Noting that f(z) # ¥,(z0) (or ¥,(zo)), it is easy to see that all zeros of
g—o0;, =y, — f)/(f;) have multiplicity at least /; (1 <i<3) in D(zp,r). As
in Case 2.1, we can prove that 7, = {l/f : f € #} is normal at zj, and then &
is normal at z.

CaSE 3. Y (z0) = ¥a(20) =
Then £ (z0) # y(z0) (1 <i

cases.

Z()).
) for f e Z Similarly, we divide two sub-

W3 (
<3

Cask 3.1. Y,(z0), ¥,(z0) and ;(z) are finite.

There exists r > 0 such that ,(z) # y,(z) (1 <i<j<3)in D'(z,r) =D,
and ,;(z) (1 <i<3) is holomorphic in D(z,r).

By Case 1, we know that & is normal in D'(zo,r).

Let 4 be defined as (4). Then g(z9) = oo for each ge &.
Letting w; =0, w, =1 and

_ Y3 —
Y=Y’
as in Case 2.1, all zeros of g — w; in D(zy,r) have multiplicity at least /;, and all

zeros of g — w, in D(zo,r) have multiplicity at least /.
We have

3

S =3
¥y —
Since all zeros of f — W, have multiplicity at least /s, ¥, — i, is holomorphic in
D(zp,r), and f — 3 and ¥, — ¢; have no common zero in D(zo,r), we conclude
that all zeros of g — w3 have multiplicity at least /s in D(zp,r). Moreover,
g(zo) = oo whatever w3(zo) =0 or 1.

So, by Case 2, ¢4 is normal at z.

Hence, by using the same argument as in the latter part of Case 2.1, we can
prove that & is also normal at z.

g — w3 =

Cast 3.2. y(20) = ¥y(20) = Y3(z0) = 0.

Set ¢, =1/y; (1 <i<3). Then ¢,(z0) = p5(z0) = p3(z0) = 0. Arguing as
in Case 3.1, we can show that #, = {1/f: f € #} is normal at zj, and hence F#
is normal at z.

The proof of Theorem 1 is completed. O
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