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A FINITENESS THEOREM FOR MEROMORPHIC MAPPINGS
SHARING FEW HYPERPLANES

Duc QuanG Si

Abstract

In this article, we prove a finiteness theorem for meromorphic mappings of C” into
P"(C) sharing 2n + 2 hyperplanes without counting multiplicity.

1. Introduction

In 1926, R. Nevanlinna showed that two distinct nonconstant meromorphic
functions f and g on the complex plane C cannot have the same inverse images
for five distinct values, and that g is a special type of linear fractional trans-
formation of f if they have the same inverse images counted with multiplicities
for four distinct values [9].

In 1975, H. Fujimoto [5] generalized Nevanlinna’s results to the case of
meromorphic mappings of C” into P"(C). He considered two distinct meromor-
phic maps /" and g of C" into P"(C) satisfying the condition that v(; gy = V(4 m,
for ¢ hyperplanes H\, Ha,...,H, of P"(C) in general position, where v(s )
means the map of C" into Z whose value v(s y)(a) (a € C") is the intersection
multiplicity of the images of f and H; at f(a). He proved the following.

THEOREM A [5]. Let H;, 1 <i<3n+2 be 3n+2 hyperplanes in P"(C)
located in general position, and let f and g be two nonconstant meromorphic
mappings of C™ into P"(C) with f(C") & H; and g(C™) & H; such that vy p,) =
Vg, Jor 1 <i<3n+2, where vy and vy p, denote the pull-back of the
divisors (H;) on P"(C) by f and g, respectively. Assume that either f or g is
linearly non-degenerate over C, i.e., the image does not included in any hyperplane
in P"(C). Then f =g

Later on, the finiteness problem of meromorphic mappings sharing hyper-
planes without counting multiplicities has been studied very intensively by many
authors. Here we formulate some recent results on this problem.
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Take a meromorphic mapping f of C” into P"(C) which is linearly non-
degenerate over C, a positive integer d and ¢ hyperplanes H,. .., H, of P"(C) in
general position with

dim /' (H,NH)<m-2 (1<i<j<gq)

and consider the set 7 (f,{H;}/,,d) of all linearly nondegenerate over C
meromorphic maps ¢ : C" — P"(C) satisfying the following two conditions:

(a) min(v(,, H) d) = min(v(, H) d) (1<j<q),

(b) f(z) =g(z) on U/, f~
If d =1, we will say that f and q share g hyperplanes {H; }’ , without counting
multlphclty

Denote by #S the cardinality of the set S. In 1999, H. Fujimoto proved a
finiteness theorem for meromorphic mappings as follows.

THEOREM B. If g =3n+1 then #7 (f,{H;}L,.2) <2.

Some recent years, Z. Chen - Q. Yang [2] and S. D. Quang [11] considered
the case where ¢ =2n+ 3 and they gave some uniqueness theorems for such
meromorphic mappings. For the case where ¢ =2n+ 2, in [11] S. D. Quang
proved that

THEOREM C. Let f be a linearly nondegenerate meromorphic mapping of
C™ into P"(C) and let Hy,...,Hy,» be 2n+2 hyperplanes of P"(C) in general
position with

dim f~YH,NH) <m—-2 (1<i<j<2n+2).

Let g be a linearly nondegenerate meromorphic mapping of C™ into P"(C)
satisfying:

(1) min{v(f%)’gn, 1} = min{v(g,Hj)’S,,, 1} and

min{vs g7y >n, 1} = min{v ) >0 1} (1 <j<2n+2),

(i) f(z) =g(z) on |} 171 (H).
If n>2 then f=y.

However, in Theorem C, the condition (i) means that the multiplicities of
the zeros of the functions (f, H;) and (g, H;) are considered to level n. Therefore
the following question arises naturally: Are there any finiteness theorems for
meromorphic mappings sharing 2n + 2 hyperplanes without counting multiplicity?”
It seems to us that the techniques used in the proofs of the above mentioned
results are not enough to apply to this case.

Our main purpose in this paper is to give a positive answer for the above
question. To do so, we will introduce some new techniques.

We would also like to note that in the definition of the family
F(f,{H;}!,,d), the meromorphic mapping ¢ is assumed to be linearly non-
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degenerate. In this paper we will show that if ¢ > 2n+ 2 then each map ¢
satisfying the conditions (a) and (b) is linearly nondegenerate.

Now let f be a linearly nondegenerate meromorphic mapping of C” into
P"(C) and let Hi,...,H,; be ¢ hyperplanes of P"(C) in general position with

dim f~YH,NH)<m—-2 (1<i<j<gq).
Let d be an integer. We consider the set %(f,{H;}!
maps ¢ : C" — P"(C) satisfying the conditions:
(a) min( V(s H) d)= min(v(JH d) (1<j<yq),
(b) f(z) =g(z) on UL, f~

Our main result is stated as follows

i1,d) of all meromorphic

THEOREM 1.1. Let f be a linearly nondegenerate meromorphic mapping of
C" into P"(C). Let Hy,...,Hyy2 be 2n+2 hyperplanes of P"(C) in general
position with

dimf"(H-ﬂH-)<m—2 (1<i<j<2n+2).
If n>2 then #4(f,{H}"*1) <

In the section §4, we will consider meromorphic mappings with three families
of hyperplanes in P"(C) and we will give a finiteness theorem for such maps.
Throughout this paper, we always assume that n > 2.
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Mathematisches Forschungsinstitut Oberwolfach. He wishes to express his
gratitude to this institute. The author would also like to thank Professors
Junjiro Noguchi and Do Duc Thai for their valuable suggestions concerning this
material. This work was supported in part by a NAFOSTED grant of Vietnam.

2. Basic notions in Nevanlinna theory
2.1. We set ||z]| = (|z1]* 4 + |z for z=(z1,...,2,) € C" and de-
fine
B(r):={zeC":|z] <r}, S(r):={zeC":|z]|=r} (0<r< ).
Define
a(z) == (dd®|z|>)™" and 5(z) := d° log||z||* A (dd° log||z]|*)"" on C™\{0}.
2.2. Let F be a nonzero holomorphic function on a domain Q in C”. For

a set a=(ay,...,0,) of nonnegative integers, we set |o|=oy + - -+ o, and

: P E
QLAF:W We define the map vp : Q-7 by
- "

vr(z) :=max{/: 2°F(z) =0 for all « with |a| </} (zeQ).
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We mean by a divisor on a domain Q in C” a map v : Q — Z such that, for
each a € Q, there are nonzero holomorphic functions F and G on a connected
neighborhood U < Q of a such that v(z) = vp(z) — vg(z) for each z € U outside
an analytic set of dimension < m — 2. Two divisors are regarded as the same if
they are identical outside an analytic set of dimension < m — 2. For a divisor v
on Q we set |v| := {z:v(z) # 0}, which is a purely (m — 1)-dimensional analytic
subset of Q) or empty set.

Take a nonzero meromorphic function ¢ on a domain Q in C”. For each
a e Q, we choose nonzero holomorphic functions F and G on a neighborhood

F
U < Q such that ¢ = con U and dim(F~1(0)NG~1(0)) <m — 2, and we define

the divisors v,, v, by v, = vr, v, =Va, which are independent of choices of F
and G and so globally well-defined on Q.

2.3. For a divisor v on C" and for a positive integer M or M = oo, we
define the counting function of v by

yM)(2) = min{ M, v(z)},
o e rEe it m =2,
= {Zzsrv(z) it m=1.

N(r,v) = J:l’;il)l di (1<r<w).

For a meromorphic function ¢ on C", we set N,(r) = N(r,v,) and
NW(M>(r) = N(r, v(g,M)). We will omit the character (M) if M = 0.

24. Let f:C" —P"(C) be a meromorphic mapping. For arbitrarily
fixed homogeneous coordinates (wp:---:w,) on P"(C), we take a reduced
representation f = (fy:---: f,), which means that each f; is a holomorphic
function on C" and f(z) = (fo(z) : - : fu(2)) outside the analytlc set I(f)
{fo="---=f, =0} of codimension >2. Set | f| = (Ifo|*+---+|/|)"*

The characteristic function of f is defined by

WFJMM%JMWW
NG s(1)

Let H be a hyperplane in P"(C) given by H = {aywy + --- + a,0, = 0},
where a := (ag,...,ay) # (0,...,0). Weset (f,H)=>."yafi. Itiseasy to see
that the divisor v(s gy does not depend on the choices of reduced representation
of f and coefficients ao,...,a,. Moreover, we define the proximity function of f
with respect to H by

11 1] 11 1]
A — 1 1
W“”Lﬁﬁum”ngwmﬂ

n 2\1/2
where ||H|| = (37 lal*)">.
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2.5. Let ¢ be a nonzero meromorphic function on C", which is occationally
regarded as a meromorphic map into P!(C). The proximity function of ¢ is
defined by

mir.g)i= | tog"loin
S(r)
where log” = max{0,log 7} for > 0. The Nevanlinna characteristic function

of ¢ is defined by
T(r,9) = Nijp(r) +m(r, ).
There is a fact that
Ty(r) = T(r;9) + O(1).

The meromorphic function ¢ is said to be small with respect to f iff || T(r,p) =
o(T7(r)). | |
Here as usual, by the notation “|| P”” we mean the assertion P holds for all
re[0,00) excluding a Borel subset E of the interval [0,c0) with [, dr < oo.
The following plays essential roles in Nevanlinna theory (see [10]).

THEOREM 2.6 (First main theorem). Let f : C" — P"(C) be a meromorphic
mapping and let H be a hyperplane in P"(C) such that f(C™) ¢ H. Then

N (r) +myg(r)=Tp(r) (r>1).

THEOREM 2.7 (Second main theorem). Let f :C™ — P"(C) be a linearly
nondegenerate meromorphic mapping and Hi, ..., H, be hyperplanes of P"(C) in
general position. Then

q

I (g=n=DTp(r) < YN () + o(Ty(r).
i=1

Lemma 2.8 (Lemma on logarithmic derivative). Let f be a nonzero mero-
morphic function on C". Then

[ (s 20

S
3. Proof of Theorem 1.1

)= ottos" 1,0)) (xe ),

Lemma 3.1. Let f be a linearly nondegenerate meromorphic mapping of
C" into P"(C). Suppose that g€ G(f,{H;}! ,1) with ¢ =2n+2. Then g is
linearly nondegenerate.

Proof. Suppose that there exists a hyperplane H satisfying g(C") = H.
We assume that f has a reduce representation f = (fo:---:f,) and H =
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{(wo: )| Y fyaiw; =0}. We consider function (f,H)=> [,af:
Since f is linearly nondegenerate, (f.H) # 0. On the other hand (f, H)(z) =
(9.H)(z) =0 for all ze (), f~'(H;), hence

q
1
SEDING
i=1
It yields that

q
1
| Tr() = Npy (1) = YN ()
i=1

(g—n-1) n+l
= L) +o(Ty(r) = — =Ty (r) + o(T; (r)).
Letting r — +o0, we get Ty(r) =0. This is a contradiction. Hence g(C™) can

not be contained in any hyperplanes of P”(C). Therefore ¢ is linearly non-
degenerate. |

=

Lemma 3.2. Suppose q =n+2. Then
I Ty(r) = O(Ty(r)) and || Ty(r) = O(Ty(r)) for each geG(f,{H;}[,1).

Proof. By the Second Main Theorem, we have

q
| (g=n—DTy(r) < S NI (1) +o(Ty(r)

< D ANy () +0(Ty(n) < anTy (1) + o(T,(1).
Hence || T,(r) = O(Ty(r)). Similarly, we get || Ty(r) = O(T,(r)). [ |

Let /! and /2 be two distinct meromorphic mappings in 4(f,{H;}/,,1).
For t=1,...,q, we set

S;1’f21>n = {ze C"smin{v ;1 y,(2),v( 2 my(2)} > n},
S;l,f2,<n = {ze C";0 <max{vi ;1 y)(2),v( 2 m)(2)} <n},

S;l.fzn = (S/ 1 >nUS /"'27<n)'

Then each S o is either an empty set or an analytic subset in C” of
codimension 1 We denote again by S fon the reduced divisor on C™ with
the support Stl, »

Lemma 3.3. Let f:C" — P"(C) be a linearly nondegenerate meromorphic
mapping and let {H; }2"+2 be 2n+ 2 hyperplanes of P"(C) in general position.
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If there are two distinct maps f' and f* in G(f,{H}2"*,1) then the following
assertions hold
0 | N0Sh s ) = o) Vi1, 2042

(i) [ (¢ *”*I)Tf() LN ()+0(Tf()) 1*11
(iii) 24].0:(;1261;,}1811]; we assume furlher that (f27 3 &£ E;z ; Sfor all 1<
H Tfl(r)'i_]}'z(r)zz'(]v((f)l )+N(<> H) (n+1) fl H,))
v=i,j

+ZNfl +o(Ty(r)).

Proof. By changing indices if necessary, we may assume that

(flle) — (flvHZ) - .= (f17Hkl) (flvH/ChLl) — .. (fl sz)
(fszl) B <f27H2) B B (f27Hkl) (f2>Hk|+1) B (f sz)
group 1 group 2
+ (flkaval) = ... = (f Hk%) £... 5 (flaHk\;lJrl) =...= (flka.\-)
(f27sz+1) (f2 Hks) (f27 Herrl) (fszk_\-) ’
group 3 group s

where k; = 2n + 2.
For each 1 <7 <2n+2, we set

(1) = t+n if t<n+2,
W=Vt =n-2 ifnt2<t<2m+2,

and

= (flaHl)(fzaHa(t)) - (fzaHl)(flaHﬂ(t))'

Since f! # f2, the number of elements of each group is at most n. Hence
1 i

(1 H) T Ha)
2 H) " (7 Hy)
that P, #0 (1 <t < 2n +2). By changing indices again if necessary, we may
assume that i =1 and j=a(1).

Fix an index ¢ with 1 <7<gq. For z¢ I(f")UI(f2)UJ, .,/ "(HNH)),
it is easy to see that:

« If z is a zero point of (!, H,) then z is a zero point of P, with multiplicity
at least min{v s1 ), V(2 ) }- Slmllarly, if z is a zero point of (f!, Hy ) then z
is a zero pomt of P, w1th mu1t1pl1c1ty at least min{v /1 p ) VUL, )}

« If z is a zero point of (f!, H,) with v ¢ {t,0(¢)} then 2'is a zero pomt of P,

(because f'(z) = f(z)).

belong to distinct groups for all £ < ¢ —2. This means
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Thus, we have

(3.4) Vpl(Z) > min{v(flﬁHf), V(fZ.H,)} + min{v(flﬁHﬂ(r)), V(fz,Ha(t))}
S
T2 @)
v#—bt_,a(t)

for all z outside the analytic set I(f)UI(9)U\J,,, /' (HxNH;) of dimension
<m-—2.
For two integers a and b, set

1 if max{a,b} <n,
Sapn =14 0 if min{a,b} <n < max{a,b}
1 if min{a,b} > n.
It is easy to see that
min{a, b} > min{a,n} +min{b,n} —n+ Sy s .

Therefore, inequality (3.4) implies that

(3.5) ve(2)= D (min{vp g (2),n} +min{v e g (2),n}

v=t,0(t)

q
. v 1
—nmin{v;1 ) (2). 1} + Sh @)+ D> vé/{)I:HP)(z),
oA ro(t)

for all z outside the analytic set I(f)UI(g)UlJ, .,/ " (Hx N H)).
By integrating both sides of the above inequality, we get

1 ]
Np(r) = 3 (NG () + Ny () = nN (i (1) + N Sf 2 ,)

v=t,o(t)
)
+ Z N(fl,H,,)(r)'

On the other hand, by Jensen’s formula and by the definition of the characteristic
function we have

NP,(V):J

S(r

TozlPn + o)
< L( om0 H) 1 Hol )

4 L( TRl )P 107 H ) P+ 0(1)
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< j tog(ILf I + 1 Hugo 1) /21
S(r)
2 2\1/2
+L( s IR + 1)+ 001
r

:j log||f'||n+j log|L/?[ly + O(1)
S(r) S(r)

=Tp(r)+ Tpa(r) + O(1).

This implies that

(3.6) T+ Tp()= > (N, () + Ny () = nN (L ()

v=t,o(t)

2n+-2

N(F7S;‘,j'2n Z Nle) +0(Tf( ))

v=1
v#t (1)

o)+ N )

v
g

1 v
_ IZN( ')171_11,)(;/‘) —+ N(r, Sf],fz,n))

oy ()4 NG g () + 0T (1)

By summing-up both sides of the above inequality over t=1,...,2n+ 2 and by
the second main theorem we have

(3.7) | (2n+2)(Ty1(r) + Tya(r))
2n+2
223 (M (1) + Nb i () + N S] g2 )) + (T (1)

2n+2
> (20 +2)(Tyi(r) + Tp2(r)) +2 Z N(r, S p2,) + o(Ty(r)).
=1

The last equality yields that
| N(r, S p2,) = 0(Ty(r)), Vo=1,....2n+2 and /= 1,2.

It also yields that inequalities (3.6) and (3.7) become equalities. Hence, we have
the followings

M) I NoSp ) = oTh(),

(i) | (q—n=1)Tp(r) =L N 4 () +o(Tp(), 1=1,2,
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(i) || 751 (1) + Tp2 (1) = Sty N2 gy + N o gy = (14 1)

f
1
+ S PPN gy +o(Tr ().
The lemma is proved

Lemma 3.8.

Let f:C" —P"(C) be a linearly nondegenerate meromorphic
mapping and let {H; }2”+2 be 2n+ 2 hyperplanes of P"(C) in general position

there are two distinct maps f' and f* in 4(f,{H;}
assertions hold.

If
22 1) then the following
. n 1
(i) | NGy NGy = 0+ DNG
_ ™ (n) W
=Ny T Ny = (0 DN
+o(Ty(r), VI<t<s<2n+2.
.. 1
(i) | Ty () + Tpa(r) = 2(N7) ( > + N<,1 ) () = (4 DN ()
+ LNy (1) + o(Ty(r),

Vl<t<2n+2.

Proof. Since f!# f2, for two arbitrary indices ¢ and s in {1,...,2n+ 2}
there exists an index ie {l,...,2n+ 2} such that

(flaHi) (flth) (flvHi) (flst)
(f27Hi) i (f27H1)7 and (f27Hi) 5_& (fzaHS) .
By Lemma 3.3 (iii), we have

SN )+ N

q
1 1
(2 (1) = (n+ N ((f>1 M)+ DN ((f)l 1) (")
v=t,i v=1
=Ty (r) + Tpa(r) +o(Ty(r))

72 sz —(n+ 1N

f1 H, JFZNfl JrO(T/‘( r)).
This yields that

7 1

| N ) () + N () = (0 DN ()
_ ar(m) (1) )
= N1y (1) + N2 gy (1) = (n+ DN,

| (1) + o(T7(1):

Therefore the first assertion of the lemma is proved

It is clear that the second assertion directly follows from Lemma 1.1 (iii) and
the first assertion. We complete the proof of the lemma
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PROPOSITION 3.9. Ler f°, f1. f2 be three( )maps in G(f,{H}"721).
Assume that there exists an index i such that || N ( ) =0(Ty(r)) then

[O=r" or fl=f7 or fszo-
Proof. Suppose that f°, f1, £ are three distinct maps in %(f, {H;} /%, 1).
By the assumption and by Lemma 3.8(i), we have
|
(310) || Ny )+ Ny (1) = e+ DN, (1) = o(T7(r)),
(3.11) N(r, ka,fﬂn) =0o(Ty(r)), VI<t<2n+2,

where {k,/} < {0,1,2}.

Assume that z is a zero of (f, H,) satistying z ¢ S ,»k fhw Vk,I. Then

max{v<fk7Hr) (Z), V(_f/,H,)(Z)} =>n, Vk, le {0, y }

Therefore, there are at least two indices k,/ (0 <k </<2) such that
vire,m)(2) = n and v gy(z) > n. Hence

min{n, v po ) (2)} +min{n, v s g, (2)} +min{n, v 4)(2)} = 2n+ 1.
This implies that

2

(3.12) S OND () = @+ DN (1) + 0Ty (7).
k=0

Combining (3.11) and (3.12), we have

2
I 302+ DN o (1) =23 NL (1) + o( T (1)

Thus
1
| NG () = o(Ty(r), Ve=1,....2n+2.
By the second main theorem, we have

2n+-2 2n+-2

(n+ Z N () +0(Ty() <n Y N () + (T3 (1) = o(Ty ().
=1

This is a contradiction. Therefore f°, f!, f? are not three distinct maps. The
lemma is proved. ]

PROPOSITION 3.13. Let f and {H;}"[* be as in Lemma 3.9. Let f' and
f? be two distinct maps in 9(f,{H; },2 "frz,l) Assume that there exist two
(fLH) (1 HY) (1)
indices 1 <i< j<2n+2 such that - == . Then || N\ ., (r) =
J (/1. H))

N (1) = 0T (). T H) (T H))
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. flaH‘ fvlaH'
Proof. Since Efz,Hjl; = EfZ,H;;’ we have v ) = V(2 ) and v g =

1 _). By changing the representations of f! and f2?, we may assume that
(f1 H;) = (f* H;). This yields that (f!, H;) = (f?,H;). Since f!# f2, there
exits an index k (k # i,k # j) such that

P (fH) (2 H) = (S HO Hy) = (F H) (' He) = (F He)) 0.

By the assumption (f',H,) = (f?H,) on L, /=" (H)\(/~"(H) " [~ (H))),
1 <t<gq, we have

vp(z) = Vst H.)(z) + min{l,v (1, H_>}(z) + min{v(fl’Hk)(z), v(fzyﬂk)(z)}

+ Z min{1,v s p)}(z)

t;él k

> vt gy (2) +min{1, v o1 gy }(2) +min{n, v e g (2)} +min{n, v e g (2)}

—nmin{1l,v ;1 gy(2)} + Z min{1, v p,)}(2),

t;ér k
for all ze (JL, /' (H)\(U,., /" (H,)N f~'(H,)). This implies that
(B.14) || Np(r) = Npio (r )+N((f)1 1y (1) Nt (1) + Ny ()

—nN“> ’ ZN r) + o(Ty(r))

t;élj

1
= 3 (Nt (1) + Nl gy (1) = (= DN ()
=1,2

Ny (1) + DN (0 + 0Ty ().
By Lemma 1.1 (iii), we have
(3.15) | Np(r) < T (r) + Tp2(r)

7 1
=2 (N1 (7) + Nty (1) = (4 DN ()

2
Z 1y () + o(Ty (1),

Combining (3.14) and (3.15), we have || N((}»)’ Hi>(r) = o(Ty(r)). Similarly, we also
have || N((}?Hf)( ) =o(Ty(r)). The lemma is proved. [ |

N
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Now for three mappings f°, f', /2 e 7 (f,{H;}"*,1), we set

J=1
F’g:g:,flj[; 0<k<2,1<i<j<2n+2).
For meromorphic functions F, G, H on C" and o = (ay,...,%,) € Z', we put
1 1 1
1 1 1
®*F,G,H):=F-G-H-| F G H

1 1 1
g% — of = i
»(#) ~(6) ~()
LemMa 3.16. Let f°, f', f? be three distinct maps in g(f,{H}lz"fQJ)

Assume that there exist i,je{1,2,...,q} (i # j) such that ®* := (I)‘°‘(F0 ,FIU,FZ")
=0 for all |a| =1. Then the following assertions hold.

B 1 NSy () = NGy () + (T 0, v =0.1,2
i) 1 2520, N, <>>22"+21 1) (1) + (T3 (1)),
(i) | NP gy (r >+N§f>,,H,>< r) < §<Tfk< )+ Tpi(r) + o(T; (1)

Proof. (i) Since f°, f!, f* are three distinct maps, it follows from Lemma
3.9 and Lemma 3.13 that F’J £ F) #£F) #F/. Then we have

1 1 1
o () FLF) =0 | B K =0
a*(F] 9*(F]") 2*(F])
o (F'—F))-92*(F] —F]) — (F] = F]) - 2*(F' = F]) =0

F —F]
% (%) =0

F - F
Since the above assertions hold for each |x| =1, then there exists a constant
ce C\{0,1} such that
(3.17) Ff —Ff = c(F' = F) & (1 = )F] + ¢F{' = F{".
By (3.17), it is easy to see that outside an analytic subset of codim > 2 of C" we
have

Virkm(2) Z mingvp ) (2), v ) (2)3
where {k,/,t} = {0, 1,2}
Therefore if z is a point of f~! Uk# ki ) then

n=vipy(z) = V(f/,H,»)( z) < virom(2),
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where (k,/,t) is a permutation of (0,1,2). This implies that
| NGe (@) =nN () (2) 4 o(T3(r), - Yk =0,1,2.

Hence the first assertion is proved.
(ii) Consider the meromorphic mapping F:C™ — P!(C) with a reduced
representation F = (Fj'h: F{'h), where h is a meromorphic function on C”.
We see that

) i 1
Tr(r) = T(r,#) <T(r,F")+ T(“ﬁ) +0(1)
i i

< T(r,F{") + T(r, F') + O(1) < Ty, (r) 4 T3, (r) + O(1) = O(Ty(r)).

It is also clear that if z is a zero F/'h (0 <t <2) then z must be either zero of
(f,H;) or zero of (f,H;). Therefore

1 1
(3.18) N;,? (r) + N;,? (r) + N;,? () < NPy )+ Ny ().

Applying the Second Main Theorem to the map F and the points {wy = 0},
{wy =0}, {(1=c)wo+ cw; =0} in PY(C), we have

| Te(r) < Ny, () + Ny (1) + N, (1) + o(Tr (1)

SNy () + NG g () + o(T (1)

App]ymg the First Main Theorem to the map F and the hyperplane {wy — w;
=0} in P'(C), we have

(1)
Tr(r) = Nipi_piy (r) = DN ().

Thus
2n+2

(3.19) I 2(N G )+N ZNfH + o(Ty(r)).
v;éz]

Hence, the second assertion is proved.
(iif) By Lemma 3.8(ii) and by the Second Main Theorem, we have

| Tye(r) + Tpu(r) = 2Ny (1) + Ny (1) = (4 DN ()

2n+2
= ;I<ZN((;)",H,-)(F) — (n+ DN (1) + ; > N, ))
+0(Tf(V))
2 3 (SN )+ 1)) ol 0)
v=k,l
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Thus
I NG iy )+ NG () < Tpa(r) + Ta(r) + o(T7 (1)),

Hence the third assertion is proved. |

Lemma 3.20. Let f°, f1, f? be three maps in 9(f,{H;}!,1). Assume
that there exist i,je{1,2,...,q} (i # j) and |o| =1 such that ®* := ®*(Fy,F/,
']) #£0. Then, for each 0 <k < 2 lhe following assertions hold

i) Siow, ﬂH<>+2z 1y (1) = @n+ DN (1) < Nos (1),
@%m<aﬂm>20ﬂuwwﬂuwmw

(iii) Moreover, if we assume further that ®*(F]', F{',FJ") £ 0 for all |«| =1
then

2n+2
2N(Y 4 (1) + N }jN r) + o(Ty(r)).

Proof. (i) Denote by S the set of all singularities of . H) (1<t<q).
Then S is an analytic subset of codimension at least two in C”. We set

I=SU U/ (H)N T (HY)).

SF#Lt

Then I is also an analytic subset of codimension at least two in C™.

Assume that z; is a zero point of (f, H;) with ¢ ¢ {i, j} and zo ¢ I. There
exists a holomorphic function 2 on an open neighborhood U of z; such that
vy =min{l, v, gy} on U. Since ¢ =1, we may write

(321)  @o*(F),F,F))

(F —F)  (F - F)

9*(F' - F"y 2*(F] - F))
(R~ F{)) mﬂwfwnl

7 (h (K = ") 2*(h™ ! (Fy' = F"))

_pi . pi . g
= FJ . FJ - FJ x

=i’F] - F/ - FJ x

This yields that
(322) Vq;%(Zo) >2=2 min{l, V(f,H,)(ZO)}-
Now assume that zy is a zero point of (f, H;) and z ¢ I. Without loss of

generality, we may assume that vy (20) < V(s1,1,)(20) < V(s2, 1(20). We may
write
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o G (FJ' — FI" (F/' — F"
(323) (I)M(F(;},FII'I,FZ!/) _ FO/ . F]!/ F21] % i 0 i 1 ! i 0 i 2 r
(kg —F) 2°(Fy — F)
= FJIF/(F = F)F) 7*((F] - F}"))
~ F)(F = F{\F/ 7*((F]' = F])].
It is easy to see that FJ(F] — F/") and F}(F] — FJ') are holomorphic on a

neighborhood of z;. We also have

o
Vivguri-p (20) <1
and

o0
Vi i i (20) < 1.
F'9 (Fof’—Flf')( ) -

Therefore, equality (3.23) implies that
(3.24)  vg(z0) = viro my(20) — 1

2
> > min{n, v e g (20)} — (20 + 1) min{1,v(s. 11, (z0) }.
k=0

Integrating both sides of the above inequality, we obtain that

M
Ny

NS

2
n 1
; Ny (1) + 1 (1) = @n+ )N (1) < Nos(r).

1,

t

t

*
<

The first assertion of the lemma is proved.
(i) We now prove the second assertion of the lemma. We have

1 1 1
(I)“(Fol“i,Flg,FZ[/) _ Folf/ . Fl!'/ . lej. Foji Flji szi
7(F]) 7F) 7*F)
FOU F]U FZU
= 1 1 1

F9"(F) Fo(F) Fo(F)
— Fi (@a(Fzﬁ) ga(F{i)> 4 FY (gz(Fo’") 9“(F2jf)>

= %o i Ji 1 i i
Fz F1 Fo Fz

+Fi/ gx(Fljl)_@a(Foll) .
2 Fl]z Fojt

By the Logarithmic Derivative Lemma, it follows that
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(3.25) m(r,®*) < imrF” +2Z ( Fﬂ) o(1)

U=

MN

rF’] )+ o(Ty(r)).

On the other hand, by (3.22) and (3.24), ®* is holomorphic at all zeros of
(f,H;). Hence a zero of (f, H;) is not pole of ®*. Thus, a pole of ®* is a
zero of (f,H;). Assume that zy is a zero of (f,H;), and z¢1. Put d=
ming<x<2{v(s z)(z)}. Choose a holomorphlc function # on C™ with multi-
plicity d at z such that F/'=h-gy, F'=h-¢,, F/'=h-¢, where ¢, are
meromorphic on C” and holomorphic on a neighborhood of z. Then

1 1 1
O F FL ) =R R F | R FH
g*(F] 9*F"y 2*F])
N " . Fﬁ _ Fﬁ Fﬁ _ Fﬁ
_ Foll _Fl!/ FZ'/ . 1 ; 0 ; 2 ; 0 )
I F ~ By 9*(F - )
Rl F i,-.hz.‘ ?1 = %o 2= %0
? D (91 — 90)  Z*(92 — 9p)

Hence z is a pole of ®* with multiplicity at most Zf:o V(e m)(2) = 2a.
We have

2 2
(3.26)  vijor(z0) < D viprm)(z0) —2d = vie gy(z0) =2 min {v e (20}
k k=0

e 0<k<2
2 2
= Zka,, me{n vrk, mp)(20)} +nmin{1, vy m)(20) }-
k=0 k=0

From (3.25) and (3.27) we get

Nos(r) < T(r,®*) + O(1) = m(r, ®*) + Ny jo:(r) + O(1)

2 2
< Z m(r, ) 4 Npa(r) = D NGy () + 0N () + o(Ty(r)
=0 fe=

(=}
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2 2

= T F) = > Ny (1) + 0N (1) + o(Ty(r)
k=0 k=0
2 2
<Y T () = DN () 4N () + o(Tr ().
k=0 k=0

This implies the second assertion of the lemma.
(iii) Now we assume that ®*(FJ', F/", FJ') # 0. By the second assertion of

the lemma, we have

5 2 2n+2
1
pry k=0 =1
1 1
—(2n+ 3)N((f)-,Hf)(r) —(n+ Z)N(<f?Hj>(r) +o(T;(r))
and
2 2 » ) 2n+2 0
n n
; Tpu(r) = ;(N ey )+ Ny (1) +2 zl: Ny ()
= = =

— @n 43N, (1) = 2N () + o(Ty ().

Summing-up both sides of these above inequalities, we get

2n+2

2
1
(3.28) 2 ]Z Ty(r) > 2 ;(Né;)kﬂi)(r) + N((;)&H/)(r)) +4 ; N(Ff»?H[>(r)
K = —

= BrA SN ) (1) = Gr+ NGy (1) + 0Ty (1)

B (n) (n)
= > (Z (N ) (1) N1 (1)
0<k<l<2

v=i,j
2n+-2 0
)+ S 0)
2n+2
- >Ny, +ZNfH r)+ o(Ty(r)).

=i,

From Lemma 3.7(iv) and the inequality (3.28), it follows that

2n+2

2 2
23 Tu() 22 Tu() =2 NGy +ZNH,) r) + o(Ty(r)).
k=0

k=0 v=i,j
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Thus

2n+2

23 NG ZNﬂt + o(Ty(r)).

v=i,j

The third assertion is proved. ]

Proof of Theorem 1.1. Suppose that there exist three distinct maps f°, £,
f? in 9(f,{H; }2’”2 1). By Lemma 3.16(ii) and Lemma 3.20(iii), we always
have

2n+2
1 . .
2N (1) + N () §ijH ) +o(Ty(r), V1<i<j<2n+2.

Summing-up both sides of the above inequality over all 1 <i< j<2n-+2, we
get

2n+2 2n+-2

2(2n+1 ZN“{ + 1)@+ 1) DN () + o(Ty(r).

Thus
2n+2

§:me = o(Ty(r)).

By the Second Main Theorem, we have

2n+2
[ (n+1)T(r) ZN r) +o(Ty(r))

2n+-2

<13 NGy () +olT50) = o(Ty(),

This is a contradiction.
Hence #%(f,{H;}?"?,1)<2. We complete the proof of the theorem.
]

4. Meromorphic mappings and three families of hyperplanes

Let f°, f!, f? be three distinct meromorphic mappings of C” into P"(C).
Let {H, /‘}»2"+2 (k=0,1,2) be three families of hyperplanes of P”(C) in general
position. Each hyperplane HF is given by
0}

Hl-k = {(wo

iv
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Let f*=(ff:---:fF) be a reduced representation of f* (k=0,1,2). We
set

fk Hk Za

In this section, we will prove a finiteness theorem for meromorphic mappings
with three families of hyperplanes as follows.

Tueorem 4.1. Ler f°, f', f2 and {HF}[* (k=0,1,2) be as above.
Assume that f° is lmearly nondegenerate and
(a) dlm(fo) "(H, NN (HO) <m-2VI<i<j<2n+2,
(b) (/) (HF) = (f) N (H]), for k=1,2, and i=1,....20+2,
(fkaHf) (fO’HUO) 2n+2 0 £0 HO 0y—1/ 70 i
¢ = on ; H: or 1<v,j<
(c) (fkijk) (fO,H_/O) U - ( HP\(®) " ( ]), S ST AR
2n + 2.
If n > 2 then there exist two distinct indices t,1 € {0,1,2} and a linearly projective
transformation & such that ¥ (f') = f! and ¥(H}) = H! for all i=1,...,2n+ 2.

Proof Fix an index ke {1,2}. Since HF, HY,... HJrl are n+ 1 hyper-
planes in general position, we consider the hnearly projective transformation %%

of P"(C) is given by Z*((zo:---:2,)) = (wo: - : ®,) with
o bo -+ b 20
W b Dt Zn
B
where
dy o\ (e
B=1 = : :
a?nJrl)O a?nJrl)n a(kn+1)0 a(kn+l)n
Ao A,
We set

(c,-ko,...,cf;):(aff),...,af‘nyB’l, for i=1,...,2n+2.
Since Ago B = Ay, then
(c,%,... c(‘):(al%,...ao), Vi=1,....,n+1.

»in »in

Suppose that there exists an index iy € {n +2,...,2n+ 2} such that

k i 0 0
(Cioor -+ s Cion) 7 (iggs -+ -5 50 ,)-
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We consider the following function

F= Z lr)] lr)]

Since £ 1s 11near1y nondegenerate F is a nonzero meromorphic function on C”.
For ze )" 2O THHONI(F0), without loss of generality we may assume that
(f°, HY)(Z) # 0, then

n

F(z) = (cp;—ag )1 (2) = (ago, - ap,) - B~ (fO)(2) = (f°, H)(2)

=0
= (aggs -+ ay) - A 0 Ao(f0)(2) = (S, HY)(2)
_(a{;()""’ zqn) Ak OAO( 0)(2) ( Hzg)(z) 0 goy(5
- (fo HO)( ) (f le)( )
(@ ap,) A o Ak(f)(2) = (S HD(E) o B
- (fk Hk)( ) (f ?Hl)( )

(afy, - af, ) (SO () = (FF HE) ()
- (fk,Hlk)(z) : <f07H10)(Z)
_ S HYE) - (5 HD()
(f* H{)(z)
Therefore, it follows that

(f°, HY)(2) = 0.

2n+2

1
> z}: N((_/‘%A,H{’)<r>

On the other hand, by Jensen formula we have that

Ne() = [ ol P+ 01) < | 108l @)+ 0(1) = () + o(Tye(r)
By using the Second Main Theorem, we obtain
2n+2
H (n+1 Tf0 ZNfo Hl) +0(Tf°( ))
2n+-2

1
<ny. N<§f,2)_H’Q>(r) + o(Tyo(r)) < nTyo(r).
i=1

It implies that || Tj(r) = 0. This is a contradiction to the fact that f° is linearly
nondegenerate. Therefore we have

(cl%,... c(‘):(al%,... ao), Vi=1,...,2n+2.

Y ¥in Y in

Hence Z*(H}) = H) for all i=1,...,2n+2.
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We set fKk=2%(fK), k=12 Then f° f! f2 belong to
4(f°, {HO}Z"+2 1). By Theorem 1.1, one of the following assertions holds
(i) fO=f e fO=2(fY andg( N=H) for all i=1,...,2n+2,
(i) f0=r2 ie f0= gz(fz) and LPZ(Hz) H0 for allzfl L 2n+ 2,
(i) /1 =72 ie 1= (2 " o 22(f2) and (£)) Vo 22(H 1= Hf for all
i=1,...,2n+2.
We complete the proof of the theorem. |
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