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ANOTHER IMPROVEMENT OF MONTEL’S CRITERION*
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Abstract

Let F be a family of meromorphic functions defined in a domain DHC, let c1, c2

and c3 be three meromorphic functions such that ciðzÞ2cjðzÞ ði0 jÞ in D, one of

which may be y identically, and let l1, l2 and l3 be positive integers or y with

1=l1 þ 1=l2 þ 1=l3 < 1. Suppose that, for each f A F and z A D, (1) all zeros of f � ci

have multiplicity at least li for i ¼ 1; 2; 3; (2) f ðz0Þ0ciðz0Þ if there exist i; j A f1; 2; 3g
ði0 jÞ and z0 A D such that ciðz0Þ ¼ cjðz0Þ. Then F is normal in D. This improves

and generalizes Montel’s criterion.

1. Introduction

Let D be a domain in the complex plane C, and F be a family of
meromorphic functions defined on D. F is said to be normal on D, in the sense
of Montel, if for any sequence f fng A F there exists a subsequence f fnjg, such
that f fnjg converges spherically locally uniformly on D, to a meromorphic func-
tion or y (see [3, 6, 10]).

The most celebrated theorem in the theory of normal families is the follow-
ing criterion of Montel [5] (cf [3, 6, 10]), which is the local counterpart of Picard
theorem and plays an important role in complex dynamics.

Theorem A. Let F be a family of meromorphic functions defined in a
domain DHC, and let a1, a2 and a3 be three distinct complex numbers in C.
If, for each f A F, f ðzÞ0 ai ði ¼ 1; 2; 3Þ in D, then F is normal in D.

Montel’s criterion has undergone various extensions and improvements (see
[1, 2, 4, 6, 7, 8, 10], etc.). The next are two extensions of Montel’s criterion (see
[6, 10]).

Theorem B. Let F be a family of meromorphic functions defined in a
domain DHC, a1, a2 and a3 be three distinct complex numbers in C, and let l1, l2

69

2000 Mathematics Subject Classification. 30D45.

Key words and phrases. Meromorphic function; Riemann-Hurwitz formula; normal family;

Montel’s criterion.

*Supported by NNSF of China (Grant No. 11171045).

Received September 27, 2011; revised June 7, 2012.



and l3 be positive integers or y with 1=l1 þ 1=l2 þ 1=l3 < 1. If, for each f A F,
all zeros of f � ai have multiplicity at least li for i ¼ 1; 2; 3, then F is normal
in D.

Theorem C. Let F be a family of meromorphic functions defined in a
domain DHC, and let a1ðzÞ, a2ðzÞ and a3ðzÞ be three meromorphic functions in
D such that aiðzÞ0 ajðzÞ ð1a i < ja 3Þ. If, for each f A F, f ðzÞ0 aiðzÞ
ði ¼ 1; 2; 3Þ in D, then F is normal in D.

Remark 1. Bonk, Hinkkanen and Martin [1] proved that Montel’s criterion
is still valid if a, b, c are replaced by three arbitrary continuous functions
avoiding each other in D.

A natural problem arise: What can we say if three distinct complex numbers
a1, a2 and a3 in Theorem B are replaced by three meromorphic functions c1ðzÞ,
c2ðzÞ and c3ðzÞ such that ciðzÞ2cjðzÞ ð1a i < ja 3Þ in D?

In this paper, we prove the following result.

Theorem 1. Let F be a family of meromorphic functions defined in a domain
DHC, let c1, c2 and c3 be three meromorphic functions such that ciðzÞ2cjðzÞ
ð1a i < ja 3Þ in D, one of which may be y identically, and let l1, l2 and l3
be positive integers or y with 1=l1 þ 1=l2 þ 1=l3 < 1. Suppose that, for each
f A F and z A D, ð1Þ all zeros of f � ci have multiplicity at least li for i ¼ 1; 2; 3;
ð2Þ f ðz0Þ0ciðz0Þ if there exist i; j A f1; 2; 3g ði0 jÞ and z0 A D such that
ciðz0Þ ¼ cjðz0Þ. Then F is normal in D.

Remark 2. Condition (2) cannot be omitted in Theorem 1, as is shown by
the following examples.

Example 1. Let D ¼ fz : jzj < 1g, c1ðzÞ ¼ 0, c2ðzÞ ¼ y and c3ðzÞ ¼ zk,
where kb 3 is a positive integer, and

F ¼ f fnðzÞ ¼ nz3; n ¼ 2; 3; . . . ; z A Dg:

Since fnðzÞ � c3ðzÞ ¼ z3ðn� zk�3Þ, l1 ¼ 3, l2 ¼ y and l3 ¼ 3, then condition (1)
in Theorem 1 is satisfied. But F is not normal in D. Note that fnð0Þ ¼ c1ð0Þ
¼ c3ð0Þ.

Example 2. Let D ¼ fz : jzj < 1g, ciðzÞ ¼ i=zk ði ¼ 1; 2; 3Þ, where kb 1 is a
positive integer, and

F ¼ fnðzÞ ¼
1

nz
; n ¼ 2; 3; . . . ; z A D

� �
:

Since

fnðzÞ � ciðzÞ ¼
zk�1 � i � n

nzk
0 0
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in D, l1 ¼ l2 ¼ l3 ¼ y, and thus condition (1) in Theorem 1 is satisfied. But F
is not normal in D. Note that fnð0Þ ¼ c1ð0Þ ¼ c2ð0Þ ¼ c3ð0Þ.

Letting l1 ¼ l2 ¼ l3 ¼ y in Theorem 1, we obtain

Corollary. Let F be a family of meromorphic functions defined in a
domain DHC, and let c1ðzÞ, c2ðzÞ and c3ðzÞ be three meromorphic functions such
that ciðzÞ2cjðzÞ ð1a i < ja 3Þ in D, one of which may be y identically. If,
for each f A F, f ðzÞ0ciðzÞ ði ¼ 1; 2; 3Þ in D, then F is normal in D.

2. Some Lemmas

The following is one local version of Zalcman’s lemma due to Xue and Pang
[9].

Lemma 1. Let F be a family of functions meromorphic in a domain D such
that f 0 0 for each f A F. If F is not normal at z0 A D, then, for each ab 0,
there exist a sequence of points zn A D, zn ! z0, a sequence of positive numbers
rn ! 0, and a sequence of functions fn A F such that

gnðzÞ ¼
fnðzn þ rnzÞ

ra
n

! gðzÞ

locally uniformly with respect to the spherical metric, where g is a nonconstant
meromorphic function on C.

Lemma 2. Let l1, l2 and l3 be positive integers or y with 1=l1 þ 1=l2 þ 1=l3 <
1. Then there does not exist nonconstant rational function f such that all zeros of
f have multiplicity at least l1, all poles of f have multiplicity at least l2, and all
zeros of f � c have multiplicity at least l3, except for at most one point, where c is
nonzero constant.

Proof. If no exception points exist, then the conclusion follows directly
from Nevanlinna’s second fundamental theorem since 1=l1 þ 1=l2 þ 1=l3 < 1.

Next suppose that there is a nonconstant rational function f satisfying the
conditions in Lemma 2, with one exception point. Without loss of generality, we
may assume that all zeros of f have multiplicity at least l1, all poles of f have
multiplicity at least l2, and all 1-points f have multiplicity at least l3 in C, with
the exception of one 1-point a A C, of multiplicity s < l3. Note that a zero of f
of multiplicity N is then a zero of f 0 of multiplicity N � 1(bNð1� 1=l1Þ).

We may assume further that infinity is either a zero of f of multiplicity
r < l1, a pole of f of multiplicity r < l2, or a 1-point of f of multiplicity r < l3,
because if not then the function gðzÞ ¼ f ð1=ða� zÞÞ is a rational function for
which all zeros, poles and 1-points in C have multiplicity at least l1, l2, l3
respectively, and Nevanlinna’s second fundamental theorem can be applied to g.
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Let q be the degree of f , where the degree of a rational function f ðzÞ is
defined as maxfdeg PðzÞ; deg QðzÞg, if f ðzÞ ¼ PðzÞ=QðzÞ, and PðzÞ, QðzÞ are two
coprime polynomials. Then Riemann-Hurwitz formula implies that f has 2q� 2
critical points in the extended complex plane, counting multiplicities.

Let f have m zeros, n poles and p 1-points in C, counting multiplicities.
Thus the number of critical points, counting multiplicities, of f in the extended
complex plane is at least

m 1� 1

l1

� �
þ n 1� 1

l2

� �
þ ðp� sÞ 1� 1

l3

� �
þ s� 1þ r� 1:

Hence

2q� 2bm 1� 1

l1

� �
þ n 1� 1

l2

� �
þ ðp� sÞ 1� 1

l3

� �
þ s� 1þ r� 1;

that is,

mþ nþ pþ ra 2qþm

l1
þ n

l2
þ p� s

l3
:ð1Þ

On the other hand, it is not di‰cult to see that if m > n then m ¼
nþ r ¼ p ¼ q; if m < n then mþ r ¼ n ¼ p ¼ q; and finally if m ¼ n then
m ¼ n ¼ pþ r ¼ q. Thus, in all cases, we have

mþ nþ pþ r ¼ 3q:ð2Þ

From (1) and (2), we obtain

3qa 2qþm

l1
þ n

l2
þ p� s

l3
a 2qþ 1

l1
þ 1

l2
þ 1

l3

� �
q;

so that we arrive at a contradiction since 1=l1 þ 1=l2 þ 1=l3 < 1. Lemma 2 is
thus proved. r

3. Proof of Theorem 1

Since normality is a local property, it is enough to show that F is normal at
each z0 A D. We distinguish three cases.

Case 1. c1ðz0Þ, c2ðz0Þ, c3ðz0Þ are distinct.
Suppose that F is not normal at z0. By Lemma 1, there exist functions

fn A F, points zn ! z0 and positive numbers rn ! 0, such that

gnðzÞ ¼ fnðzn þ rnzÞ ! gðzÞð3Þ

converges spherically uniformly on compact subsets of C, where gðzÞ is a non-
constant meromorphic function on C. We from (3) have

fnðzn þ rnzÞ � ciðzn þ rnzÞ ! gðzÞ � ciðz0Þ;
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for i ¼ 1; 2; 3: By Hurwitz’s theorem, all zeros of gðzÞ � ciðz0Þ have multiplicity
at least li for i ¼ 1; 2; 3:

In view of 1=l1 þ 1=l2 þ 1=l3 < 1, Nevanlinna’s first and second fundamental
theorems imply that gðzÞ is a constant, a contradiction.

Case 2. Exactly two of c1ðz0Þ, c2ðz0Þ, c3ðz0Þ are equal.
Without loss of generality, we assume that c1ðz0Þ ¼ c2ðz0Þ, and c3ðz0Þ0

c1ðz0Þ or c2ðz0Þ. Then, f ðz0Þ0c1ðz0Þ for each f A F. Now we consider two
subcases.

Case 2.1. c1ðz0Þ and c2ðz0Þ are finite.
There exists r > 0 such that ciðzÞ0cjðzÞ ð1a i < ja 3Þ and c1ðzÞ, c2ðzÞ

are holomorphic in D 0ðz0; rÞ ¼ fz : 0 < jz� z0j < rgHD, and c3ðzÞ0c1ðzÞ;c2ðzÞ
in Dðz0; rÞ ¼ fz : jz� z0j < rg.

Then F is normal in D 0ðz0; rÞ by Case 1.
Set

G ¼ gðzÞ ¼ f ðzÞ � c1ðzÞ
c2ðzÞ � c1ðzÞ

: f A F

� �
:ð4Þ

Note that c2ðz0Þ � c1ðz0Þ ¼ 0 and f ðz0Þ � c1ðz0Þ0 0 for all f A F. Thus, for
each g A G, gðz0Þ ¼ y.

Obviously, all zeros of g in Dðz0; rÞ have multiplicity at least l1. Since

g� 1 ¼ f � c2

c2 � c1

;

1

g
� c2 � c1

c3 � c1

¼ ðc2 � c1Þðc3 � f Þ
ðc3 � c1Þð f � c1Þ

;

all zeros of g� 1 in Dðz0; rÞ have multiplicity at least l2, and all zeros of
1=g� ðc2 � c1Þ=ðc3 � c1Þ in Dðz0; rÞ have multiplicity at least l3 with the
possible exception at z0.

We first prove that G is normal at z0. Suppose not; then by Lemma 1,
there exist functions gn A G, points zn ! z0 and positive numbers rn ! 0, such
that

GnðzÞ ¼ gnðzn þ rnzÞ ! GðzÞð5Þ

converges spherically uniformly on compact subsets of C, where GðzÞ is a non-
constant meromorphic function on C.

By Hurwitz’s theorem, all zeros of G have multiplicity at least l1, and all
zeros of G � 1 have multiplicity at least l2.

We claim: all poles of G have multiplicity at least l3, except possibly one
pole.

Indeed, for the case c3 1y, we know that all poles of g in Dðz0; rÞ have
multiplicity at least l3, then the conclusion follows from Hurwitz’s theorem.
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For c3 2y, we from (5) have

1

GnðzÞ
� c2ðzn þ rnzÞ � c1ðzn þ rnzÞ
c3ðzn þ rnzÞ � c1ðzn þ rnzÞ

ð6Þ

¼ 1

gnðzn þ rnzÞ
� c2ðzn þ rnzÞ � c1ðzn þ rnzÞ
c3ðzn þ rnzÞ � c1ðzn þ rnzÞ

! 1

G
:

Note that all zeros of 1=gn � ðc2 � c1Þ=ðc3 � c1Þ in Dðz0; rÞ have multiplicity at
least l3 with the possible exception at z0.

If ðzn � z0Þ=rn ! y, the zero of the right part of (6) corresponding to that of
1=gn � ðc2 � c1Þ=ðc3 � c1Þ at z0 drifts o¤ to infinity since 1=Gnð�ðzn � z0Þ=rnÞ ¼
1=gnðz0Þ. It follows that all zeros of 1=G have multiplicity at least l3. Thus, all
poles of G have have multiplicity at least l3 in C.

If ðzn � z0Þ=rn 6! y, taking a subsequence and renumbering, we assume that
ðzn � z0Þ=rn ! a (a finite complex number). By (6), we have

1

gnðrnzþ z0Þ
� c2ðrnzþ z0Þ � c1ðrnzþ z0Þ
c3ðrnzþ z0Þ � c1ðrnzþ z0Þ

¼ 1

Gnðz� ðzn � z0Þ=rnÞ

� c2ðzn þ rnðz� ðzn � z0Þ=rnÞÞ � c1ðzn þ rnðz� ðzn � z0Þ=rnÞÞ
c3ðzn þ rnðz� ðzn � z0Þ=rnÞÞ � c1ðzn þ rnðz� ðzn � z0Þ=rnÞÞ

! 1

Gðz� aÞ :

Then all zeros of 1=G have multiplicity at least l3, except the zero at �a, and
hence all poles of G have have multiplicity at least l3, except the pole at �a.

Therefore, by Nevanlinna’s first and second fundamental theorems, GðzÞ is a
rational function. However, such nonconstant rational function does not exist
by Lemma 2, a contradiction. We thus have proved that G is normal at z0.

Now we turn to prove that F is normal at z0. Since G is normal at z0, then
the family G is equicontinuous at z0 with respect to the spherical distance. On
the other hand, gðz0Þ ¼ y for each g A G. Thus, there exists 0 < r1 < r such
that jgðzÞjb 1 for all g A G and z A Dðz0; r1Þ. It follows that f ðzÞ � c1 0 0 for
all f A F and z A Dðz0; r1Þ, and then the family F1 ¼ f1=ð f � c1Þ : f A Fg is
holomorphic in Dðz0; r1Þ. Suppose that F is not normal at z0; then F1 is
normal in D 0ðz0; r1Þ, but not normal at z0. So, there exists a sequence
f1=ð fn � c1ÞgHF1 which converges locally uniformly in D 0ðz0; r1Þ, but none
of whose subsequences converges uniformly in a neighborhood of z0. The
maximum modulus principle implies that 1=ð fn � c1Þ ! y on compact subsets
in D 0ðz0; r1Þ, and hence fn � c1 ! 0 uniformly on compact subsets of D 0ðz0; r1Þ.
Note that gn ¼ ð fnðzÞ � c1ðzÞÞ=ðc2ðzÞ � c1ðzÞÞ, we see that gn ! 0 uniformly
on compact subsets of D 0ðz0; r1Þ. But we already prove that jgnðzÞjb 1 for
z A Dðz0; r1Þ in the above, a contradiction.
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Case 2.2. c1ðz0Þ ¼ c2ðz0Þ ¼ y.
There exists r > 0 such that c1ðzÞ, c2ðzÞ are holomorphic in D 0ðz0; rÞHD,

and ciðzÞ0 0 ði ¼ 1; 2Þ, c3ðzÞ0y in Dðz0; rÞ.
Set ji ¼ 1=ci ð1a ia 3Þ and g ¼ 1=f , where f A F. Then j1ðz0Þ ¼ j2ðz0Þ

¼ 0, j3ðz0Þ0 0.
Noting that f ðz0Þ0c1ðz0Þ (or c2ðz0Þ), it is easy to see that all zeros of

g� ji ¼ ðci � f Þ=ð fciÞ have multiplicity at least li ð1a ia 3Þ in Dðz0; rÞ. As
in Case 2.1, we can prove that F2 ¼ f1=f : f A Fg is normal at z0, and then F
is normal at z0.

Case 3. c1ðz0Þ ¼ c2ðz0Þ ¼ c3ðz0Þ.
Then f ðz0Þ0ciðz0Þ ð1a ia 3Þ for f A F. Similarly, we divide two sub-

cases.

Case 3.1. c1ðz0Þ, c2ðz0Þ and c3ðz0Þ are finite.
There exists r > 0 such that ciðzÞ0cjðzÞ ð1a i < ja 3Þ in D 0ðz0; rÞHD,

and ciðzÞ ð1a ia 3Þ is holomorphic in Dðz0; rÞ.
By Case 1, we know that F is normal in D 0ðz0; rÞ.
Let G be defined as (4). Then gðz0Þ ¼ y for each g A G.
Letting o1 ¼ 0, o2 ¼ 1 and

o3 ¼
c3 � c1

c2 � c1

;

as in Case 2.1, all zeros of g� o1 in Dðz0; rÞ have multiplicity at least l1, and all
zeros of g� o2 in Dðz0; rÞ have multiplicity at least l2.

We have

g� o3 ¼
f � c3

c2 � c1

:

Since all zeros of f � c3 have multiplicity at least l3, c2 � c1 is holomorphic in
Dðz0; rÞ, and f � c3 and c2 � c1 have no common zero in Dðz0; rÞ, we conclude
that all zeros of g� o3 have multiplicity at least l3 in Dðz0; rÞ. Moreover,
gðz0Þ ¼ y whatever o3ðz0Þ ¼ 0 or 1.

So, by Case 2, G is normal at z0.
Hence, by using the same argument as in the latter part of Case 2.1, we can

prove that F is also normal at z0.

Case 3.2. c1ðz0Þ ¼ c2ðz0Þ ¼ c3ðz0Þ ¼ y.
Set ji ¼ 1=ci ð1a ia 3Þ. Then j1ðz0Þ ¼ j2ðz0Þ ¼ j3ðz0Þ ¼ 0. Arguing as

in Case 3.1, we can show that F2 ¼ f1=f : f A Fg is normal at z0, and hence F
is normal at z0.

The proof of Theorem 1 is completed. r
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