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FORCED HYPERBOLIC MEAN CURVATURE FLOW

Jing Mao

Abstract

In this paper, we investigate two hyperbolic flows obtained by adding forcing terms

in direction of the position vector to the hyperbolic mean curvature flows in [5, 8].

For the first hyperbolic flow, as in [8], by using support function, we reduce it to a

hyperbolic Monge-Ampère equation successfully, leading to the short-time existence of

the flow by the standard theory of hyperbolic partial di¤erential equation. If the initial

velocity is non-negative and the coe‰cient function of the forcing term is non-positive,

we also show that there exists a class of initial velocities such that the solution of the

flow exists only on a finite time interval ½0;TmaxÞ, and the solution converges to a point

or shocks and other propagating discontinuities are generated when t ! Tmax. These

generalize the corresponding results in [8]. For the second hyperbolic flow, as in [5],

we can prove the system of partial di¤erential equations related to the flow is strictly

hyperbolic, which leads to the short-time existence of the smooth solution of the flow,

and also the uniqueness. We also derive nonlinear wave equations satisfied by some

intrinsic geometric quantities of the evolving hypersurface under this hyperbolic flow.

These generalize the corresponding results in [5].

1. Introduction

Generally, we refer to a hyperbolic flow whose main driving factor is mean
curvature as the hyperbolic mean curvature flow (HMCF). In [14], Rostein,
Brandon and Novick-Cohen studied a hyperbolic mean curvature flow of inter-
faces and gave a crystalline algorithm for the motion of closed convex polygonal
curves. In [17], Yau has suggested hyperbolic mean curvature flow can be used
to model a vibrating membrane or the motion of a surface. It seems necessary
to study the hyperbolic mean curvature flow because of these applications.

To our knowledge, few kinds of hyperbolic mean curvature flow have been
studied and also few results of these hyperbolic mean curvature flows have
been obtained, see [5, 8, 9] for instance. Now we want to show the motivation
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why we consider the hyperbolic mean curvature flows (1.3) and (1.4) below in this
paper. Actually, it is inspired by the similar situation in the mean curvature
flow. More precisely, Ecker and Huisken [3] considered the problem that a
hypersuface M0 immersed in Rnþ1 evolves by a family of smooth immersions
Xð�; tÞ : M0 ! Rnþ1 as follows

q

qt
Xðx; tÞ ¼ Hðx; tÞ~NNðx; tÞ; Ex A M0; Et > 0

X ð�; 0Þ ¼ M0;

8><
>:ð1:1Þ

where Hðx; tÞ and ~NNðx; tÞ are the mean curvature and unit inner normal vector
of the hypersurface Mt ¼ XðM0; tÞ ¼ XtðM0Þ, respectively. If additionally the
initial hypersurface M0 is a locally Lipschitz continuous entire graph over a
hyperplane in Rnþ1, they have proved that the classical mean curvature flow (1.1)
exists for all the time t A ½0;yÞ, moreover, each X ð�; tÞ is also an entire graph.
Fortunately, by using a similar way, Mao, Li and Wu [12] proved that if the
above initial hypersurface, a locally Lipschitz continuous entire graph in Rnþ1,
evolves along the following curvature flow

q

qt
X ðx; tÞ ¼ Hðx; tÞ~NNðx; tÞ þ ~ccðtÞXðx; tÞ; Ex A M0; Et > 0

Xð�; 0Þ ¼ M0;

8><
>:ð1:2Þ

where ~ccðtÞ is a bounded nonnegative continuous function, and Hðx; tÞ and ~NNðx; tÞ
have the same meanings as those in the flow (1.1), then the curvature flow (1.2)
has long time existence solutions, and each each X ð�; tÞ is also an entire graph.
This generalizes part of results of Ecker and Huisken, since if ~ccðtÞ ¼ 0 in (1.2),
then this flow degenerates into the classical mean curvature flow (1.1). Similarly,
if ~ccðtÞ is a bounded continuous function, for a strictly convex compact hyersur-
face in Rnþ1 evolving along the curvature flow of the form (1.2), Li, Mao and
Wu [11] proved a similar conclusion as in [10] by mainly using the methods
shown in [10] and [7].

Since we could get these nice results if we add a forcing term in direction of
the position vector to the classical mean curvature flow, we guess maybe it would
also work if we add this kind of forcing term to the hyperbolic mean curvature
flows introduced in [5] and [8] respectively. This process of adding the forcing
term lets us consider the following two initial value problems.

First, we consider a family of closed plane curves F : S1 � ½0;TÞ ! R2 which
satisfies the following evolution equation

q2F

qt2
ðu; tÞ ¼ kðu; tÞ~NNðu; tÞ � ‘rþ cðtÞF ðu; tÞ; Eðu; tÞ A S1 � ½0;TÞ

Fðu; 0Þ ¼ F0ðuÞ;
qF

qt
ðu; 0Þ ¼ f ðuÞ~NN0;

8>>>>><
>>>>>:

ð1:3Þ
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where kðu; tÞ and ~NNðu; tÞ are the curvature and unit inner normal vector of the
plane curve Fðu; tÞ respectively, f ðuÞ A CyðS1Þ is the initial normal velocity, and
~NN0 is the unit inner normal vector of the smooth strictly convex plane curve
F0ðuÞ. Besides, cðtÞ is a bounded continuous function on the interval ½0;TÞ and
‘r is given by

‘r :¼ q2F

qsqt
;
qF

qt

 !
þ cðtÞðF ; ~TTÞ

" #
~TTðu; tÞ;

where ð� ; �Þ denotes the standard Euclidean metric in R2, and ~TT , s denote the unit
tangent vector of the plane curve F ðu; tÞ and the arc-length parameter, respec-
tively.

Fortunately, we can prove the following main results for this flow.

Theorem 1.1 (Local existence and uniqueness). For the hyperbolic flow (1.3),
there exists a positive constant T1 > 0 and a family of strictly closed curves Fð�; tÞ
with t A ½0;T1Þ such that each Fð�; tÞ is its solution.

Theorem 1.2. For the hyperbolic flow (1.3), if additionally cðtÞ is non-positive
and the initial velocity f ðuÞ is non-negative, there exists a class of the initial
velocities such that its solution exists only on a finite time interval ½0;TmaxÞ.
Moreover, when t ! Tmax, one of the following must be true

(I) the solution Fð�; tÞ converges to a single point, or equivalently, the
curvature of the limit curve becomes unbounded;

(II) the curvature kð�; tÞ of the curve Fð�; tÞ is discontinuous so that the
solution converges to a piecewise smooth curve, which implies shocks and prop-
agating discontinuities may be generated within the hyperbolic flow (1.3).

Second, we consider that an n-dimensional smooth manifold M evolves
by a family of smooth hypersurface immersions X ð�; tÞ : M ! Rnþ1 in Rnþ1 as
follows

q2

qt2
Xðx; tÞ ¼ Hðx; tÞ~NNðx; tÞ þ c1ðtÞX ðx; tÞ; Ex A M; Et > 0

X ðx; 0Þ ¼ X0ðxÞ;
qX

qt
ðx; 0Þ ¼ X1ðxÞ;

8>>>>><
>>>>>:

ð1:4Þ

where ~NNðx; tÞ is the unit inner normal vector of the hypersurface Mt ¼ XðM; tÞ ¼
XtðMÞ, X0 is a smooth hypersurface immersion of M into Rnþ1, X1ðxÞ is a
smooth vector-valued function on M, and c1ðtÞ is a bounded continuous function.

For this flow, we can prove the following result.

Theorem 1.3 (Local existence and uniqueness). For the hyperbolic flow (1.4),
if additionally M is compact, then there exists a positive constant T2 > 0 such that
the initial value problem (1.4) has a unique smooth solution X ðx; tÞ on M� ½0;T2Þ.
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The paper is organized as follows. In Section 2, the notion of support
function of Fðu; tÞ will be introduced, which is used to derive a hyperbolic
Monge-Ampère equation leading to the local existence and uniqueness of the
hyperbolic flow (1.3). An example and some properties of the evolving curve
have been studied in Section 3. Theorem 1.2 will be proved in Section 4. In
Section 5, by using the standard existence theory of hyperbolic system of partial
di¤erential equations, we show the short-time existence Theorem 1.3 of the
hyperbolic flow (1.4). Some exact solutions of the hyperbolic flow (1.4) will be
studied in Section 6. The nonlinear wave equations of some geometric quantities
of the hypersurface Xð�; tÞ will be derived in Section 7.

2. Proof of Theorem 1.1

In this section, we will reparametrize the evolving curves so that the hyper-
bolic Monge-Ampère equation could be derived for the support function defined
below. Reparametrizations can be done since for an evolving curve F ð�; tÞ under
the flow (1.3), the underlying physics should be independent of the choice of the
parameter u A S1. However, before deriving the hyperbolic Monge-Ampère equa-
tion, the following definition in [9] is necessary.

Definition 2.1. A flow F : S1 � ½0;TÞ ! R2 evolves normally if and only if
its tangential velocity vanishes.

We claim that our hyperbolic flow (1.3) is a normal flow, since

d

dt

qF

qt
;
qF

qs

� �
¼ � ‘r;

qF

qs

� �
þ cðtÞðF ; ~TTÞ þ qF

qt
;
q2F

qtqs

 !
¼ 0;

and the initial velocity of the flow (1.3) is in the normal direction. Then we
have

d

dt
Fðu; tÞ ¼ d

dt
F ðu; tÞ; ~NNðu; tÞ

� �
~NNðu; tÞ :¼ sðu; tÞ~NNðu; tÞ:ð2:1Þ

By (1.3) and (2.1), we have

qs

qt
¼ kðu; tÞ þ cðtÞðF ; ~NNÞðu; tÞ; s

qs

qs
¼ q2F

qsqt
;
qF

qt

 !
;ð2:2Þ

where s ¼ sð�; tÞ is the arc-length parameter of the curve Fð�; tÞ : S1 ! R2.
Obviously, by arc-length formula, we have

q

qs
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

qx

qu

� �2
þ qy

qu

� �2s q

qu
¼ 1

qF

qu

����
����
q

qu
:¼ 1

v

q

qu
;ð2:3Þ
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here ðx; yÞ is the cartesian coordinates of R2. For the orthogonal frame field
f~NN; ~TTg of R2, by Frenet formula, we have

q~TT

qs
¼ k~NN;

q~NN

qs
¼ �k~TT :ð2:4Þ

Now, in order to give the notion of support function, we have to use the unit out
normal angel, denoted by y, of a closed convex curve F : S1 � ½0;TÞ ! R2 w.r.t
the cartesian coordinates of R2. Then

~NN ¼ ð�cos y;�sin yÞ; ~TT ¼ ð�sin y; cos yÞ;

correspondingly, we have
qy

qs
¼ k and

q~NN

qt
¼ � qy

qt
~TT ;

q~TT

qt
¼ qy

qt
~NN:ð2:5Þ

Lemma 2.2. The derivative of v with respect to t is
qv

qt
¼ �ksv.

Proof. By using (2.1), (2.3), and (2.4), as in [4], we calculate directly as
follows

q

qt
ðv2Þ ¼ 2

qF

qu
;
q2F

qtqu

 !
¼ 2

qF

qu
;
q2F

quqt

 !
¼ 2 v~TT ;

q

qu
ðs~NNÞ

� �

¼ 2 v~TT ;
qs

qu
~NN � ksv~TT

� �
¼ �2v2ks;

which implies our lemma. r

Then, by using Lemma 2.2, we can obtain

q2

qtqs
¼ q

qt

1

v

q

qu

� �
¼ ks

1

v

q

qu
þ 1

v

q

qu

q

qt
¼ ks

q

qs
þ q2

qsqt
;

which implies

q~TT

qt
¼ q

qt

qF

qs

� �
~NN ¼ qs

qs
~NN:

Combining this equality with (2.1) yields
qy

qt
¼ qs

qs
.

Assume Fðu; tÞ : S1 � ½0;TÞ ! R2 is a family of convex curves satisfying the
flow (1.3). Now, as in [18], we will use the normal angel to reparametrize the
evolving curve Fð�; tÞ, and then give the notion of support function which is used
to derive the local existence of the flow (1.3). Set

~FFðy; tÞ ¼ F ðuðy; tÞ; tðy; tÞÞ;ð2:6Þ
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where tðy; tÞ ¼ t. We claim that under the parametrization (2.6), ~NN and ~TT are
independent of the parameter t. In fact, by the chain rule we have

0 ¼ qy

qt
¼ qy

qu

qu

qt
þ qy

qt
;

which implies

qy

qt
¼ � qy

qu

qu

qt
¼ � qy

qs

qs

qu

qu

qt
¼ �kv

qu

qt
:

Therefore,

q~TT

qt
¼ q~TT

qt
þ q~TT

qs

qs

qu

qu

qt
¼ qy

qt
þ kv

qu

qt

� �
~NN ¼ 0:

Similarly, we have
q~NN

qt
¼ � qy

qt
þ kv

qu

qt

� �
~TT ¼ 0, then our claim follows.

Define the support function of the evolving curve ~FFðy; tÞ ¼ ðxðy; tÞ; yðy; tÞÞ
as follows

Sðy; tÞ ¼ ð ~FF ðy; tÞ;�~NNÞ ¼ xðy; tÞ cos yþ yðy; tÞ sin y;

consequently,

Syðy; tÞ ¼ �xðy; tÞ sin yþ yðy; tÞ cos y ¼ ð ~FFðy; tÞ; ~TTÞ:
Therefore, we have

xðy; tÞ ¼ S cos y� Sy sin y;

yðy; tÞ ¼ S sin yþ Sy cos y;

�
ð2:7Þ

which implies the curve ~FFðy; tÞ can be represented by the support function.
Then we have

Syy þ S ¼ �xy sin yþ yy cos y ¼ q ~FF

qy
; ~TT

� �
¼ q ~FF

qs

qs

qy
; ~TT

� �
¼ 1

k
;ð2:8Þ

since the evolving curve ~FFðy; tÞ ¼ F ðuðy; tÞ; tðy; tÞÞ is strictly convex, (2.8) makes
sense.

On the other hand, since ~NN and ~TT are independent of the parameter t,
together with (2.1) and (2.6), we have

St ¼
q ~FF

qt
;�~NN

� �
¼ qF

qu

qu

qt
þ qF

qt
; ~NN

� �
¼ qF

qt
;�~NN

� �
¼ �sðu; tÞ;ð2:9Þ

furthermore, by the chain rule we obtain

Stt ¼
qF

qu

q2u

qt2
þ q2F

qu2
qu

qt

� �2
þ 2

q2F

quqt

qu

qt
þ q2F

qt2
;�~NN

 !

¼ q2F

qu2
qu

qt

� �2
þ q2F

quqt

qu

qt
;�~NN

 !
þ q2F

quqt

qu

qt
þ q2F

qt2
;�~NN

 !
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¼ qF

qu

� �
t

;�~NN

� �
qu

qt
þ q2F

quqt

qu

qt
;�~NN

 !
� k � cðtÞðF ; ~NNÞ

¼ q2F

quqt

qu

qt
;�~NN

 !
� k þ cðtÞSðy; tÞ:

Since Fðu; tÞ : S1 � ½0;TÞ ! R2 is a normal flow, which implies

qF

qt
; ~TT

� �
ðu; tÞ1 0;

for all t A ½0;TÞ. By straightforward computation, we have

Syt ¼
q2F

quqt

qu

qy
;�~NN

 !
¼ 1

kv

q2F

quqt
;�~NN

 !
;

and

Sty ¼
q ~FF

qt
; ~TT

� �
¼ qF

qu

qu

qt
þ qF

qt
; ~TT

� �
¼ v

qu

qt
:

Hence, the support function Sðy; tÞ satisfies

Stt ¼
q2F

quqt

qu

qt
;�~NN

 !
� k þ cðtÞSðy; tÞ ¼ kv

qu

qt
Syt � k þ cðtÞSðy; tÞ

¼ kðS2
yt � 1Þ þ cðtÞS;

combining this equality with (2.8) yields

Stt ¼
S2
yt � 1

Syy þ S
þ cðtÞS; Eðy; tÞ A S1 � ½0;TÞ:ð2:10Þ

Then it follows from (1.3), (2.6), (2.10) that

SStt � cðtÞSSyy þ ðSttSyy � S2
ytÞ þ 1� cðtÞS2 ¼ 0;

Sðy; 0Þ ¼ ðF0;�~NNÞ ¼ hðyÞ;
Stðy; 0Þ ¼ �~ff ðyÞ ¼ �f ðuðy; 0ÞÞ;

8><
>:ð2:11Þ

where hðyÞ and ~ff ðyÞ are the support functions of the initial curve F0ðuðyÞÞ and
the initial velocity of this initial curve, respectively.

Now, we want to use the conclusion of the hyperbolic Monge-Ampère
equation to get the short-time existence of the flow (1.3). Actually, for an
unknown function zðy; tÞ with two variables y, t, its Monge-Ampère equation has
the form

Aþ Bztt þ Czty þDzyy þ Eðzttzyy � z2ytÞ ¼ 0;ð2:12Þ
here the coe‰cients A, B, C, D, E depend on t, y, z, zt, zy. (2.12) is said to be
t-hyperbolic for S, if s2ðt; y; z; zt; zyÞ :¼ C2 � 4BDþ 4AE > 0 and zyy þ Bðt; y;
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z; zt; zyÞ0 0. We also need to require the t-hyperbolicity at the initial time, in
fact, if we rewrite the initial values as zðy; 0Þ ¼ z0ðyÞ, ztðy; 0Þ ¼ z1ðyÞ for the
unknown function zðy; tÞ, y A ½0; 2p�, then the corresponding t-hyperbolic condi-
tion is given as follows

s2ð0; y; z0; z1; z 00Þ ¼ ðC2 � 4BDþ 4AEÞjt¼0 > 0;

z 000 þ Bð0; y; z0; z1; z 00Þ0 0;

where z 00 ¼
dz0

dy
, z 000 ¼ d 2z0

dy2
.

It is easy to check that (2.11) is a hyperbolic Monge-Ampère equation. In
fact, for (2.11),

A ¼ 1� cðtÞS2; B ¼ S; C ¼ 0; D ¼ �cðtÞS; E ¼ 1;

then we have

s2ðt; y;S;St;SyÞ ¼ C2 � 4BDþ 4AE ¼ 02 � 4S � ð�cðtÞSÞ þ 4ð1� cðtÞS2Þ � 1

¼ 4 > 0;

and

Syy þ Bðt; y;S;St;SyÞ ¼ Syy þ S ¼ 1

k
0 0:

Furthermore, if at least hðyÞ A C3ð½0; 2p�Þ and ~ff ðyÞ A C2ð½0; 2p�Þ, then we have

s2ð0; y; h; ~ff ; hyÞ ¼ 4 > 0;

and

hyy þ Bð0; y; h; ~ff ; hyÞ0 0;

which implies (2.11) is also t-hyperbolic at t ¼ 0. Hence, (2.11) is a hyperbolic
Monge-Ampère equation.

Then by the standard theory of hyperbolic equations (e.g., [6, 16]), Theorem
1.1 concerning the local existence and uniqueness of the solution of the hyperbolic
flow (1.3) follows.

3. Some properties of the flow (1.3)

First, we would like to give an example so that we could understand the
hyperbolic flow (1.3) deeply, however, first we need the following lemma.

Lemma 3.1. Consider the initial value problem

rtt ¼ � c0

r
þ cðtÞr

rð0Þ ¼ r0 > 0; rtð0Þ ¼ r1;

8<
:ð3:1Þ
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where c0 is a positive constant and cðtÞ is a non-positive bounded continuous
function. For arbitrary initial data r0 > 0, if the initial velocity r1 a 0, then the
solution r ¼ rðtÞ decreases and attains its zero point at time t0 (in particular, when

r1 ¼ 0, we have t0 a

ffiffiffiffiffiffiffi
p

2c0

r
r0, equality holds i¤ cðtÞ ¼ 0); if the initial velocity is

positive, then the solution r increases first and then decreases and attains its zero
point at a finite time.

Proof. The proof is similar with the arguments in [5, 14]. The discussion is
divided into two cases.

Case (I). The initial velocity is non-positive, i.e. r1 a 0.
Assume rðtÞ > 0 for all the time t > 0. Then by (3.1) we have rtt ¼

� c0

r
þ cðtÞr < 0, then by monotonicity rtðtÞ < rtð0Þ ¼ r1 a 0 for all t > 0.

Hence, there exists a time t0 such that rðt0Þ ¼ 0, which is contradict with our
assumption. Moreover, when the initial velocity vanishes, i.e. rtð0Þ ¼ r1 ¼ 0, let
cþ be the bound of the function cðtÞ, i.e. jcðtÞja cþ for all t > 0, obviously,

multiplying both sides of rtt ¼ � c0

r
þ cðtÞr by rt, integrating from 0 to t < t0,

and applying the condition rtð0Þ ¼ r1 ¼ 0 yield

c0 ln
r0

r
a

r2t
2
a c0 ln

r0

r
þ cþ

2
ðr20 � rðtÞ2Þ:ð3:2Þ

Integrating both sides of (3.2) on the interval ½0; t0� and using the condition
rðt0Þ ¼ 0 yieldffiffiffi

p
p

2
¼
ðy
0

e�u2 dub

ð t0
0

ffiffiffiffiffiffiffi
2c0

p

2r0
dtb

ðy
0

e�u2 du�
ffiffiffiffiffiffi
cþ

p

2

ð t0
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r20 � rðtÞ2

ln
r0

r

vuut r�1
0 dt;

where u ¼
ffiffiffiffiffiffiffiffiffiffi
ln

r0

r

r
. Therefore, we obtainffiffiffiffiffiffiffi

p

2c0

r
r0 �

Ar0ffiffiffiffiffiffiffi
2c0

p a t0 a

ffiffiffiffiffiffiffi
p

2c0

r
r0;ð3:3Þ

where

A ¼
ffiffiffiffiffiffi
cþ

p ð t0
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r20 � rðtÞ2

ln
r0

r

vuut r�1
0 dt:

Obviously, equalities in (3.3) hold simultaneously if and only if cþ ¼ 0, which

implies cðtÞ ¼ 0, in this case, t0 ¼
ffiffiffiffiffiffiffi
p

2c0

r
r0, which is a conclusion in [5] for

c0 ¼ 1.
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Case (II). The initial velocity is positive, i.e. r1 > 0. From (3.1), we have

r2t ðtÞ ¼ �2c0ðln rðtÞ � ln r0Þ þ r21 þ 2

ð t
0

cðsÞrrtðsÞ ds:ð3:4Þ

Assume r increases all the time, i.e. rt > 0 for all the time t > 0. Since rb r0 >
0, rt > 0 and cðtÞ is non-positive, then from (3.4) we obtain

r2t ðtÞa�2c0 ln
r

r0
þ r21 ;

which implies

r0 a rðtÞa er
2
1
=ð2c0Þr0:ð3:5Þ

On the other hand, under our assumption, we have

� c0

r
� cþra rtt a� c0

r
;

combining this relation with (3.5) results in

Bðr0Þa rtt a�e�r2
1
=ð2c0Þ c0

r0
;

where

Bðr0Þ ¼ min � c0

r0
� cþr0;�e�r2

1
=ð2c0Þ c0

r0
� cþer

2
1
=ð2c0Þr0

� �
< 0:

Thus the curve rt can be bounded by two straight lines rt ¼ Bðr0Þtþ r1 and

rt ¼ �e�r2
1
=ð2c0Þ c0

r0
tþ r1, which implies rt must be negative for t >

r1r0e
r2
1
=ð2c0Þ

c0
.

This is contradict with our assumption. Hence, rt will change sign and become
negative at certain finite time, which implies there exist a finite time t1 such that
rtðt1Þ ¼ 0. Now, if we assume rðtÞ > 0 for all the time t > 0, then as in Case (I),
we can prove that rðtÞ attains its zero point at a finite time t2 > t1. Thus in this
case rðtÞ increases first and then decreases and attains its zero point at a finite
time. Our conclusion follows by the above arguments. r

Example 3.2. Suppose cðtÞ in the hyperbolic mean curvature flow (1.3) is
also non-positive, and Fð�; tÞ in (1.3) is a family of round circles with radius rðtÞ
centered at the origin. More precisely,

F ðu; tÞ ¼ rðtÞðcos u; sin uÞ; rð0Þ > 0;

without loss of generality, we can also choose u ¼ s to be the arc-length
parameter of the curve F ð�; tÞ. Then the curvature kð�; tÞ of the evolving curve
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Fð�; tÞ is
1

rðtÞ , moreover, ‘r ¼ 0. Substituting these into (1.3) yields

rtt ¼ � 1

r
þ cðtÞr;

rð0Þ ¼ r0 > 0; rt ¼ r1:

8<
:ð3:6Þ

By Lemma 3.1, we know if the initial velocity r1 a 0, then the flow (1.3) shrinks
and converges to a single point at a finite time t0 (in particular, when r1 ¼ 0,

t0 a

ffiffiffi
p

2

r
r0, equality holds i¤ cðtÞ ¼ 0); if the initial velocity is positive, then the

flow (1.3) expands first and shrinks and converges to a single point at a finite
time. One can also interpret this phenomenon by physical principle as in
[5, 8].

Remark 3.3. From this example, we know the necessity of the non-
positivity of the bounded continuous function cðtÞ if we want to get the con-
vergence of the hyperbolic flow (1.3). That is the motivation why we add
the condition cðtÞ is non-positive in Theorem 1.2 to try to get the convergence.

Inspired by Chou’s basic idea [1] for proving the convergence of the curve
shortening flow, by using the maximum principle of the second order hyperbolic
partial di¤erential equations shown in [13], we could get the following conclusions
as proposition 3.1 and proposition of preserving convexity in [8]. This is true,
since, comparing with the evolution equations in the proofs of proposition 3.1
and proposition of preserving convexity in [8], one can easily check that the
corresponding evolution equations of the di¤erence of the support functions and
the curvature function under the flow (1.3) only have extra first order terms cðtÞw
and �cðtÞk respectively, moreover, these first order terms have no influence on
the usage of the maximum principle.

Proposition 3.4 (Containment principle). Suppose F1 and F2 : S
1 � ½0;T1Þ

! R2 are convex solutions of (1.3). If F2ð�; 0Þ lies in the domain enclosed by
F1ð�; 0Þ and f2ðuÞb f1ðuÞ, then F2ð�; tÞ is contained in the domain enclosed by
F1ð�; tÞ for all t A ½0;T1Þ.

Proposition 3.5 (Preserving convexity). Let k0 be the mean curvature of the
initial curve F0, and let h ¼ miny A ½0;2p� k0ðyÞ. Then, for a C4-solution of (2.11),
one has

kðy; tÞb h :¼ min
y A ½0;2p�

k0ðyÞ; for t A ½0;TmaxÞ; y A ½0; 2p�;ð3:7Þ

where kðy; tÞ is the mean curvature of the evolving curve F ð�; tÞ, and ½0;TmaxÞ is the
maximal time interval of the solution Fð�; tÞ of (1.3).
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4. Convergence

In this section, we want to get the convergence of the hyperbolic flow (1.3).
We assume that cðtÞ is non-positive and initial velocity f ðuÞ is non-negative. In
order to get the convergence, the following lemma is needed.

Lemma 4.1. The arclength LðtÞ of the evolving closed curve Fð�; tÞ of the flow
(1.3) satisfies

dLðtÞ
dt

¼ �
ð2p
0

~ssðy; tÞ dy;

and

d 2LðtÞ
dt2

¼
ð2p
0

q~ss

qy

� �2
k � k þ cðtÞS

" #
dy;

where ~ssðy; tÞ ¼ ~ssðy; tÞ ¼ sðu; tÞ, the change of variables from ðu; tÞ to ðy; tÞ satisfies
(2.6).

Proof. The convention of using t for time variable is used here. In addi-
tion, by straightforward computation, we have

dLðtÞ
dt

¼ d

dt

ð
S 1

vðu; tÞ du ¼
ð
S 1

d

dt
vðu; tÞ du ¼ �

ð
S 1

ksv du ¼ �
ð 2p
0

~ss dy;

and

d 2LðtÞ
dt2

¼ �
ð2p
0

q

qt
ð~ssðy; tÞÞ dy ¼

ð2p
0

½ðS2
yt � 1Þk þ cðtÞS� dy

¼
ð2p
0

q~ss

qy

� �2
� 1

 !
k þ cðtÞS

" #
dy;

here vðu; tÞ is defined in (2.3), u A S1, and the fact
q

qt
vðu; tÞ ¼ �ksv is shown in

Lemma 2.2. Therefore, our proof is completed. r

Proof of Theorem 1.2. Let ½0;TmaxÞ be the maximal time interval for the
solution Fð�; tÞ of the flow (1.3) with F0 and f as initial curve and the initial
velocity, respectively. We divide the proof into five steps.

Step 1. Preserving convexity
By Proposition 3.5, we know the evolving curve F ðS1; tÞ remains strictly

convex and the curvature of FðS1; tÞ has a uniformly positive lower bound
miny A ½0;2p� k0ðyÞ on S1 � ½0;TmaxÞ.

Step 2. Short-time existence
Without loss of generality, we can assume that the origin o of R2 is in the

exterior of the domain enclosed by the initial curve F0. Enclose the initial curve
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F0 by a large enough round circle g0 centered at o, and then let this circle
evolve under the flow (1.3) with the initial velocity minu AS 1 f ðuÞ to get a solu-
tion gð�; tÞ. From Example 3.2, we know that the solution gð�; tÞ exists only at
a finite time interval ½0;T0Þ, and gð�; tÞ shrinks into a point as t ! T0. By
Proposition 3.4, we know that Fð�; tÞ is always enclosed by gð�; tÞ for all
t A ½0;T0Þ. Therefore, we have that the solution Fð�; tÞ must become singular
at some time Tmax aT0.

Step 3. Hausdor¤ convergence
As in [1, 8, 18], we also want to use a classical result, Blaschke Selection

Theorem, in convex geometry (c.f. [15]).

(Blaschke Selection Theorem). Let fKjg be a sequence of convex sets which
are contained in a bounded set. Then there exists a subsequence fKjkg and a
convex set K such that Kjk converges to K in the Hausdor¤ metric.

The round circle g0 in Step 2 is shrinking under the flow (1.3), since the
normal initial velocity f is non-negative, this conclusion can be easily obtained
from Lemma 3.1. Since for every time t A ½0;TmaxÞ, F ð�; tÞ is enclosed by gð�; tÞ,
we have every convex set KFð�; tÞ enclosed by Fð�; tÞ is contained in a bounded set
Kg0 enclosed by g0. Thus, by Blaschke Selection Theorem, we can directly
conclude that F ð�; tÞ converges to a (maybe degenerate and nonsmooth) weakly
convex curve Fð�;TmaxÞ in the Hausdor¤ metric.

Step 4. Length of evolving curve
We claim that there exists a finite time T ay such that LðTÞ ¼ 0.
As Step 2, we can easily find a round circle g0 centered at the origin o and

enclosed by the convex initial curve F0, and then let this circle evolve under the
flow (1.3) with the initial velocity maxu AS 1 f ðuÞ to get a solution gð�; tÞ. From
Example 3.2, we know that the solution gð�; tÞ exists only at a finite time interval
½0;T0Þ with T0 aTmax, and gð�; tÞ shrinks into a point as t ! T0. By Proposi-
tion 3.4, we know that F ð�; tÞ always encloses gð�; tÞ for all t A ½0;T0Þ. Thus we
know that the support function Sðy; tÞ is nonnegative on the time interval ½0;T0Þ,
and we can also conclude that ~ssðy; tÞ ¼ sðu; tÞ is also nonnegative on the interval
½0;T0Þ, since

qs

qt
¼ kðu; tÞ þ cðtÞðF ; ~NNÞðu; tÞ > 0ð4:1Þ

and sðu; 0Þ ¼ f ðuÞb 0. The expression (4.1) holds since k has a uniformly
positive lower bound, cðtÞ is non-positive, and ðF ; ~NNÞ ¼ �Sa 0 on the time
interval ½0;T0Þ. Hence, we have

dLðtÞ
dt

¼ �
ð2p
0

~ss dy < 0;ð4:2Þ

on the time interval ½0;T0Þ.
On the other hand, since sðu; tÞ > sðu; 0Þ for all t A ð0;T0Þ, which implies

~ssðy; tÞ ¼ sðu; tÞ > ~ssðy; 0Þ ¼ sðu; 0Þ; for all t A ð0;T0Þ;
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so we have

q~ss

qt
ðy; tÞ > 0;ð4:3Þ

for all t A ð0;T0Þ. Combining (4.3) with the truth

qs

qt
ðu; tÞ ¼ q~ss

qy
ðy; tÞ � qy

qt
þ q~ss

qt
ðy; tÞ ¼ q~ss

qy
� qs
qs

þ q~ss

qt
ðy; tÞ ¼ q~ss

qy

� �2
ðy; tÞ � qy

qs
þ q~ss

qt
ðy; tÞ

yields

q~ss

qt
¼ k 1� q~ss

qy

� �2" #
� cðtÞS > 0;

which indicates

d 2LðtÞ
dt2

¼
ð2p
0

q~ss

qt

� �2
� 1

 !
k þ cðtÞS

" #
dy < 0ð4:4Þ

on the time interval ð0;T0Þ.
Then our claim follows from the facts Lð0Þ > 0, (4.2) and (4.4).
Step 5. Convergence
This step is the same as the step 4 of the proof of theorem 4.1 in [8]. Our

proof is finished. r

5. Short time existence of the flow (1.4)

In this section, we would like to give the short time existence of the solution
of the hyperbolic mean curvature flow (1.4) by using the method shown in [5].

Now, consider the hyperbolic flow (1.4), additionally, we assume M is
a compact Riemannian manifold. Endow the n-dimensional smooth compact
manifold M with a local coordinate system fxig, 1a ia n. Denote by fgijg and
fhijg the induced metric and the second fundamental form on M respectively,
then the mean curvature is given by

H ¼ gijhij ;

where ðgijÞ is the inverse of the metric matrix ðgijÞ.
As the mean curvature flow (MCF) case, here we want to use a trick of

DeTurck [2] to show that the evolution equation

q2

qt2
Xðx; tÞ ¼ Hðx; tÞ~NNðx; tÞ þ c1ðtÞXðx; tÞ;ð5:1Þ

in (1.4) is strictly hyperbolic, then we can use the standard existence theory of the
hyperbolic equations to get the short-time existence of our flow (1.4). However,
first we would like to rewrite (5.1) in terms of the coordinate components.

513forced hyperbolic mean curvature flow



Denote by ‘ and s the Riemannian connection and the Beltrami-Laplace
operator on M decided by the induced metric fgijg, respectively. Let ð� ; �Þ be
the standard Euclidean metric of Rnþ1. Recall that in this case the Gauss-
Weingarten relations of submanifold can be rewritten as follows

q2X

qxiqx j
¼ Gk

ij

qX

qxk
þ hij~nn;

q~nn

qx j
¼ �hjlg

lm qX

qxm
;ð5:2Þ

where ~nn is the unit inward normal vector field on M, and Gk
ij is the Christo¤el

symbol of the Riemannian connection ‘, moreover, Gk
ij ¼ gkl q2X

qxiqx j
;
qX

qxl

 !
.

Therefore, we have

sX ¼ gij‘i‘jX ¼ gij q2X

qxiqx j
� Gk

ij

qX

qxk

 !
¼ gijhij~nn ¼ H~nn;

which implies the evolution equation (5.1) can be equivalently rewritten as

q2X

qt2
¼ gij q2X

qxiqx j
� gijgkl q2X

qxiqx j
;
qX

qxl

 !
qX

qxk
þ c1ðtÞX :ð5:3Þ

However, it is easy to see (5.3) is not strictly hyperbolic, since the Laplacian
is taken in the induced metric which changes with Xð�; tÞ, and this adds extra
terms to the symbol. One could get the detailed explanation in the chapter 2 of
[18].

Now, we need to use the trick of DeTurck, modifying the flow (1.4) through
a di¤eomorphism of M, to construct a strictly hyperbolic equation, leading to the
short-time existence. Suppose X ðx; tÞ is a solution of equation (5.1) (or equiv-
alently (5.3)) and ft : M ! M is a family of di¤eomorphisms of M. Let

Xðx; tÞ ¼ f�
t X ðx; tÞ;ð5:4Þ

where f�
t is the pull-back operator of ft, and denote the di¤eomorphism ft

by

ðy; tÞ ¼ ftðx; tÞ ¼ fy1ðx; tÞ; y2ðx; tÞ; . . . ; ynðx; tÞg

in the local coordinates. In what follows, we need to show the existence of the
the di¤eomorphism ft, and the equation satisfied by Xðx; tÞ is strictly hyperbolic,
which leads to the short-time existence of Xðx; tÞ, together with the existence of ft
and (5.4), we could obtain the short-time existence of Xðx; tÞ, which is assumed to
be the solution of the flow (1.4). That is to say through this process we can get
the short-time existence of the flow (1.4).

As in [5], consider the following initial value problem

q2ya

qt2
¼ qya

qxk
ðgijðGk

ij � ~GGk
ij ÞÞ;

yaðx; 0Þ ¼ xa; ya
t ðx; 0Þ ¼ 0;

8><
>:ð5:5Þ
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where ~GGk
ij is the Christo¤el symbol related to the initial metric ~ggij ¼

qX

qxi
;
qX

qx j

� �
ðx; 0Þ. Since

Gk
ij ¼

qya

qx j

qyb

qxl

qxk

qyg
�GGg
ab þ

qxk

qya

q2ya

qx jqxl
;ð5:6Þ

which implies the initial problem (5.5) can be rewritten as

q2ya

qt2
¼ gij q2ya

qx jqxl
þ qyb

qx j

qyg

qxl
�GGg
ab �

qya

qx j
~GGk
ij

 !
;

yaðx; 0Þ ¼ xa; ya
t ðx; 0Þ ¼ 0;

8><
>:

which is an initial value problem for a strictly hyperbolic system. By the
standard existence theory of a hyperbolic system, we know there must exist a
family of di¤eomorphisms ft satisfying the initial value problem (5.5).

On the other hand, by (5.6), we have

sgX ¼ gab‘a‘bX

¼ gkl q2X

qxkqxl
þ gkl qy

a

qxk

qyb

qxl

qX

qxi

q2xi

qyaqyb
� gkl qX

qxi
G i
kl �

qxi

qyg

q2yg

qxkqxl

 !

¼ gkl‘k‘lX ¼sgX ;

and then

q2X

qt2
¼ q2X

qyaqya

qya

qt

qyb

qt
þ 2

q2X

qtqyb

qyb

qt
þ q2X

qt2
þ qX

qya

q2ya

qt2

¼sgX þ c1ðtÞX þ qX

qya
gijðGk

ij � ~GGk
ij Þ þ

q2X

qyaqya

qya

qt

qyb

qt
þ 2

q2X

qtqyb

qyb

qt

¼ gij q2X

qxiqx j
� gij ~GGk

ij

qX

qxk
þ q2X

qyaqya

qya

qt

qyb

qt
þ 2

q2X

qtqyb

qyb

qt
þ c1ðtÞX ;

which is strictly hyperbolic. Hence, by the standard existence theory of hyper-
bolic equations (see [6]), we could get the short-time existence of X ðx; tÞ, then
by what we have pointed out before this directly leads to the short-time existence
of the solution, Xðx; tÞ, of the equation (5.1), which implies our local existence
and uniqueness Theorem 1.3 naturally.

6. Examples

In this section, by using Lemma 3.1, we investigate the exact solution of
examples given in [5], and find that we could get some similar results, which
implies our hyperbolic flow (1.4) is meaningful.
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Example 6.1. Suppose c1ðtÞ in the hyperbolic flow (1.4) is non-positive.
Now, consider a family of spheres

Xðx; tÞ ¼ rðtÞðcos a cos b; cos a sin b; sin aÞ;

where a A � p

2
;
p

2

� �
, b A ½0; 2p�. By straightforward computation, we have the

induced metric and the second fundamental form are

g11 ¼ r2; g22 ¼ r2 cos2 a; g12 ¼ g21 ¼ 0;

and

h11 ¼ r; h22 ¼ r cos2 a; h12 ¼ h21 ¼ 0;

respectively. So, the mean curvature is

H ¼ gijhij ¼
2

r
:

Additionally, the unit inward normal vector of each Fð�; tÞ is ~nn ¼ �ðcos a cos b;
cos a sin b; sin aÞ, hence our hyperbolic flow (1.4) becomes

rtt ¼ � 2

r
þ c1ðtÞr

rð0Þ ¼ r0 > 0; rtð0Þ ¼ r1;

8<
:

then by Lemma 3.1, we know for arbitrary rð0Þ ¼ r0 > 0, if the initial velocity
rtð0Þ ¼ r1 > 0, the evolving sphere will expand first and then shrink to a single
point at a finite time; if the initial velocity rtð0Þ ¼ r1 a 0, the evolving sphere
will shrink to a point directly at a finite time. One could also use the physical
principle to interpret this phenomenon as in [5], which is very simple.

Example 6.2. Suppose c1ðtÞ in the hyperbolic flow (1.4) is non-positive.
Now, consider a family of round circles

X ðx; tÞ ¼ ðrðtÞ cos a; rðtÞ sin aÞ;

where a A ½0; 2p�. It is easy to find that the mean curvature and the unit inward

normal vector of each Xð�; tÞ are
1

rðtÞ and ~nn ¼ �ðcos a; sin aÞ, respectively, then

our hyperbolic flow (1.4) becomes

rtt ¼ � 1

r
þ c1ðtÞr

rð0Þ ¼ r0 > 0; rtð0Þ ¼ r1;

8<
:

then by Lemma 3.1, we know that the circles will shrink to a point at a finite
time for arbitrary rð0Þ > 0 and the initial velocity r1.
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Remark 6.3. Comparing with the example 2 in [5], here we would like
to point out the hyperbolic flow (1.4) does not have cylinder solution except
c1ðtÞ1 0. In fact, suppose the solution, X ð�; tÞ, of the flow (1.4) is a family of
cylinders which takes form

Xðx; tÞ ¼ ðrðtÞ cos a; rðtÞ sin a; rÞ;ð6:1Þ

where a A ½0; 2p� and r A ½0; r0�, then as before we could obtain c1ðtÞr ¼ 0 directly,
which implies our claim here. Why the the hyperbolic flow (1.4) does not have
cylinder solution of the form (6.1) if c1ðtÞ dose not vanish? We think that is
because the term c1ðtÞXð�; tÞ not only has component perpendicular to r-axis,
which lets the cylinder move toward r-axis vertically, but also has component
parallel with r-axis, which leads to the moving of cylinder along the r-axis. This
fact implies, after the initial time, the hyperbolic flow (1.4) will change the shape
of the initial cylinder such that the evolving surface X ð�; tÞ is not cylinder any
more.

7. Evolution equations

In this section, we would like to give the evolution equations for some
intrinsic quantities of the hypersurface Xð�; tÞ under the hyperbolic mean cur-
vature flow (1.4), which will be important for the future study, like convergence,
on this flow. It is not di‰cult to derive them, since they just have slight changes
comparing with the corresponding evolution equations in [5].

First, from [18], we have the following facts for hypersurface.

Lemma 7.1. Under the hyperbolic mean curvature flow (1.4), the following
identities hold

shij ¼ ‘i‘jH þHhilg
lmhmj � jAj2hij ;ð7:1Þ

sjAj2 ¼ 2gikg jlhkl‘i‘jH þ 2j‘Aj2 þ 2H trðA3Þ � 2jAj4;ð7:2Þ

where

jAj4 ¼ gijgklhikhjl ; trðA3Þ ¼ gijgklgmnhikhlmhnj :

Theorem 7.2. Under the hyperbolic mean curvature flow (1.4), we have

q2gij

qt2
¼ �2Hhij þ 2c1ðtÞgij þ 2

q2X

qtqxi
;
q2X

qtqx j

 !
;ð7:3Þ

q2~nn

qt2
¼ �gij qH

qxi

qX

qx j
þ gij ~nn;

q2X

qtqxi

 !
ð7:4Þ

� 2gkl qX

qx j
;
q2X

qtqxl

 !
qX

qxk
þ gkl qX

qxl
;
q2X

qtqx j

 !
qX

qxk
� q2X

qtqx j

" #
;

517forced hyperbolic mean curvature flow



and

q2hij

qt2
¼shij � 2Hhilhmjg

lm þ jAj2hij þ gklhij ~nn;
q2X

qtqxk

 !
~nn;

q2X

qtqxl

 !
ð7:5Þ

� 2
qGk

ij

qt
~nn;

q2X

qtqxk

 !
þ c1ðtÞhij :

Proof. By the definition of the induced metric and (5.2), we have

q2gij

qt2
¼ q3X

qt2qxi
;
qX

qx j

 !
þ 2

q2X

qtqxi
;
q2X

qtqx j

 !
þ qX

qxi
;
q3X

qt2qx j

 !

¼ q

qxi
ðH~nnþ c1ðtÞX Þ; qX

qx j

� �
þ 2

q2X

qtqxi
;
q2X

qtqx j

 !
þ qX

qxi
;
q

qx j
ðH~nnþ c1ðtÞXÞ

� �

¼ H �hikg
kl qX

qxl
;
qX

qx j

� �
þ 2c1ðtÞ

qX

qxi
;
qX

qx j

� �
þ 2

q2X

qtqxi
;
q2X

qtqx j

 !

þH
qX

qxi
;�hjkg

kl qX

qxl

� �

¼ �2Hhij þ 2c1ðtÞgij þ 2
q2X

qtqxi
;
q2X

qtqx j

 !
;

which finishes the proof of (7.3).
It is surprising that the evolution equation for the unit inward normal vector

~nn under the flow (1.4) here has no di¤erence with the one in [5], since in the
process of deriving the evolution equation for ~nn, the only possible di¤erence
appears in the term

� ~nn;
q3X

qt2qxi

 !
gij qX

qx j
¼ � ~nn;

q

qxi
ðH~nnþ c1ðtÞXÞ

� �
gij qX

qx j
¼ �gij qH

qxi

qX

qx j
:

However, this is the same with the case in [5], since the term

� ~nn;
q

qxi
ðc1ðtÞXÞ

� �
gij qX

qx j

vanishes. So, (7.4) follows according to the corresponding evolution equation
in [5].

Actually, (7.5) is easy to be obtained by comparing with the proof of
evolution equation (5.5) in [5], since, between our case and the case in [5], one
could find that the processes of deriving the evolution equations only have slight
di¤erence. However, the deriving process in [5] is a little complicated, so we
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would like to give the detailed steps here so that readers can note the di¤erence
clearly. By (5.2), we have

qhij

qt
¼ q

qt
~nn;

q2X

qxiqx j

 !
¼ q~nn

qt
;
q2X

qxiqx j

 !
þ ~nn;

q3X

qtqxiqx j

 !
;

furthermore,

q2hij

qt2
¼ q2~nn

qt2
;
q2X

qxiqx j

 !
þ 2

q~nn

qt
;

q3X

qtqxiqx j

 !
þ ~nn;

q4X

qt2qxiqx j

 !

¼ �gkl qH

qxk

qX

qxl
;
q2X

qxiqx j

 !
� gkl ~nn;

q2X

qtqxk

 !
q2X

qtqxl
;
q2X

qxiqx j

 !

þ gpqgkl ~nn;
q2X

qtqxp

 !
qX

qxl
;
q2X

qtqxq

 !
þ 2

qX

qxq
;
q2X

qtqxl

 !" #
qX

qxk
;
q2X

qxiqx j

 !

� 2gkl ~nn;
q2X

qtqxk

 !
qX

qxl
;

q3X

qtqxiqx j

 !
þ ~nn;

q

qxiqx j
ðH~nnþ c1ðtÞXÞ

� �
;

then one could easily find that the di¤erence between our case and the case in [5]
appears from the last term

~nn;
q

qxiqx j
ðH~nnþ c1ðtÞXÞ

� �
;

which satisfies

~nn;
q

qxiqx j
ðH~nnþ c1ðtÞXÞ

� �
¼ ~nn;

q

qxi

qH

qx j
~nn�Hhjkg

kl qX

qxl
þ c1ðtÞ

qX

qx j

� �� �

¼ ~nn;
q

qxi

qH

qx j
~nn�Hhjkg

kl qX

qxl

� �� �
þ c1ðtÞ ~nn;

q2X

qxiqx j

 !

¼ ~nn;
q

qxi

qH

qx j
~nn�Hhjkg

kl qX

qxl

� �� �
þ c1ðtÞhij:

Obviously, it will only produce an extra term c1ðtÞhij comparing with the evolu-
tion equation for the second fundamental form, (5.5), in [5]. So, the evolution
equation (7.5) follows. r

At the end, by Lemma 7.1 and Theorem 7.2, we could derive the following
evolution equations for the mean curvature and the square norm of the second
fundamental form of the hypersurface Xð�; tÞ, which maybe play an important
role in the future study, like convergence, of the hyperbolic flow (1.4) as the mean
curvature flow case.
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Theorem 7.3. Under the hyperbolic mean curvature flow (1.4), we have

q2H

qt2
¼sH þHjAj2 � 2gikg jl q2X

qtqxk
;
q2X

qtqxl

 !
ð7:6Þ

þHgkl ~nn;
q2X

qtqxk

 !
~nn;

q2X

qtqxl

 !
� 2gij

qGk
ij

qt
~nn;

q2X

qtqxk

 !

þ 2gikg jpglqhij
qgpq
qt

qgkl
qt

� 2gikg jl qgkl
qt

qhij
qt

� c1ðtÞH;

and

q2

qt2
jAj2 ¼sðjAj2Þ � 2j‘Aj2 þ 2jAj4 þ 2jAj2gpq ~nn;

q2X

qtqxp

 !
~nn;

q2X

qtqxq

 !
ð7:7Þ

þ 2gijgkl qhik

qt

qhjl

qt
� 8gimg jngklhjl

gmn

qt

hik

qt

� 4gimg jngklhikhjl ~nn;
q2X

qtqxm

 !
~nn;

q2X

qtqxn

 !

þ 2gim qgpq

qt

qgmn

qt
hikhjl � ð2g jpgnqgkl þ g jngkpglqÞ

� 4gijgklhjl
qG

p
ik

qt
~nn;

q2X

qtqxp

 !
� 2c1ðtÞjAj2:

Proof. Here we do not give the detailed proof, since in [5] they have given
the detailed and straightforward computation on how to derive the evolution
equations. Moreover, in our case we find that if we want to get our theorem
here, we only need to use the evolution equations (7.3) and (7.5) for the induced
metric and the second fundamental form to replace the old ones in [5] in the
computation. r

Remark 7.4. Here we want to point out an interesting truth. In [11, 12],
we have proved

Lemma ([11, 12]). If the hypersuface X ð�; tÞ of Rnþ1 satisfies the curvature
flow of the form (1.2), then

(1)
q

qt
gij ¼ �2Hhij þ 2~ccðtÞgij,

(2)
q

qt
~vv ¼ ‘ iH � qX

qxi
,

(3)
q

qt
hij ¼shij � 2Hhilg

lmhmj þ jAj2hij þ ~ccðtÞhij,
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(4)
q

qt
H ¼sH þ jAj2H � ~ccðtÞH,

(5)
q

qt
jAj2 ¼sjAj2 � 2j‘Aj2 þ 2jAj4 � 2~ccðtÞjAj2,

where ~vv denotes the unit outward normal vector of X ð�; tÞ.

Comparing with those corresponding evolution equations derived by Huisken in

[7], the extra terms are 2~ccðtÞgij , 0, ~ccðtÞhij, �~ccðtÞH, and �2~ccðtÞjAj2, if we add
a forcing term, ~ccðtÞX , to the evolution equation of the mean curvature flow in
direction of the position vector. However, the surprising truth is that if we
add this forcing term to the hyperbolic flow in [5], we find that no matter how
complicated the evolution equations of the intrinsic quantities of the hypersurface
Xð�; tÞ under the hyperbolic flow (1.4) are, the evolution equations (7.3)–(7.7)
also have the extra terms of the same forms as (1)–(5) by comparing with the
corresponding evolution equations in [5].
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Technical University of Lisbon

Edifício Ciência, Piso 3

Av. Rovisco Pais, 1049-001 Lisboa

Portugal

E-mail: jiner120@163.com

jiner120@tom.com

522 jing mao


