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ON FANO MANIFOLDS WITH AN UNSPLIT DOMINATING FAMILY

OF RATIONAL CURVES

Carla Novelli

Abstract

We study Fano manifolds X admitting an unsplit dominating family of rational

curves and we prove that the Generalized Mukai Conjecture holds if X has pseudoindex

iX ¼ ðdim XÞ=3 or dimension dim X ¼ 6. We also show that this conjecture is true for

all Fano manifolds with iX > ðdim XÞ=3.

1. Introduction

Let X be a Fano manifold, i.e. a smooth complex projective variety whose
anticanonical bundle �KX is ample. A Fano manifold is associated with two
invariants, namely the index, rX , defined as the largest integer dividing �KX in
the Picard group of X , and the pseudoindex, iX , defined as the minimum
anticanonical degree of rational curves on X .

In 1988 Mukai proposed the following conjecture, involving the index and
the Picard number of a Fano manifold:

Conjecture 1.1 [10]. Let X be a Fano manifold of dimension n. Then
rX ðrX � 1Þa n, with equality if and only if X ¼ ðPrX�1ÞrX .

In 1990, in [15], where the notion of pseudoindex was introduced, the first
step towards the conjecture was made and it was proved that if iX >
ðdim X þ 2Þ=2 then rX ¼ 1; moreover, if rX ¼ ðdim X þ 2Þ=2 then either

rX ¼ 1 or X ¼ ðP rX�1Þ2.
In 2002 Bonavero, Casagrande, Debarre and Druel reconsidered this prob-

lem and proposed the following more general conjecture:

Conjecture 1.2 [2]. Let X be a Fano manifold of dimension n. Then
rX ðiX � 1Þa n, with equality if and only if X ¼ ðP iX�1ÞrX .
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Moreover, in [2], they proved Conjecture (1.2) for Fano manifolds of
dimension 4 (in lower dimension the result can be read o¤ from the classifi-
cation), for homogeneous manifolds, and for toric Fano manifolds of pseudo-
index iX b ðdim X þ 3Þ=3 or dimensiona 7. In 2006, in [5], the toric case was
completely settled.

In 2004, in [1], Conjecture (1.2) was proved for Fano manifolds of dimen-
sion 5 and for Fano manifolds of pseudoindex iX b ðdim X þ 3Þ=3 admitting an
unsplit dominating family of rational curves (see Definition (2.1)).

In 2010, in [12], Conjecture (1.2) was proved for Fano manifolds of pseu-
doindex iX b ðdim X þ 3Þ=3, and simplified proofs of this conjecture for Fano
manifolds of dimension 4 and 5 were provided.

In this paper we reconsider Fano manifolds X admitting an unsplit dominat-
ing family of rational curves, and we prove Conjecture (1.2) if X has dimension 6
(Theorem (6.3)), or X has pseudoindex iX b dim X=3 (Theorem (6.4)).

The paper is organized as follows: in Sections (2) and (3) we recall definitions
and results on families of rational curves and on chains of rational curves on
projective manifolds, while in Section (4) we consider families of rational curves
on Fano manifolds; in Section (5) we prove Conjecture (1.2) for Fano manifolds
X of pseudoindex iX > ðdim X Þ=3; in Section (6) we consider Fano manifolds X
admitting an unsplit dominating family of rational curves and we prove Con-
jecture (1.2) if dim X ¼ 6, or iX b ðdim XÞ=3.

2. Families of rational curves

Let X be a smooth complex projective variety.

Definition 2.1. A family of rational curves V on X is an irreducible
component of the scheme RatcurvesnðX Þ (see [7, Definition II.2.11]).

Given a rational curve we will call a family of deformations of that curve any
irreducible component of RatcurvesnðX Þ containing the point parameterizing that
curve.

We define LocusðVÞ to be the set of points of X through which there is a
curve among those parameterized by V ; we say that V is a covering family if
LocusðVÞ ¼ X and that V is a dominating family if LocusðVÞ ¼ X .

By abuse of notation, given a line bundle L A PicðXÞ, we will denote by
L � V the intersection number L � C, with C any curve among those parameterized
by V .

We will say that V is unsplit if it is proper; clearly, an unsplit dominating
family is covering.

We denote by Vx the subscheme of V parameterizing rational curves pass-
ing through a point x and by LocusðVxÞ the set of points of X through which
there is a curve among those parameterized by Vx. If, for a general point x A
LocusðVÞ, Vx is proper, then we will say that the family is locally unsplit; by
Mori’s Bend and Break arguments, if V is a locally unsplit family, then �KX � V
a dim X þ 1.
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If X admits dominating families, we can choose among them one with
minimal degree with respect to a fixed ample line bundle A, and we call it a
minimal dominating family. Such a family is locally unsplit. Indeed, if for a
general point x A LocusðVÞ the family Vx were not unsplit, then there would be
a rational curve G through x such that A � G < A � V ; then there would exist a
dominating family of rational curves of degree < A � V , and this would be a
contradiction with the minimality of V .

Definition 2.2. Let U be an open dense subset of X and p : U ! Z a
proper surjective morphism to a quasi-projective variety; we say that a family of
rational curves V is a horizontal dominating family with respect to p if LocusðVÞ
dominates Z and curves parameterized by V are not contracted by p. If such
families exist, we can choose among them one with minimal degree with respect
to a fixed ample line bundle and we call it a minimal horizontal dominating family
with respect to p; such a family is locally unsplit.

Remark 2.3. By fundamental results in [9], a Fano manifold admits domi-
nating families of rational curves; also horizontal dominating families with respect
to proper morphisms defined on an open set exist, as proved in [8]. In the case
of Fano manifolds with ‘‘minimal’’ we will mean minimal with respect to �KX ,
unless otherwise stated.

Definition 2.4. We define a Chow family of rational 1-cycles W to be
an irreducible component of ChowðX Þ parameterizing rational and connected
1-cycles.

We define LocusðWÞ to be the set of points of X through which there is a
cycle among those parameterized by W; notice that LocusðWÞ is a closed subset
of X ([7, II.2.3]). We say that W is a covering family if LocusðWÞ ¼ X .

If V is a family of rational curves, the closure of the image of V in
ChowðX Þ, denoted by V, is called the Chow family associated to V .

Remark 2.5. If V is proper, i.e. if the family is unsplit, then V corresponds
to the normalization of the associated Chow family V.

Definition 2.6. Let V be a family of rational curves and let V be the
associated Chow family. We say that V (and also V) is quasi-unsplit if every
component of any reducible cycle parameterized by V has numerical class
proportional to the numerical class of a curve parameterized by V .

Definition 2.7. Let V 1; . . . ;V k be families of rational curves on X and
Y HX .

We define LocusðV 1ÞY to be the set of points x A X such that there exists
a curve C among those parameterized by V 1 with C VY 0j and x A C. We
inductively define LocusðV 1; . . . ;V kÞY :¼ LocusðV 2; . . . ;V kÞLocusðV 1ÞY . Notice
that, by this definition, we have LocusðVÞx ¼ LocusðVxÞ. Analogously we define
LocusðW1; . . . ;WkÞY for Chow families W1; . . . ;Wk of rational 1-cycles.
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Notation. We denote by rX the Picard number of X , i.e. the dimension of
the R-vector space N1ðX Þ of 1-cycles modulo numerical equivalence. If G is a
1-cycle, then we will denote by ½G� its numerical equivalence class in N1ðXÞ; if V
is a family of rational curves, we will denote by ½V � the numerical equivalence
class of any curve among those parameterized by V .

If Y HX , we will denote by N1ðY ;X ÞJN1ðX Þ the vector subspace
generated by numerical classes of curves of X contained in Y ; moreover, we
will denote by NEðY ;XÞJNEðX Þ the subcone generated by numerical classes of
curves of X contained in Y .

We will make frequent use of the following dimensional estimates:

Proposition 2.8 ([7, IV.2.6]). Let V be a family of rational curves on X and
x A LocusðVÞ a point such that every component of Vx is proper. Then

(a) dim V � 1 ¼ dim LocusðVÞ þ dim LocusðVxÞb dim X � KX � V � 1;
(b) dim LocusðVxÞb�KX � V � 1.

Definition 2.9. We say that k quasi-unsplit families V 1; . . . ;V k are nu-
merically independent if in N1ðXÞ we have dimh½V 1�; . . . ; ½V k�i ¼ k.

Lemma 2.10 (Cf. [1, Lemma 5.4]). Let Y HX be a closed subset and
V 1; . . . ;V k numerically independent unsplit families of rational curves such that
h½V 1�; . . . ; ½V k�iVNEðY ;XÞ ¼ 0. Then either LocusðV 1; . . . ;V kÞY ¼ j or

dim LocusðV 1; . . . ;V kÞY b dim Y þ
X

�KX � V i � k:

A key fact underlying our strategy to obtain bounds on the Picard number,
based on [7, Proposition II.4.19], is the following:

Lemma 2.11 ([1, Lemma 4.1]). Let Y HX be a closed subset, V a Chow
family of rational 1-cycles. Then every curve contained in LocusðVÞY is numer-
ically equivalent to a linear combination with rational coe‰cients of a curve
contained in Y and of irreducible components of cycles parameterized by V which
meet Y.

Corollary 2.12. Let V 1 be a locally unsplit family of rational curves, and
V 2; . . . ;V k unsplit families of rational curves. Then, for a general x A LocusðV 1Þ,

(a) N1ðLocusðV 1Þx;XÞ ¼ h½V 1�i;
(b) either LocusðV 1; . . . ;V kÞx ¼ j, or N1ðLocusðV 1; . . . ;V kÞx;XÞ ¼

h½V 1�; . . . ; ½V k�i.

We end this section by recalling two results that we will use in the
following.
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Theorem 2.13 [6, Theorem 1.2]. Let X be a Fano manifold of pseudoindex
iX b 2. Then codim N1ðD;XÞa 1 for every prime divisor DHX and one of the
following holds:

(a) iX ¼ 2 and there exists a smooth morphism X ! Y with fibers isomorphic
to P1 onto a Fano manifold Y of pseudoindex iY b 2;

(b) N1ðD;XÞ ¼ N1ðXÞ for every prime divisor DHX.

Theorem 2.14 [12, Theorem 3]. Let X be a Fano manifold of Picard number
rX and pseudoindex iX b ðdim X þ 3Þ=3. Then rX ðiX � 1Þa dim X and equality
holds if and only if X ¼ ðP iX�1ÞrX .

3. Chains of rational curves

Let X be a smooth complex projective variety. Let V be a dominating
family of rational curves on X and denote by V the associated Chow family.

Definition 3.1. Let Y HX be a closed subset; define ChLocusmðVÞY to be
the set of points x A X such that there exist cycles G1; . . . ;Gm with the following
properties:

� Gi belongs to the family V;
� Gi VGiþ1 0j;
� G1 VY 0j and x A Gm,

i.e. ChLocusmðVÞY is the set of points that can be joined to Y by a connected
chain of at most m cycles belonging to the family V.

If we consider among cycles parameterized by V only irreducible ones, in
the same way we can define ChLocusmðVÞY .

Define a relation of rational connectedness with respect to V on X in
the following way: two points x and y of X are in rcðVÞ-relation if there
exists a chain of cycles in V which joins x and y, i.e. if y A ChLocusmðVÞx for
some m. In particular, X is rcðVÞ-connected if for some m we have X ¼
ChLocusmðVÞx.

The family V defines a proper prerelation in the sense of [7, Definition
IV.4.6]. This prerelation is associated with a fibration, which we will call the
rcðVÞ-fibration:

Theorem 3.2 ([7, IV.4.16], Cf. [3]). Let X be a normal and proper variety
and V a proper prerelation; then there exists an open subvariety X 0 HX and a
proper morphism with connected fibers p : X 0 ! Z0 such that

� hUi restricts to an equivalence relation on X 0;
� p�1ðzÞ is a hUi-equivalence class for every z A Z0;
� Ez A Z0 and Ex; y A p�1ðzÞ, x A ChLocusmðVÞy with ma 2dimX�dimZ0 � 1.

Clearly X is rcðVÞ-connected if and only if dim Z0 ¼ 0.
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Given V1; . . . ;Vk Chow families of rational 1-cycles, it is possible to define
a relation of rcðV1; . . . ;VkÞ-connectedness, which is associated with a fibra-

tion, that we will call rcðV1; . . . ;VkÞ-fibration. The variety X will be called
rcðV1; . . . ;VkÞ-connected if the target of the fibration is a point.

For such varieties we have the following application of Lemma (2.11):

Proposition 3.3 (Cf. [1, Corollary 4.4]). If X is rationally connected with

respect to some Chow families of rational 1-cycles V1; . . . ;Vk, then N1ðX Þ is
generated by the classes of irreducible components of cycles in V1; . . . ;Vk.

In particular, if V1; . . . ;Vk are quasi-unsplit families, then rX a k and

equality holds if and only if V1; . . . ;Vk are numerically independent.

A straightforward consequence of the above proposition is the following:

Corollary 3.4 ([12, Corollary 3]). If X is rationally connected with respect
to Chow families of rational 1-cycles V1; . . . ;Vk and D is an e¤ective divisor, then
D cannot be trivial on every irreducible component of every cycle parameterized by
V1; . . . ;Vk.

We will also make use of the following

Lemma 3.5 ([12, Lemma 3]). Let X be a Fano manifold of pseudoindex iX ,
let Y HX be a closed subset of dimension dim Y > dim X � iX and let W be an
unsplit non dominating family of rational curves such that ½W � B NEðY ;XÞ. Then
LocusðWÞVY ¼ j.

4. Families of rational curves on Fano manifolds

We start this section by recalling the following

Construction 4.1 ([12, Construction 1]). Let X be a Fano manifold; let V 1

be a minimal dominating family of rational curves on X and consider the
associated Chow family V1.

If X is not rcðV1Þ-connected, let V 2 be a minimal horizontal dominat-
ing family with respect to the rcðV1Þ-fibration, p1 : X a Z1. If X is not

rcðV1;V2Þ-connected, we denote by V 3 a minimal horizontal dominating family
with respect to the the rcðV1;V2Þ-fibration, p2 : X a Z2, and so on. Since
dim Ziþ1 < dim Zi, for some integer k we have that X is rcðV1; . . . ;VkÞ-
connected.

Notice that, by construction, the families V 1; . . . ;V k are numerically inde-
pendent.

Examples 4.2. Consider X ¼ Pm � Pm, with mb 2. Clearly X is a Fano
manifold of Picard number rX ¼ 2 and pseudoindex iX ¼ mþ 1. This mani-
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fold admits two numerically independent unsplit dominating families of rational
curves, say V a and V b, of anticanonical degree equal to iX , which are the
families of lines in the Pms (cf. [14, Theorem 1]). We can take V 1 ¼ V a and so
the rcðV1Þ-fibration p1 : X a Z1 corresponds to the projection of X onto one
of its factors. Since rX > 1, then X cannot be rcðV1Þ-connected, so there exists
a family V 2 which is a minimal horizontal dominating family with respect to p1;
note that we can take V 2 ¼ V b. Then X is rcðV1;V2Þ-connected. In fact, if
the target of the rcðV1;V2Þ-fibration p2 : X a Z2 were positive dimensional,
there would be a minimal horizontal dominating family with respect to p2,
V 3; since at the i-th step the dimension of the quotient drops at least by
dim LocusðV iÞxi , where xi is a general point of LocusðV iÞ, we would have 2m ¼
dim X b

P3
i¼1 dim LocusðV iÞxi b

P3
i¼1ð�KX � V i � 1Þb 3ðiX � 1Þ ¼ 3m, which

gives ma 0, a contradiction.
Consider X ¼ BlP s P2sþ3, with sb 1. This is a Fano manifold of Picard

number rX ¼ 2 and pseudoindex iX ¼ sþ 2 admitting a divisorial contraction

s : X ! P2sþ3 and a fiber type contraction, say j : X ! Y . Note that the
minimal anticanonical degree of curves contracted by s and by j is equal to
iX and that dim Y ¼ sþ 2 (e.g. see the proof of [13, Proposition 4.1]). Denote
by Cj (resp. Cs) a curve contracted by j (resp. s) such that �KX � Cj ¼ iX (resp.
�KX � Cs ¼ iX ). We can take V 1 to be a family of deformations of Cj, and the
rcðV1Þ-fibration corresponds to j. Now, a family of deformation of Cs can be
taken as V 2. Arguing as before we get that X is rcðV1;V2Þ-connected.

Lemma 4.3 ([12, Lemma 4]). Let X be a Fano manifold of pseudoindex
iX b 2 and let V 1; . . . ;V k be families of rational curves as in Construction (4.1).
Then

Xk

i¼1

ð�KX � V i � 1Þa dim X :

In particular, kðiX � 1Þa dim X , and equality holds if and only if X ¼ ðP iX�1Þk.

Lemma 4.4. Let X be a Fano manifold of pseudoindex iX b 2 and let
V 1; . . . ;V k be families of rational curves as in Construction (4.1). If V 1; . . . ;
V h�1, with ha k, are unsplit and dim LocusðV h; . . . ;V 1Þxh ¼ dim X � 1 for a
general point xh A LocusðV hÞ, then either rX ¼ h ¼ k, or iX ¼ 2, rX ¼ hþ 1 and
k � ha 1.

Proof. Let D be an irreducible component of maximal dimension of
LocusðV h; . . . ;V 1Þxh . Then by part (b) of Corollary (2.12) N1ðD;X ÞJ
h½V 1�; . . . ; ½V h�iJN1ðXÞ. Clearly rX b k, so the assertion follows by Theorem
(2.13). r

Lemma 4.5. Let X be a Fano manifold of pseudoindex iX b 2 and let
V 1; . . . ;V k be families of rational curves as in Construction (4.1). Assume that
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at least one of these families, say V j, is not unsplit. Then kðiX � 1Þa
dim X � iX .

Moreover,

(a) if j ¼ dim X � iX

iX � 1
, then j ¼ k and rX ðiX � 1Þ ¼ dim X � iX ;

(b) if j ¼ dim X � iX � 1

iX � 1
, then j ¼ k and either rX ðiX � 1Þ ¼ dim X � iX �

1, or iX ¼ 2 and rX ¼ dim X � 2.

Proof. Since V j is not unsplit, we have �KX � V j b 2iX . By Lemma (4.3)

we get ðk � 1ÞðiX � 1Þ þ ð2iX � 1Þa dim X , hence ka
dim X � iX

iX � 1
. Moreover,

by part (b) of Proposition (2.8), we have dim LocusðV jÞxj b 2iX � 1 for a general
point xj A LocusðV jÞ.

If j ¼ dim X � iX

iX � 1
, then j ¼ k and V j is the only non unsplit family.

Then, for a general point xk A LocusðV kÞ, we have X ¼ LocusðV k; . . . ;V 1Þxk
by Lemma (2.10). Therefore, by part (b) of Corollary (2.12), we obtain that
N1ðXÞ ¼ h½V 1�; . . . ; ½V k�i, so rX ¼ k, and we obtain case (a) of the statement.

Assume now that j ¼ dim X � iX � 1

iX � 1
. Then V j is the only non unsplit

family; moreover, dim LocusðV j ; . . . ;V 1Þxj b dim X � 1 by Lemma (2.10).
We claim that X is rcðV 1; . . . ;V jÞ-connected.
In fact, a general fiber of the rcðV 1; . . . ;V jÞ-fibration has dimension at

least dim LocusðV j; . . . ;V 1Þxj b dim X � 1 by Lemma (2.10). This implies

dim Z j a 1, and thus, if X were not rcðV 1; . . . ;V jÞ-connected, we would
have dim LocusðV jþ1Þxjþ1

¼ 1 for a general point xjþ1 A LocusðV jþ1Þ. Hence,

by part (b) of Proposition (2.8), �KX � V jþ1 ¼ 2 ¼ iX , so V jþ1 would be unsplit
and, by part (a) of the same proposition, covering, against the minimality of
V j. Therefore j ¼ k.

Consider an irreducible component D of LocusðV k; . . . ;V 1Þxk of maximal
dimension (which is at least dim X � 1). Therefore, either X ¼ LocusðV k; . . . ;
V 1Þxk and rX ¼ k by part (b) of Corollary (2.12), or D is a divisor in X . In this
last case, either rX ¼ k, or iX ¼ 2 and rX ¼ dim X � 2 by Lemma (4.4). r

5. Bounds on the Picard number of Fano manifolds

In this section we show that Conjecture (1.2) holds for Fano manifolds of
pseudoindex iX > dim X=3.

Theorem 5.1. Let X be a Fano manifold of Picard number rX and pseudo-
index iX > dim X=3. Then rX ðiX � 1Þa dim X and equality holds if and only if
X ¼ ðP iX�1ÞrX .
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Proof. Note that in view of Theorem (2.14) we can restrict to iX <
ðdim X þ 3Þ=3. Moreover, since for iX ¼ 1 there is nothing to prove, we assume
iX b 2 (and so dim X > 3).

Let V 1; . . . ;V k be families of rational curves as in Construction (4.1).
If all the families are unsplit, then Lemma (4.3) gives ka 3 unless either

iX ¼ 2, dim X ¼ 5 and k ¼ 4, or X ¼ ðP1Þ5, or X ¼ ðP1Þ4, or X ¼ ðP2Þ4.
Since rX ¼ k by Proposition (3.3), the assertion follows.
We can thus assume that at least one of these families, say V j, is not

unsplit. Then, by Lemma (4.3), ka 3 and exactly one of these families is not
unsplit. Moreover, if j ¼ 3, by computing dim LocusðV 3;V 2;V 1Þ with Lemma
(2.10), we get a contradiction unless dim X ¼ 5 and iX ¼ 2, so rX ¼ 3 by part
(b) of Corollary (2.12). If j ¼ 2 and iX ¼ ðdim X þ 2Þ=3, then rX ¼ 2 by
part (a) of Lemma (4.5). If j ¼ 2 and iX ¼ ðdim X þ 1Þ=3, denoted by T an
irreducible component of maximal dimension of LocusðV 2;V 1Þx2 , we have
dim T b dim X � 1 by Lemma (2.10). So if dim T ¼ dim X then rX ¼ 2 by
part (b) of Corollary (2.12), while if dim T ¼ dim X � 1 then either rX ¼ 2 or
dim X ¼ 5, iX ¼ 2 and rX ¼ 3 by Lemma (4.4).

Therefore we are left with j ¼ 1. Then a general fiber of the rcðV1Þ-
fibration X a Z1 has dimension at least dim LocusðV 1Þx1 b 2iX � 1.

Assume first that dim Z1 b 1. For a general point x2 A LocusðV 2Þ we know
that dim LocusðV 2Þx2 a dim Z1 a dim X � ð2iX � 1Þ < iX þ 1. By part (b) of
Proposition (2.8) we have dim LocusðV 2Þx2 b�KX � V 2 � 1, and so we deduce
that �KX � V 2 a iX þ 1. So V 2 is unsplit and V 2 is not dominating, since
�KX � V 2 < �KX � V 1. Denote by D an irreducible component of maximal
dimension of LocusðV 1;V 2Þx1 . Then dim D ¼ dim X � 1, so we are done by
Lemma (4.4).

Finally we deal with the case in which dim Z1 ¼ 0, so X is rcðV1Þ-
connected. Let x be a general point. Since x is general and V 1 is minimal
we have LocusðV 1Þx ¼ LocusðV 1Þx and N1ðLocusðV 1Þx;XÞ ¼ h½V 1�i by part (a)
of Corollary (2.12).

If LocusðV 1Þx ¼ X , then rX ¼ 1. So we can suppose that dim LocusðV 1Þx
< dim X and thus, by part (b) of Proposition (2.8), �KX � V 1 a dim X . In
particular every reducible cycle parameterized by V1 has at most two irreducible
components.

If every irreducible component of a V1-cycle in a connected m-chain through
x is numerically proportional to V 1, then rX ¼ 1 by repeated applications of
Lemma (2.11).

We can thus assume that there exist m-chains through x, G1 UG2 U � � �UGm,
with x A G1 and Gi VGiþ1 0j, such that, for some j A f1; . . . ;mg the irreducible
components G1

j and G2
j of Gj are not numerically proportional to V1.

Let j0 A f1; . . . ;mg be the minimum integer for which such a chain exists; by
the generality of x we have j0 b 2. If j0 ¼ 2 set x1 ¼ x, otherwise let x1 be a
point in Gj0�1 VGj0�2. Since Gj0�1 HLocusðV1Þx1 there is an irreducible com-
ponent Y of LocusðV 1Þx1 which meets Gj0 . By Lemma (2.11), N1ðY ;XÞ ¼
h½V 1�i.

433fano manifolds



Let g be a component of Gj0 meeting Y and denote by W a family of
deformations of g; then the family W is unsplit and it is not covering, by the
minimality of V 1.

Then dim LocusðWÞY ¼ dim X � 1, and so LocusðWÞ ¼ LocusðWÞY .
Moreover, in this case, by part (b) of Corollary (2.12) we get
N1ðLocusðWÞY ;XÞ ¼ h½V 1�; ½W �i. Therefore rX ¼ 2 by Theorem (2.13). r

Now, in view of Theorem (5.1) it is straightforward to derive the following
results.

Proposition 5.2. Let X be a Fano manifold of dimensionb 7, Picard
number rX and pseudoindex iX > ðdim X � 3Þ=2. Then rX ðiX � 1Þa dim X and
equality holds if and only if X ¼ ðP iX�1ÞrX .

Proposition 5.3. Let X be a Fano manifold of Picard number rX and
pseudoindex iX > dim X � 4. Then rX ðiX � 1Þa dim X and equality holds if and
only if X ¼ ðP iX�1ÞrX .

Remark 5.4. All the previous results can be improved once the Generalized
Mukai Conjecture is proved in the case of Fano manifolds of dimension 6.
However, this seems to be much more di‰cult, so in the next section we prove
the conjecture under some additional assumption.

6. Fano manifolds with an unsplit dominating family

Since the Generalized Mukai Conjecture holds for Fano manifolds of dimen-
sion lower than or equal to five, in the next theorems we deal with manifolds of
dimension at least six: in Theorem (6.2) we consider Fano manifolds of dimension
greater than six and pseudoindex dim X=3, while in Theorem (6.3) we consider
Fano sixfolds.

We start with the following

Lemma 6.1. Let X be a Fano manifold of Picard number rX and pseudoindex
iX ¼ dim X=3. If X admits an unsplit dominating family V of rational curves
such that �KX � V > dim X=3, then rX ðiX � 1Þ < dim X.

Proof. Note that for iX ¼ 1 there is nothing to prove, so we can assume
iX b 2 (and so dim X b 6).

Since V is an unsplit dominating family of rational curves on X , then either
X is rcðVÞ-connected and so rX ¼ 1, or there exists a minimal horizontal
dominating family V 0 with respect to the rcðVÞ-fibration.

In this last case, if V 0 is not unsplit, we get that an irreducible component
D of LocusðV 0;VÞx 0 , for a general point x 0 A LocusðV 0Þ, has dimension at least
dim X � 1 by Lemma (2.10). If D ¼ X , then rX ¼ 2 by part (b) of Corollary
(2.12); if D is a divisor, then rX ¼ 2 unless dim X ¼ 6 and rX ¼ 3 by Lemma
(4.4).
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We can thus assume that V 0 is unplit. Now, either X is rcðV ;V 0Þ-
connected and so rX ¼ 2, or there exists a minimal horizontal dominating family
V 00 with respect to the rcðV ;V 0Þ-fibration. If V 00 is not unsplit, then by Lemma
(2.10) we can compute dim LocusðV 00;V 0;VÞx 00 for a general point x 00 A
LocusðV 00Þ; then we reach a contradiction unless dim X ¼ 6 and rX ¼ 3 by
part (b) of Corollary (2.12). If otherwise V 00 is unsplit, then either X is
rcðV ;V 0;V 00Þ-connected and so rX ¼ 3, or there exists a minimal horizontal
dominating family V 000 with respect to the rcðV ;V 0;V 00Þ-fibration. Then, for a
general point x 000 A LocusðV 000Þ, computing the dimension of LocusðV 000;V 00;
V 0;VÞx 000 , we find that either dim X ¼ 6 or 9, X ¼ LocusðV 000;V 00;V 0;VÞx 000

and rX ¼ 4, or dim X ¼ 6, an irreducible component of maximal dimension
of LocusðV 000;V 00;V 0;VÞx 000 is a divisor and rX ¼ 4, or 5 by Lemma (4.4). r

Theorem 6.2. Let X be a Fano manifold of Picard number rX , dimension
dim X > 6 and pseudoindex iX ¼ dim X=3. If X admits an unsplit dominating
family of rational curves, then rX ðiX � 1Þa dim X and equality holds if and only
if X ¼ ðP3Þ4.

Proof. Denote by V any unsplit dominating family of rational curves on
X . We can assume that �KX � V ¼ dim X=3, since if there exists an unsplit
dominating family such that �KX � V > dim X=3, the assertion follows by
Lemma (6.1). Let V 1; . . . ;V k be families of rational curves as in Construction
(4.1); then by Lemma (4.3) we get ka 3, unless k ¼ 4, dim X ¼ 9 and iX ¼ 3, or
X ¼ ðP3Þ4.

If all the families V i are unsplit, then rX ¼ k by Proposition (3.3).
We can thus assume that at least one of these families, say V j, is not

unsplit. Since �KX � V j b 2 dim X=3, by Lemma (4.3) we can have only one
non-unsplit family among V 2; . . . ;V k and ka 3. Moreover, if j ¼ 3, then
dim X ¼ 9 by Lemma (4.3), so rX ¼ 3 by part (a) of Lemma (4.5).

So we are left to consider j ¼ 2. We claim that in this case X is
rcðV 1;V2Þ-connected. In fact, if this were not the case, there should be a
family V 3 which is horizontal with respect to the rcðV 1;V2Þ-fibration. Then, by
Lemma (4.3), we would have that dim X ¼ 9 and, by Proposition (2.8), that all
the V is are dominating with �KX � V 2 > �KX � V 3, which is a contradiction.

Consider an irreducible component G of LocusðV 2;V 1Þx2 of maximal
dimension. Then dim Gb dim X � 2 by Lemma (2.10) and N1ðG;XÞJ
h½V 1�; ½V 2�i by part (b) of Corollary (2.12). If dim G ¼ dim X then clearly
rX ¼ 2, while if dim G ¼ dim X � 1 then rX ¼ 2 by Lemma (4.4).

We can thus assume that dim G ¼ dim X � 2. Since, if all the components
of the reducible cycles are contained in h½V 1�; ½V 2�i then rX ¼ 2, we can assume
that this is not the case. Let G ¼ G1 þ G2 be a reducible cycle of V2 which is
not contained in h½V 1�; ½V 2�i and denote by W i a family of deformations of Gi,
i ¼ 1; 2.

By Lemma (2.10) we get �KX � V 1 ¼ iX , �KX � V 2 ¼ 2iX and
dim LocusðV 2Þx2 ¼ 2iX � 1, so that V 2 is covering by Proposition (2.8).
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We claim that there does not exist any W i, among the families that are not
contained in h½V 1�; ½V 2�i, such that dim LocusðW iÞ ¼ dim X � 1. In fact, if
such a family W i would exist, then it could not be trivial on both V 1 and V 2

by Corollary (3.4) and Lemma (3.5). Therefore LocusðW iÞ would intersect
LocusðV 2;V 1Þx2 , so dim LocusðV 2;V 1;W iÞx2 b dim X , which is a contradiction
since W i is not covering.

It follows that dim LocusðW iÞa dim X � 2 for any family W i that is not
contained in h½V 1�; ½V 2�i. Then LocusðW 1;W 2;V 1Þx has an irreducible com-
ponent D of dimension at least dim X � 1 by combining Lemma (2.10) and part
(b) of Proposition (2.8). As N1ðD;X ÞJ h½V 1�; ½W 1�; ½W 2�i by part (b) of
Corollary (2.12), we conclude that rX ¼ 3: this is clear if dim D ¼ dim X , while
it follows by Theorem (2.13) if dim D ¼ dim X � 1. r

Theorem 6.3. Let X be a Fano manifold of Picard number rX , pseudoindex
iX and dimension 6. If X admits an unsplit dominating family of rational curves,
then rX ðiX � 1Þa 6. Moreover, equality holds if and only if X ¼ P6, or X ¼
P3 � P3, or X ¼ P2 � P2 � P2, or X ¼ P1 � P1 � P1 � P1 � P1 � P1.

Proof. Clearly we can assume iX b 2. Moreover, we can restrict to
iX ¼ 2, since otherwise we can apply Theorem (2.14). So we have to show

that rX a 6, with equality if and only if X ¼ ðP1Þ6.
Denote by V any unsplit dominating family of rational curves on X .

We can assume that �KX � V ¼ 2, since if there exists an unsplit dominating
family such that �KX � V b 3 then the assertion follows by Lemma (6.1). Let
V 1; . . . ;V k be families of rational curves as in Construction (4.1); then by
Lemma (4.3) we get ka 5, unless X ¼ ðP1Þ6.

If all the families V i are unsplit, then rX ¼ k by Proposition (3.3).
We can thus assume that at least one of these families, say V j, is not

unsplit. Since �KX � V j b 4, by Lemma (4.3) we can have only one non-unsplit
family among V 2; . . . ;V k and ka 4. Moreover, if j ¼ 4, then rX ¼ 4 by part
(a) of Lemma (4.5), while, if j ¼ 3, then we conclude by part (b) of the same
lemma.

Therefore we are left with j ¼ 2. In this case, a general fiber of the
rcðV 1;V2Þ-fibration p2 : X a Z2 has dimension at least dim LocusðV 2;V 1Þx2 ,
which is at least four by combining Lemma (2.10) and part (b) of Proposition
(2.8). Then dim Z2 a 2.

Assume first that dim Z2 b 1 and denote by V 3 a minimal horizontal dom-
inating family with respect to p2. Then dim LocusðV 3Þx3 a 2, so �KX � V 3 a 3,
by part (b) of Proposition (2.8), and V 3 is unsplit. Moreover, if �KX � V 3 ¼ 3,
then V 3 would be covering by Proposition (2.8), contradicting the minimality
of V 2. Therefore �KX � V 3 ¼ 2; since V 3 cannot be covering, the same prop-
osition implies that dim LocusðV 3Þx3 ¼ 2. It follows that X is rcðV 1;V2;V 3Þ-
connected.

Let F be a general fiber of the rcðV 1;V2Þ-fibration, whose dimension is
equal to four. Consider an irreducible component D of LocusðV 3ÞF of maximal
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dimension. By Lemma (2.10), D is a divisor, and so we are done by Lemma
(4.4).

Assume now that dim Z2 ¼ 0, so that X is rcðV 1;V2Þ-connected.
If �KX � V 2 b 6, then Lemma (4.3) implies that �KX � V 2 ¼ 6. It follows

by Lemma (2.10) that X ¼ LocusðV 2;V 1Þx2 , for a general x2 A LocusðV 2Þ and
rX ¼ 2 by part (b) of Corollary (2.12).

Therefore we can assume that �KX � V 2 < 6, so that the reducible cycles of
V2 have exacly two irreducible components. Consider an irreducible compo-
nent G of LocusðV 2;V 1Þx2 of maximal dimension. Then dim Gb 4 by Lemma
(2.10).

Moreover, if dim G ¼ 6, then rX ¼ 2, so we need to consider dim G ¼ 4
or 5. Since, if all the components of these cycles are contained in h½V 1�; ½V 2�i
then rX ¼ 2, we can assume that this is not the case. Let G ¼ G1 þ G2 be a
reducible cycle of V2 not contained in h½V 1�; ½V 2�i and denote by W i a family of
deformations of Gi, i ¼ 1; 2.

If dim G ¼ 5, then by Lemma (3.5) G � Gi ¼ 0, for i ¼ 1; 2. It follows that
G � V 2 ¼ 0, whence G � V 1 > 0 by Corollary (3.4). Then X ¼ LocusðV 1ÞG, so
N1ðXÞ ¼ h½V 1�; ½V 2�i, a contradiction.

Therefore we are left with dim G ¼ 4. By Proposition (2.8) we get
�KX � V 1 ¼ 2, �KX � V 2 ¼ 4 and dim LocusðV 2Þx2 ¼ 3, so V 2 is covering.

Assume that there exists a family W i, among the families that are not
contained in h½V 1�; ½V 2�i, such that dim LocusðW iÞ ¼ 5. Then it cannot be

trivial on both V 1 and V 2 by Corollary (3.4) and Lemma (3.5). Therefore
LocusðW iÞ intersects LocusðV 2;V 1Þx2 , so dim LocusðV 2;V 1;W iÞx2 ¼ 5, so we
conclude by Theorem (2.13).

We can thus assume that dim LocusðW iÞ ¼ 4 for any family that is not
contained in h½V 1�; ½V 2�i. Then LocusðW 1;W 2;V 1Þy1 has an irreducible com-
ponent D of dimension at least five by Lemma (2.10). Then we conclude by part
(b) of Corollary (2.12) if dim D ¼ 6 and by Theorem (2.13) if dim D ¼ 5. r

By combining the results of this section we actually have the following

Theorem 6.4. Let X be a Fano manifold of Picard number rX and pseudo-
index iX bminfdim X � 4; ðdim X � 2Þ=2; dim X=3g. If X admits an unsplit
dominating family of rational curves, then rX ðiX � 1Þa dim X and equality holds
if and only if X ¼ ðP iX�1ÞrX .
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[15] J. A. Wiśniewski, On a conjecture of Mukai, Manuscripta Math. 68 (1990), 135–141.

Carla Novelli

Dipartimento di Matematica
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