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A FINITE GENERATING SET FOR THE LEVEL 2 MAPPING
CLASS GROUP OF A NONORIENTABLE SURFACE

BrAZE) SZEPIETOWSKI

Abstract

We obtain a finite set of generators for the level 2 mapping class group of a closed
nonorientable surface of genus g > 3. This set consists of isotopy classes of Lickorish’s
Y-homeomorphisms also called crosscap slides.

1. Introduction

For a closed surface F the mapping class group .4 (F) is the group of isotopy
classes of all, orientation preserving if F is orientable, homeomorphisms /2 : F — F.
This is the orbifold fundamental group of the moduli space of Riemenn surfaces
homeomorphic to F if F is orientable, or Klein surfaces if F is nonorientable
(Klein surface is a compact topological surface with a dianalytic structure, see
[1]). Every finite index subgroup of .#(F) is the orbifold fundamental group of
some finite orbifold cover of the moduli space. An important family of such
subgroups is obtained as follows. For an integer m > 1 define I',,(F) to be the
subgroup of .#(F) consisting of the isotopy classes of homeomorphisms inducing
the identity on H,(F,Z,,), where Z,, = Z/mZ. The group I',,(F) is called level
m mapping class group and the corresponding finite cover of the moduli space is
known as the moduli space of curves with level m structures. For orientable F
these groups have been studied extensively, see [6, 7]. More recently, Putman
[15] and Sato [16] computed independently the abelianization of I',(F) for m odd
and genus g > 3. Sato also computed the abelianization of I'»(F).

In this paper we are interested in the case of a closed nonorientable surface,
which will be denoted as N or N,, where ¢ is the genus (thus N, is homeomorphic to
the connected sum of ¢ projective planes). Lickorish defined in [12] a homeo-
morphism of N that he called Y-homeomorphism and proved in [12, 13] that .#(N,)
is generated by Dehn twists and one isotopy class of Y-homeomorphisms for g > 2.
Y-homeomorphisms were called crosscap slides in [10, 14] and also in this paper we
use this name. Chillingworth found in [3] a finite set of generators for .#(Ny).
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The action of .#(F) on H;(F,Z) preserves the algebraic intersection pairing.
For orientable F this is a symplectic form and we have a representation of .#(F)
into the symplectic group, which is well known to be surjective and whose ker-
nel is known as the Torelli group. On a nonorientable surface N however, the
algebraic intersection pairing is only defined modulo 2 and therefore it is very
natural to study the action of .#(N) on H;(N,Z,) and its kernel I';(N). It was
proved by McCarthy and Pinkall [14] and by Gadgil and Pancholi [4] that all
automorphisms of H;(N,,Z) or H,(N,,Z,) preserving the Z,-valued intersection
form are induced by homeomorphisms. In [18] we proved that for g > 2 the
group I'»(N,) is equal to the normal closure in .#(N,) of one crosscap slide.
This result found its application in the work of S. Hirose [8] who proved that
a homeomorphsim of a closed nonorientable surface N standardly embedded in
the 4-sphere is extendable to a homeomorphism of the 4-sphere if and only if it
preserves the Guillou-Marin quadratic form on H; (N, Z,).

Since .#(N,) is finitely generated, therefore so is I'»(NV,) and it is a very
natural problem to find an explicit finite generating set for I';(N,). This is our

motivation for this paper, in which we obtain such set consisting of (g — 1)* + g

crosscap slides for g >3. Since there is an epimorphism from I';(N,) onto
Zéyq) , exhibited in Section 4, thus (g — 1)2 is a lower bound for the number of
generators of I'»(N,). We prove that our generating set is minimal with respect
to the number of elements for g =3 and g = 4 by showing that I'»(NV3) is iso-
morphic to the level 2 congruence subgroup of GL(2,Z) and that the abelia-
nization of T'y(N,) is isomorphic to Z3°.

Having a finite set of generators of I';(N), the next natural problem is to
compute its first homology group H;(I'»(N),Z). It follows from our work that
this group is isomorphic to Zg for some d satisfying (g — 1)2 <d<(g- 1)2 + g
(see the proof of Theorem 4.3) but it appears to be a difficult problem to
find the exact value of d. The computations of H;(I',,(F),Z) for orientable F
in [15, 16] use Johnson’s work on the Torelli group. Unfortunately no similar
results are known for a nonorientable surface. For example it is a completely
open problem to find generators for the Torelli subgroup of .#(N) consisting of
the isotopy classes of homeomorphisms inducing the identity on H;(N,Z).
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2. Preliminaries

Let N =N, be a closed nonorientable surface of genus g and .#(N) its
mapping class group. For ¢,y € .#(N) the composition ¢y means that v is
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applied first. By abuse of notation we will use the same symbol to denote a
homeomorphism and its isotopy class.

2.1. Curves and Dehn twists. By a simple closed curve in N we mean an
embedding y:S' — N. Note that y has an orientation; the curve with the
opposite orientation but same image will be denoted by y~!. By abuse of
notation, we will usually identify a simple closed curve with its oriented image
and also with its isotopy class. According to whether a regular neighborhood
of y is an annulus or a Mobius strip, we call y respectively two- or one-sided.

Given a two-sided simple closed curve y, T, denotes a Dehn twist about .
On a nonorientable surface it is impossible to distinguish between right and left
twists, so the direction of a twist 7', has to be specified for each curve y. In this
paper it is usually indicated by arrows in a figure. Equivalently we may choose
an orientation of a regular neighborhood of y. Then 7, denotes the right Dehn
twist with respect to the chosen orientation. Unless we specify which of the two
twists we mean, 7, denotes any of the two possible twists.

2.2. Crosscap slide. Suppose that o and f are two simple closed curves in
N, such that « is one-sided, f is two-sided and they intersect in one point. Let
K < N be a regular neighborhood of «U f, which is homeomorphic to the Klein
bottle with a hole. This is shown in Figure 1, where the shaded discs represent
crosscaps; this means that their interiors should be removed, and then antipodal
points in each resulting boundary component should be identified. Let M < K
be a regular neighborhood of «, which is a Mé&bius strip. We denote by Y,z
the crosscap slide, or Y-homeomorphism equal to the identity on N\K and which
may be described as the result of pushing M once along f keeping the boundary
of K fixed. Figure 1 illustrates the effect of Y, s on an arc connecting two points
in the boundary of K. For a more rigorous definition see [12]. Up to isotopy,
Y, s does not depend on the choice of the regular neighbourhood K. The
following properties of crosscap slides follow directly from its definition.

(2.1) Yy p=Yup
(2.2) Y, p1=Y,;
(2.3) hYosh™" = Yie.nep)

for all h e .#(N).

FIGURe 1. Crosscap slide.
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Every crosscap slide induces an identity on H;(N,Z,), hence it belongs to
2 (N).

THEOREM 2.1 ([18]). For g =2 the level 2 mapping class group T'>(N,) is
generated by crosscap slides.

2.3. Crosscap pushing map. In this subsection we recall from [18] the
definition of the crosscap pushing map which will be an important tool in what
follows.

Fix x9 € N, and define .#(Ny,x() to be the group of isotopy classes of all
homeomorphisms of / : N; — N, such that i(xp) = xp. Let U={zeC||z] <1}
and fix an embedding ¢ : U — N, such that ¢(0) = xo. The surface N, may be
obtained by removing from N, the interior of e(U) and then identifying e(z) with
e(—z) for ze S' =aU. We define a blowup homomorphism

¢« M(Ng,Xo) = M(Ngi1)

as follows. Represent he .#(N,, xo) by a homeomorphism /: N, — N, such
that % is equal to the identity on e(U) or h(x) = e(e~!(x)) for x e e(U). Such h
commutes with the identification leading to N,;; and thus induces an element
¢(h) € M(Ny+1). We refer the reader to [18] for a proof that ¢ is well defined.
Forgetting the distinguished point x; induces a homomorphism

%(meo) - ﬂ<Nt])7
which fits into the Birman exact sequence (see [10])
71 (Ng, xo) = AM(Ng, x0) — M(Ng) — 1.

The homomorphism j is called point pushing map. 1If y is a loop in N, based at
Xo and [y] € 71 (Ny, xo) is its homotopy class, then j([y]) may be described as the
effect of pushing x, once along y. In order for j to be a homomorphism, a
product [y] - [d] in 7(N,,xo) means go along ¢ first and then along 7.

We define a crosscap pushing map to be the composition

Y =gpoj:m(Ngxo) = M(Nys1).

Let o be the image in Ny, of e(dU). Then o is a one-sided simple closed
curve. Every simple loop y based at xy, is homotopic to a loop y’ which
intersects e(U) in two antipodal points. If f is the image in Ny of y'\int(e(U))
then £ is a simple closed curve, which intersects o in one-point, and which is two-
sided if and only if y is one-sided. The following lemma follows from the
description of the point pushing map for nonorientable surfaces [10, Lemma 2.2
and Lemma 2.3] and the definition of a crosscap slide.

LemMA 2.2, Suppose that y is a simple loop in N, based at x, intersecting
e(dU) in two antipodal points. Let o and [ be the images in N1 of e(0U) and
y\int(e(U)) respectively. If vy is one-sided, then

V() = Yap
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FIGURE 2. Y, s for two one-sided curves.

If vy is two-sided, then
v()) = (T5,T5,)",

where 01 and 6, are boundary curves of a regular neighbourhood M of oUpB, the
twists are right with respect to some orientation of M\o and ¢ is 1 or —1 depending
on the orientation of f.

2.4. Generalized crosscap slide. Lemma 2.2 suggests the following gener-
alization of the definition of a crosscap slide. Let « and S be one-sided curves
intersecting in one point and let M, J; and J, be as in Lemma 2.2. The
neighborhood M is shown in Figure 2 as an octagon whose two pairs of opposite
sides should be identified according to arrows on the sides. The other two pairs
of opposite sides are the boundary curves J;, J,. The curve « divides the
octagon into halves. Let Ty, 75, be right with respect to the standard orien-
tation of the bottom half (the arrows in Figure 2 indicate the directions of Ty,
and Tj;'). Then, for § oriented as in Figure 2 we define

Yop=T5Ty "

For the opposite orientation of g we set Y, = T} 'Ts,. For such generalized
definition the properties (2.1), (2.2) and (2.3) remain valid.

3. Generators of the level 2 mapping class group

Let us represent N, as a 2-sphere with g crosscaps. This means that
interiors of g small pairwise disjoint discs should be removed from the sphere,
and then antipodal points in each of the resulting boundary components should
be identified. Let us arrange the crosscaps as shown on Figure 3 and number
them from 1 to g. For each nonempty subset I = {1,...,¢g} let a; be the simple
closed curve shown on Figure 3. For I = {ij,...,i} let |[I| =k. Note that o,
is two-sided if and only if |/| is even. In such case 7, will be Dehn twist about
oy in the direction indicated by arrows on Figure 3. We will write o; instead of
agy for ie{l,...,g}.

It is well know that .#(Ny) is trivial and .#(N,) =~ Z, x Z, ([12]). It follows
easily from the structure of .#(N,) that I',(N,) has order two and it is generated
by a crosscap slide.
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FIGURE 3. The curve oy for I ={ij,i,... ik}

THEOREM 3.1. For g > 4 the mapping class group M (Ny) is generated by the
following elements.

. Y = Yag,l,i{g—l..t/)’
c A= T;C{i.z"l) fori=1,...,9—1,
- B—=

%41,2,3,4}°

The group M (N3) is generated by Y, Ay, A;.

Proof. Let </ denote the set of elements listed in Theorem 3.1 and let H be
the subgroup of .#(N,) generated by o/. Let % be the set of Dehn twists about
the curves oy 2 for 6<2i<y. Chllhngworth proved in [3] that .#(N,) is
generated by .o/ Uﬂ This generating set is explicitly given on page 427 of [3],
where &;, 1; and y correspond to our oy; 11y, o 2y and Yy, 4, respectively,
whereas in Theorem on page 426 it is displayed on a different model of N,. In
order to show H = .#(N,) it suffices to prove # — H. We are assuming g > 6,
for otherwise % = 0.

Suppose that g is odd and let N’ be the surface obtained from N, by
removing an open regular neighborhood of the curve = ay; . Thus N’ is an
orientable surface with one boundary component and by a theorem of Humphries
[9] its mapping class group is generated by A; for i=1,...,9—1 and B. It
follows that T, e H for every two-sided simple closed curve y in N, such that
yNd=0. Since # consist entirely of such twists, thus # <= H.

Now suppose that g is even and let N’ be the surface obtained from N,
by removing an open regular neighborhood of 6Ua,, where 6 = oy 3. Again
N’ is an orientable surface with one boundary component and we can use the
theorem of Humphries to deduce that 7, € H for every two-sided simple closed
curve y in Ny such that yN(dUay) =0. This proves that all elements of %
except D = Ty are in H. It remains to prove D € H. We borrow an argument
from [8]. Consider the curves ¢ = oy 44}, V1 = %{1,...g-2}> Y2 = %{g—3,9—2,9-1,g}>
V3 = Ul...g—4,g-1,9}> and let £, C; for i=1,2,3 be the corresponding Dehn
twists. Note that the curves 5 &, Ofg-3,4-2} and t{g—1,9y bound a four-holed
sphere and we have the following lantern relation DEA, 34,1 = C1CCs.
Clearly A, 3,4, 1 € H and since ¢N(dUay) =y, N(0Ua,) =0 thus E,C; € H.
It can be easily checked that A, 14, 24, 344 4(y,) = Ufg—4,9-3,9-2,9-1} and

Ag1442(y3) = o1, g—4,9-2,9—1}- Since these curves are disjoint from dUo, the
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corresponding twists are in H. It follows that C,,C;e H and the lantern
relation gives D e H. U

The following theorem is the main result of this paper.

THEOREM 3.2.  For g > 4 the level 2 mapping class group T'»(N,) is generated
by the following elements.

(1) Yo, forie{l,...,.g—1}, je{l,...,g} and i # j,

(2) Yooy Jor i<j<k<l
The group Ty(N3) is generated by the elements (1).

Let G be the subgroup of .#(N,) generated by the elements (1), (2) from
Theorem 3.2. Our goal is to prove that G =T(Ny). Since by [18, Lemma 3.6]
Iy (Ny) is generated by crosscap slides conjugate to Y, 4, it suffices to prove
that G is normal in .#(N,). First we need to prove some lemmas.

LemMma 3.3, Suppose that o and f are two simple closed curves such that o is
one-sided, [ is two-sided and they intersect in one point. Then

Tﬂ = Y7, Y

Proof. Since Y, preserves the curve f and reverses orientation of its
nelghbourhood we have Y, T3Y, ;= T;'. On the other hand, by (2.3) we
have T37, ﬁT = Y1,00).45 therefore

-1
Tj = TpYup Ty Yy = Yry0.5 Yo e 0
LemMA 3.4. Suppose that o and f are one-sided simple closed curves inter-

secting in one point. Let 0 be one of the boundary curves of a regular neighbour-
hood of aUp. Then

T} Y;‘ﬁ Yﬁ‘gzo67

where ¢ is 1 or —1 for i=1,2.

Proof. Let 6 =0, and J, be the boundary curves of a regular neighbour-
hood M of «Up and suppose that 7s and T, are right twists with respect to
some orientation of M\x, so that Y, = (T T, "')" (note that this is the gen-
eralized crosscap slide defined in Subsection 2.4). Observe that with respect to
any orientation of M\f one of the twists Ty is right, while the other one is
left. Hence Yj, = (T57T5,)? and the lemma follows. O

LemMma 3.5. Forie{l,...,g} and for every simple closed curve p intersecting
o; in one point we have Y, g€ G. Moreover, Y, g can be written as a product of
generators of type (1).
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Proof. Let G’ be the subgroup of G generated by the elements (1). First
we assume i < g. Let N’ be the surface of genus g — 1 obtained from N, by
replacing the i-th crosscap by a disc U with basepoint xo. As N, may be seen as
being obtained from N’ by the blowup construction, we have the corresponding
crosscap pushing map

lp : EI(N/,X()) — ﬂ(Ng)

Note that Y, 4 is in the image of i (see Lemma 2.2). The group 7;(N',xo) is
generated by homotopy classes of simple loops [y;] such that y([y;]) = Yy, 4, , for
Je{l,...;i—1i+1,...,g} (in fact [y;] can be taken to be standard generators

of the fundamental group). It follows that y(m(N',x0)) < G' and Y, € G'.

Now suppose i =g. It suffices to show that Y, , , €G’ for je{l,...,
g — 1}, the rest of the proof follows as above. Note that T, ()= ocg‘l. By
Lemma 3.3 and (2.1) we have

_ 72
Y“‘;/v“‘{j..z/) - Tl(j,y} Y“/v“(j-,.a}

and hence it suffices to show that T f{ € G'. Weassume j=¢g— 1. Let M be
the surface obtained by cutting N, along t{g—1,9}- Thus M is a nonorientable
surface of genus g — 2 with two boundary components. For ne{l,...,9g—1}
there exist pairwise disjoint two-sided simple closed curves J, in M such that
M =0,Ud,_1 and Oy Udyy1 = OM), where M) is a genus one subsurface con-
taining oy for ke {1,...,g—2}. Choose an orientation of M\(o; U---Uay,_5)
and let 75 be the right Dehn twist with respect to that orientation for ne
{1,...,9—1}. For ke{l,...,g—2} there exists a one-sided simple curve f, in
M intersecting o in one point and such that Y, 5 = Tj, T(;:‘ll, see Figure 4.
We have

—1
Y‘"l-ﬁl Y“Z-/fz e Y“.z/fz-ﬁg—z = T51 7-:;;/—1’
and after recovering N, by gluing together the boundary curves of M we obtain

2
Yxlvﬁl Y%Z»/fz e Y“.afl-,/}y—z = Ti

Og-1,9} "

This completes the proof because Y, g € G’ for k € {1,...,g — 2} by earlier part
of the proof. Similarly, we can show T, f{ € G' for other j. O

LemMa 3.6. For every I = {1,...,g} such that |I| =2 or |I| =4 we have
T; €G.

o A 0y P 3 0g—2 Bg—2 0g—1

/ / / / ' / /
I !
I ! 1
! 1 ! I
1 i
I I
! I ! I
1 ]
1 I
\ \ ! 1
\ \

\

FIGURE 4. The surface M and curves from the proof of Lemma 3.5.
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Proof.  Suppose that I = {i, j} where i < j. Observe that T, ()= :x/‘].
By Lemma 3.3 and (2.1) we have 7,7 =Yy, Y, €G. '

Suppose that I = {i, j k,I} Where i<j<k<land let J={ijk}. Ob-
serve that T, (x;) = o;'. By Lemma 3.3 and (2.1) we have T} = Y, Y, ", .

Since Yy , € G by Lemma 3.5, and Y,, , € G by the deﬁmtlon of G, also
T eG. O]

Lemma 3.7. For every I ={i, j, k}, where 1 <i< j<k <g, and for every
two-sided simple closed curve [ intersecting oy in one point we have Y, g€ G.

Proof. Note that ff actually exists only for g > 4. Indeed, if g = 3 then the
surface obtained from N, by cutting along oy is orientable, and every curve
intersecting o; in one point must be one-sided. Therefore we are assuming
g = 4.

Let H be the subgroup of .#(N) generated by Y,, ,, Y, 4 and Y, ,, for
every J such that |J| =4 and I = J. We claim that H = G. Consider a regular
neighborhood of oy Ua;.  One of its boundary curves is oz, and by Lemma 3.4
we have

T2 ok} - YOEII o Y;Zd[’
where ¢ is 1 or —1 for /=1,2. Since Y, , € G by Lemma 3.5 and T 1{ o € G
by Lemma 3.6, also Y, , €G. By a similar argument Y, , €G. Let J =

TU{1} for I ¢ {i, j,k} and note that T;!(¢;) = o;!. By Lemma 3.3 and (2.1) we
have

+2 -1
Toc, - Y%MX/Y

o, oy’

and since Y, ,, € G by Lemma 3.5 and Tazl € G by Lemma 3.6, also Y,, ,, € G
and the claim is proved.
Now it suffices to show that Y, e H. Choose ne{l,...,g\{i,j,k} and

observe that for J =1U{n} we have T (o) = o, , where ¢=+1. Let

n )

Y =T, Yy yT, = Yo 15, H =T HT,S.
We need to show that Y e H'’. Let N’ be the surface of genus g — 1 obtained
from N, by replacing the n-th crosscap by a disc U with basepoint xo. We have
the crosscap pushing map

l// : ﬂ](N’,X()) - %(Ng)

Since Y € y(m1(N', x0)) it suffices to show that (7 (N',x0)) < H' and for that
it is enough to check that 7z;(N', x¢) is generated by loops mapped by ¥ on
generators of H'. Let us assume n= 1. The proof is similar for other n. In
this case we have H' =D 'HD for D=T, . For se{2,...,g} let x; be
the standard generators of 7;(N',xo) such that Y(x;) = Yy, 5, ,. The group H’
is generated by
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D~ Yoc: xlD Yocl oc“ 0 ‘//((xjxk)_l)a

Dy uD=Y, 1 = = ¥((x) ),

DYoo D = Yo a0 = W(xixixe),

D™ Yoy a0 D = W((xix) " xixixgxg)  for 1< 1<,

D~ YOCI o, D =y (xixix; ]) for i</ < j,

1.j,k}

D'y,

o1 0, j ke, 1}

(
D~ Ya, 2 D lp(xk xixi) for j <<k,
W (i X (Xixx) ™~ ]) for k<l<y.

It is easy to check that each x; can be expressed as a product of elements which
are mapped by ¥ on the generators of H'. It follows that y(n1(N', x0)) < H'
and the lemma is proved. Ul

Lemma 3.8. Let I ={i,...,is} and J = {i\,... is,i}, where 1 <ij <--- <
is <ig<g. Then Y, €G.

Proof. Note that T, (% ;i) = %) ;. ;- By Lemma 3.3 and (2.1) we
have
2 -1
T;c_, - Y‘“{u.fs,f(,}sw Y‘x(,l,,z‘,é),a,/'
On the other hand, since T;,(x;) = ;. !, we also have
2 1
I;,J = Yaisv“] Yx, oy
Hence
-1
Yy 0 = Y“{f,,fz,,'3}7%1 Yoc(,4_,5,,<6),oq %, € G
by Lemmas 3.5 and 3.7. ]

Proof of Theorem 3.2. As we explained before Lemma 3.3, we have to
prove that G is normal in .#(N,). By Theorem 3.1 it suffices to check for
every generator x of G that 4;xA;'e G or A;7'x4,e€G for ie{l,...,g} and
BxB~'e G or B"'xBe G. Note that A;xA; ' e G if and only if 4;'x4;e G
since 4> € G by Lemma 3.6, and analogously for B.

For ie{l,...,g} we have A7 (x) =07, A;i(o) =07} and Ap(a) = o
for k#i—1,i. It follows that for all i+ j and k the generator Y ,, , 1is
conjugated by Ay or 4;! to Y,, s for some / and some f. Since the last element
is in G by Lemma 3.5, we have proved that 4;xA4; ''e G for every ie{l,...,g}
and every generator x of type (1).

If g>4 then B(w;)) =o; for i>4, while for ie{1,2,3,4} we have
B*!(0;) = o', where I—{l 2,3,41\{i}. It follows by Lemma 3.5 or by
Lemma 3.7 that BxB~' € G for every generator x of type (1).
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Suppose that I ={i,j,k} and J ={i,j, k,I}, where i< j<k <[ Tt can
be checked that for i > 1 we have 4;1(o7) = Yy, o, (%i-1,j,4y) and A;-1(oy) =
Yoy (i1 k). 1t follows that

—1 -1
Aic1 Yy 0,47 = de{H.i} Y“([—l./'.k}-,‘x{i—l.j./c.l) Yoc;.oc(,-,,_,} €.
By similar arguments one can check that 4,Y,, ,,4,' € G forne{l,...,g—1}.
If i >4 then B(a) =0, while for k <4 we have B*!(a;) =a,,!, where

{m} ={1,2,3,4}\I. In both cases we have BY,, ,,B'eG. Ifi=1, j=2and
k >4, then for Y; =Y, Y, =7, it can be checked that Y Y>(o;)

o3, 02 3} > %4, 002 4}
and Y1Y>(oy) are disjoint from oy 5 34;. It follows that

BY1Y2Y,, ., Y, Y[ ' B =\ 1hY,,, Y, Y e

From earlier part of the proof we know that BY; Y>B~! € G, hence BY,, ,,B~' € G.
A similar argument, using different Y|, Y, can be applied to other / such that
[TN{1,2,3,4}| =2. It remains to consider the cases where i <4 and j > 4. If
i = 1 then it cen be checked that B~!(a;) = Y;hla“‘z) (o), where I' = {2,3.4, j. k},
and B~'(ay) = Y, !, (o), where J'=1"U{l}. Since Y, ,, € G by Lemma
3.8, we have
-1 -1
B, B=Y, Y Vi Yaa, €G.

If i=2 then for Y=Y, and Yy=Y,,,, we have B7'Y (o) =
Y ' Ya(oyr), where I' = {1,3,4, j,k}, and B~' Y[ ' (oy) = Y ' Ya(oyr), where J' =
I'u{l}. Since Y,,,, €G by Lemma 3.8 we have

B'Y[ 'Y, ,YiB=Y'11Y,, . Y5 Y €G,

and since B'Y|Be G by earlier part of the proof, also B~'Y,, ,,Be G. The
proof is similar for i =3 and i = 4. O

Remark 3.9. By the proof of Lemma 3.6 for i < j < k <[ we have

2 _ -1

Td{i,/.k.[} - Y“’*“(i-j«k«/} Y“(i.i.k)a“{i,j,k.l}’

and by Lemma 3.5 Yy, 4, .,
type (1). It follows that each generator of type (2) Y,

5 : i, j ks Ui, j k., 1}
by T, in Theorem 3.2.
{i,j. k. I}

can be written as a product of the generators of
can be replaced

Remark 3.10. There are (g — 1)* generators of type (1) and <Z> generators

of type (2). In particular we have 4 generators for I';(V3) and 10 generators
for I'2(N4). We will show in the next section that these are minimal numbers
of generators for these groups. We do not expect that Theorem 3.2 provides
minimal number of generators for I'»(N,) for g > 4.
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4. Low genus cases

For ie{l,...,g9} let ¢; denote the homology class of the curve o; in
H;(Ny,Z). Then H;(N, Z) has the following presentation as a Z-module:

Hi(Ny, Z) = {c1, .. eq| 2(c1 + -+ ¢4) = 0.

Consider the quotient R, = H(N,, Z)/{c), where ¢ = ¢ + --- + ¢4 is the unique
homology class of order 2. It is immediate from the above presentation that R,
is the free Z-module with basis given by the images of ¢i,...,¢,—1 in R;. Let
us fix this basis and identify Aut(R,) with GL(g — 1,Z). Every automorphism
of Hi(Ny,Z) preserves ¢, and thus induces an automorphism of R,. Thus the
action of .#(N,) on H;(N,,Z) induces a homomorphism

p:M(Ny) — GL(g—1,Z).

In general p is neither surjective nor injective. However, it was shown in [14,
Section 2], that the group of automorphisms of H;(N,,Z) which act trivially
on H;(Ny,Z,) is isomorphic to the full group of automorphisms of R, which
act trivially on R, ® Z. Consequently, the restriction of p to I'>(N,) yields a
surjection

n: Fz(Ng) - GLz(C]— 17Z)7

where GL,(n,Z) is the level 2 congruence subgroup of GL(n,Z).

Birman and Chillingworth obtained in [2, Theorem 3] a finite presentation
for .4 (N3) from which it is immediate that this group is isomorphic to GL(2,Z).
It turns out that such isomorphism can also be deduced from the action on
H;(N3,Z), as shows the following Theorem proved in [5].

THEOREM 4.1. The map p: M (N3) — GL(2,Z) is an isomorphism.
The following corollary is an immediate consequence of Theorem 4.1.
COROLLARY 4.2. The map n:'3(N3) — GLy(2,Z) is an isomorphism.

Let Mat,(Z,) denote the additive group of n x n matrices with entries in
Z,. This is an abelian group isomorphic to Zj . Let us define an epimor-
phism f: GLy(n,Z) — Mat,(Z,). Let X be any matrix in GL,(n,Z). Write
X =1+ 24, where [ is the identity matrix and define f(X) =4 mod 2. To see
that this is a homomorphism take Y =17+ 2B. Then

f(XY)=f(I+2(A+ B)+44B) = A+ B mod 2.

Let E; ; be the elementary n x n matrix with 1 at position (i, j) and 0’s elsewhere.
Since for each pair (i, j) the matrix / —2E;; is in GL»(n,Z), thus f is onto.
The map f was defined in [11] to determine abelianizations of congruence
subgroups of SL(n,Z). Now let g > 1 and consider the composition

fon: rz(Ng) — Mat!,,l(Zz).
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Since f oy is surjective, we see that I'>(N,) cannot be generated by less than
(g —1)* elements. In particular Theorem 3.2 provides the minimal number of
generators for I'>(V3). It follows from the next theorem that this is also the case
for g =4.

TurOREM 4.3.  The group Hi(T2(Ny),Z) is isomorphic to Z.,".

Proof. By [18, Theorem 3.7] I';2(N,) is generated by involutions. It follows
that Hy(T2(Ny), Z) ~ Z¢ for some integer d. From Theorem 3.2 we have d < 10
and the existence of fon gives d > 9. Let

h: H](Fz(N4),Z) — Mat3(Z2)

be the map induced by fox. To prove d =10 it suffices to show that ker &
is not trivial. Let B= T, ,,, and observe that B> induces the identity on
Hi (N4, Z), hence it belongs to ker 7. We claim that B? is not in the commutator
subgroup [I'2(N4),T2(N4)], hence it represents a nontrivial element of ker 4. To
prove this claim we need to refer to the presentation of .#(N4) given in [17]. Tt
follows from this presentation that there exists an epimorphism 0 : .#(N4) — Z;
such that 6(B) =1 and 6(x) =0 for every generator x different from B. In
particular 0(Y) =0, where Y = Y,, ,,,. Since ['2(Ny) is the normal closure of
Y we have I',(N4) c ker . 1Tt is a routine to obtain from the presentation of
M (Ny) a presentation for the index 2 subgroup ker § and check that B? sur-
vives in its abelianization, that is B> ¢ [ker 0,ker 0]. Since I'»(N4) < ker 6 also
B? ¢ [[5(N4), To(Na)]. O
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