A. A. G. MICHAELKODAI MATH. J.34 (2011), 464–473

A GENERALIZATION OF MICHAEL FINITE DIMENSIONAL SELECTION THEOREM

Adel A. George Michael

Abstract

In this paper we generalize the classical finite dimensional selection theorem due to Michael [12, theorem 1.2] to the case where the target space is only a Hausdorff uniform space. This also generalizes the zero-dimensional selection theorem of Fakhoury-Gieler [7, 8]. The proof of this generalization utilizes an elegant construction due to Ageev.

The purpose of this paper is to generalize Michael finite dimensional selection theorem [12, theorem 1.2] to the case of a Hausdorff uniform target space. The following notations and definitions will be fixed throughout this paper.

If E is a uniform space, we let $\mathcal{U}(E)$ be the basis of the filter of entourages defining the uniformity of E that consists of the open symmetric entourages [4, II.5] and where each such entourage is of the form $V = \{(x, y) \in E \times E : f(x, y) < a\}$ for some **pseudo-metric** f on E and for some a > 0 [5, IX.5, Theorem 1]. $A \subseteq E$ is said to be V-small where $V \in \mathcal{U}(E)$ if $A \times A \subseteq V$.

Let $\mathscr{B}_0(E)$ be the set of non-empty subsets of E. A family $\mathscr{S} \subseteq \mathscr{B}_0(E)$ is said to be equiuniformly- LC^n if $\forall V \in \mathscr{U}(E)$, $\exists W \in \mathscr{U}(E)$ such that for any compact polyhedron K of dimension $\leq n$ [14, p. 142] and for any $A \in \mathscr{S}$ and any continuous map $\varphi: K \to A$ such that $\varphi(K)$ is W-small, then φ extends to a continuous map $\varphi': \operatorname{Con}(K) \to A$ such that $\varphi'(\operatorname{Con}(K))$ is V-small (where $\operatorname{Con}(K) = K \times [0, 1]/K \times \{1\}$ is the cone over K with the quotient topology and where K is identified to $K \times \{0\} \subseteq \operatorname{Con}(K)$ by the obvious map). Note that this is the same concept as that of a uniformly equi- LC^n family defined in [12], in case of a metric E, but our terminology is more consistent with the theme of this paper.

 $A \subseteq E$ is said to be C^n if any continuous map of a compact polyhedron of dimension $\leq n$ into A extends to a continuous map of Con(K) into A. If A is C^n for all $A \in \mathscr{S} \subseteq \mathscr{B}_0(E)$, we say that \mathscr{S} is C^n . In the above $n \geq -1$, where

Mathematics Subject Classification (2000): Primary 54C60, 54C65; Secondary 54F35.

Key words: selection of lower semi-continuous multivalued maps, equiuniformly- LC^n , equimetrizable.

Received November 9, 2010; revised March 8, 2011.

any $\mathscr{S} \subseteq \mathscr{B}_0(E)$ is equiuniformly- LC^{-1} and C^{-1} . $\mathscr{S} \subseteq \mathscr{B}_0(E)$ is said to be equimetrizable [7, 8] if there exists a filter basis $\mathscr{U}_0 = \{V_n : n \ge 1\} \subseteq \mathscr{U}(E)$ for a coarser uniformity on E such that $\forall U \in \mathscr{U}(E), \exists m \ge 1$ such that $A \times A \cap V_m \subseteq U$ for all $A \in \mathscr{S}$ (the family \mathscr{S} is then said to be \mathscr{U}_0 equimetrizable).

If X, E are topological spaces, a map $\varphi : X \to \mathscr{B}_0(E)$ is said to be lower semi-continuous (= l.s.c.) if for any U open $\subseteq E$, $\{x \in X : \varphi(x) \cap U \neq \emptyset\}$ is open in X. If $A \subseteq X$, a selection of φ on A is a map $g : A \to E$ such that $g(a) \in \varphi(a)$ for all $a \in A$.

Our generalization of the Michael finite dimensional selection theorem [12, theorem 1.2] is given by:

MAIN THEOREM. Let *E* be a Hausdorff uniform space and let *X* be a paracompact space and *A* closed $\subseteq X$ such that dim $(X \mod A) \leq n + 1$ [13, p. 50] and let $\varphi: X \to \mathscr{B}_0(E)$ be a l.s.c. map such that $\{\varphi(x) : x \in X\}$ is an equimetrizable, equiuniformly-LCⁿ family of complete subsets of *E*, and let $g: A \to E$ be a continuous selection of φ on *A*. Then *g* extends to a continuous selection of φ on some open $U \supseteq A$. If $\varphi(x)$ is C^n for all $x \in X$, we may take U = X.

The proof of this theorem depends on the following three lemmas.

LEMMA 1 [see 12, Lemma 11.1]. Let *E* be a uniform space and let \mathscr{S} be an equiuniformly- $LC^n \subseteq \mathscr{B}_0(E)$. Then $\forall V \in \mathscr{U}(E)$, $\exists W \in \mathscr{U}(E)$ such that for all $A \in \mathscr{S}$ and any compact polyhedron *X* of dimension $\leq n + 1$ and for any continuous map $k : X \to W(A)$, there exists a continuous map $f : X \to A$ such that $f(x) \in V(k(x))$ for all $x \in X$.

Proof. Let $Z \in \mathcal{U}(E)$ such that $Z^2 \subseteq V$. By induction using the equiuniformly- LC^n property of \mathscr{S} . $\exists S \in \mathcal{U}(E), S \subseteq Z$ such that for all $A \in \mathscr{S}$ and any finite simplicial complex K of dimension $\leq n+1$ and for any map $u: K^0 \to A$ such that $u(\sigma \cap K^0)$ is S-small for all $\sigma \in K$, then u extends to a continuous map $v: K \to A$ such that $v(\sigma)$ is Z-small for all $\sigma \in K$.

Let $W \in \mathcal{U}(E)$ such that $W^3 \subseteq S$ and let X and k be as in the lemma. Passing to a fine barycentric subdivision of X, we may assume that $k(\sigma)$ is W-small $\forall \sigma \in X$. For all $v \in X^0$ let $f(v) \in A$ be such that $k(v) \in W(f(v))$, then f extends to a continuous map over X such that $f(\sigma)$ is Z-small for all $\sigma \in X$. For $x \in X$, we have $x \in \langle v_0, \ldots, v_m \rangle$ and $f(x) \in Z(f(v_0))$, $f(v_0) \in W(k(v_0))$, $k(v_0) \in W(k(x))$ give $f(x) \in V(k(x))$ as desired.

LEMMA 2 [see 12, Lemma 11.2]. Let E be a locally convex topological vector space (= LCTVS) and let \mathscr{S} be an equiuniformly- $LC^n \subseteq \mathscr{B}_0(E)$. Then $\forall R, T \in \mathscr{U}(E), \exists M \in \mathscr{U}(E)$ depending on R, T and $\exists S \in \mathscr{U}(E)$ depending only on R such that if K is a compact polyhedron of dimension $\leq n$ and if $A \in \mathscr{S}$ then any continuous map $k : K \to M(A)$ such that k(K) is S-small extends to a continuous map $k' : \operatorname{Con}(K) \to T(A)$ such that $k'(\operatorname{Con}(K))$ is R-small. If \mathscr{S} is C^n , then for $R = E \times E$, we may take $S = E \times E$.

Proof. Let $L \in \mathcal{U}(E)$ such that $L^3 \subseteq R$. By the equiuniformly- LC^n property of \mathscr{S} , there exists $S \in \mathcal{U}(E)$ such that if K is a compact polyhedron of dimension $\leq n$ and if $A \in \mathscr{S}$ then any continuous map $k : K \to A$ such that k(K) is S^3 -small extends to a continuous map $k' : \operatorname{Con}(K) \to A$ such that $k'(\operatorname{Con}(K))$ is L-small.

Let $Z \in \mathcal{U}(E)$ such that $Z \subseteq T \cap S \cap L$ and $Z = \{(x, y) \in E : p(x - y) < 1\}$ where *p* is a continuous pseudonorm on *E* [6]. Now *Z* determines $M \in \mathcal{U}(E)$ by lemma 1 so that if *K* is a compact polyhedron of dimension $\leq n$ and if $A \in \mathcal{S}$ and if $k : K \to M(A)$ is any continuous map such that k(K) is *S*-small then there exists a continuous map $f : K \to A$ such that $f(x) \in Z(k(x))$ for all $x \in K$. Note that f(K) is *ZSZ*-small or f(K) is *S*³-small, hence *f* extends to a continuous map $f' : Con(K) \to A$ such that f'(Con(K)) is *L*-small.

Define $k': \operatorname{Con}(K) \to E$ by $k'(x,t) = 2t \cdot f(x) + (1-2t) \cdot k(x)$ for $0 \le t \le \frac{1}{2}$ and k'(x,t) = f'(x,2t-1) for $\frac{1}{2} \le t \le 1$ so that k' is a continuous extension of kand $k'(\operatorname{Con}(K)) \subseteq Z(A) \subseteq T(A)$ and $k'(\operatorname{Con}(K))$ is ZLZ-small, hence it is *R*-small as desired.

LEMMA 3 [see 12, Lemma 11.3 and 1, Lemma 2.8]. Let *E* be a uniform space, $V \in \mathcal{U}(E)$, *X* be a topological space, $\varphi : X \to \mathcal{B}_0(E)$ be a l.s.c. map and let *C* compact $\subseteq E$. Then $\{x \in X : C \subseteq V(\varphi(x))\}$ is open $\subseteq X$.

Proof. Let $x_0 \in X$ such that $C \subseteq V(\varphi(x_0))$.

Claim. $\exists S, W \in \mathscr{U}(E)$ such that $SW \subseteq V$ and $C \subseteq W(\varphi(x_0))$.

Proof of Claim. Let $V = \{(x, y) \in E \times E : f(x, y) < a\}$ where f is a pseudometric on E. The map $C \to [0, a)$ defined by $z \to \inf\{f(z, y) : y \in \varphi(x_0)\}$ is upper semi-continuous [4, IV.30, Theorem 4]. Hence $\exists z_0 \in C$ such that $\inf\{f(z_0, y) : y \in \varphi(x_0)\} = \sup\{\inf\{f(z, y) : y \in \varphi(x_0)\} : z \in C\} = a_0 < a$ [4, IV.30, Theorem 3]. Set $W = \{(x, y) \in E \times E : f(x, y) < \frac{1}{2}(a + a_0)\}, S = \{(x, y) \in E \times E : f(x, y) < \frac{1}{2}(a - a_0)\}.$ Clearly, these satisfy the requirements.

Let $S, W \in \mathcal{U}(E)$ be as given by the above claim. There exists F finite $\subseteq C$ such that $C \subseteq S(F)$. Also $x_0 \in \bigcap_{z \in F} \{x \in X : \varphi(x) \cap W(z) \neq \emptyset\} = O$ open $\subseteq X$. Hence $C \subseteq S(F) \subseteq SW(\varphi(x)) \subseteq V(\varphi(x)) \quad \forall x \in O$.

This paper is divided into two sections. Section 1 is devoted to generalizing Ageev construction [1] culminating in theorem 1.4. In section 2 we establish our generalization of Michael finite dimensional selection theorem in theorem 2.2.

1. Ageev construction

The following notations and definitions will be adopted in this section.

Let X and E be topological spaces and let $\varphi : X \to \mathscr{B}_0(E)$ be any map. The graph of $\varphi(=\operatorname{Gr}(\varphi))$ is defined by $\operatorname{Gr}(\varphi) = \{(x, y) \in X \times E : y \in \varphi(x)\}$. A map

466

 $F: X \to \mathscr{B}_0(E)$ is called an (*n*-)step function from X to E if there exists $\{A_{\alpha} : \alpha \in I\}$ locally finite open cover of X and K_{α} compact polyhedron (of dimension *n*) for all $\alpha \in I$ such that $Gr(F) = \bigcup \{A_{\alpha} \times K_{\alpha} : \alpha \in I\}$ and we denote F by $\{A_{\alpha}\} \otimes \{K_{\alpha}\}$. In particular, F is called a contractible (*n*-)step function if K_{α} is contractible for all $\alpha \in I$.

Let $F_1 = \{A_{\alpha}\} \otimes \{K_{\alpha}\}, F_2 = \{B_i\} \otimes \{L_i\}$ be two step functions from X to E: F_1 refines F_2 , denoted by $F_1 \leq F_2$, if for any α , there exists $i(\alpha)$ such that $A_{\alpha} \subseteq B_{i(\alpha)}$ and $K_{\alpha} = L_{i(\alpha)}$, and F_1 star refines F_2 , denoted by $F_1 \leq^* F_2$, if $A_{\alpha} \cap B_i \neq \emptyset \Rightarrow K_{\alpha} \subseteq L_i \ \forall \alpha, i$. Note that if F_1, F_2, F_3 are step functions from X to E, then

- (i) $F_1 \leq F_2$ or $F_1 \leq^* F_2 \Rightarrow F_1(x) \subseteq F_2(x) \quad \forall x \in X$,
- (ii) $F_1 \leq F_2$ and $F_3 \leq F_2 \Rightarrow F_1 \leq F_3$,
- (iii) $F_1 \leq^* F_2$ and $F_2 \leq^* F_3 \Rightarrow F_1 \leq^* F_3$.

Finally, we remark that if *E* is any infinite dimensional Hausdorff LCTVS and if *K* is a compact polyhedron and if $f: K \to E$ is a PL-embedding, then PLEmb_f(Con(*K*), *E*) = {*g*: *g* PL-embedding of Con(*K*) into *E*, *g*|_{*K*} = *f* } is uniformly dense in $C_f(Con(K), E) = \{g: g \text{ continuous map of Con($ *K*) into*E*,*g*|_{*K*} =*f* $}. Indeed PL_f(Con($ *K*),*E* $) = {$ *g*:*g*PL-map of Con(*K*) into*E*,*g*|_{*K*}=*f* $} is uniformly dense in <math>C_f(Con(K), E) = \{g: g \text{ PL-map of Con($ *K*) into*E*,*g* $|_$ *K* $} =$ *f* $}$ $is uniformly dense in <math>C_f(Con(K), E)$ by using barycentric subdivisions [10, p. 91], and by a general position argument we get that PLEmb_f(Con(*K*), *E*) is uniformly dense in PL_f(Con(*K*), *E*) [same argument as 10, p. 94].

The Ageev construction in [1] for the proof of the classical Michael finite dimensional selection theorem is generalized in the following three lemmas.

LEMMA 1.1 [see 1, Lemma 2.7 + Proposition 5.3]. Let *E* be a uniform space and let $W, S \in \mathcal{U}(E)$. Then for any paracompact space *X* and any l.s.c. map $\varphi: X \to \mathcal{B}_0(E)$ and for any continuous map $k: X \to E$ such that $k(x) \in W(\varphi(x))$ for all $x \in X$, there exists a contractible 0-step function $F: X \to \mathcal{B}_0(E)$ such that $F(x) \subseteq S(\varphi(x)), F(x)$ is W^4 -small and $k(x) \in W^2(F(x))$ for all $x \in X$.

Proof. Let $b: X \to E$ be a selection of φ such that $k(x) \in W(b(x))$ for each $x \in X$. For all $x \in X$, let O(x) be an open neighborhood of x such that k(O(x)) is *W*-small and $O(x) \times \{b(x)\} \subseteq \operatorname{Gr}(S(\varphi))$ by lemma 3 (where $S(\varphi)$ is the map $X \ni z \to S(\varphi(z)) \in \mathcal{B}_0(E)$). Let $\{A_{\alpha} : \alpha \in I\}$ be a locally finite open refinement of $\{O(x) : x \in X\}$ and let $I \ni \alpha \to x(\alpha) \in X$ be a refining map and let $K_{\alpha} = \{b(x(\alpha))\}$. Then $F = \{A_{\alpha}\} \otimes \{K_{\alpha}\}$ is a contractible 0-step function from X to E and $F(x) = \bigcup \{K_{\alpha} : x \in A_{\alpha}\} \subseteq S(\varphi(x))$. Note that

$$x \in A_{\alpha} \subseteq O(x(\alpha)) \Rightarrow k(x) \in W(k(x(\alpha)) \text{ and } k(x(\alpha)) \in W(b(x(\alpha)))$$

 $\Rightarrow k(x) \in W^2(F(x))$

So that if $x \in A_{\alpha} \cap A_{\beta}$, then $b(x(\alpha)), b(x(\beta)) \in W^{2}(k(x))$, hence $b(x(\alpha)) \in W^{4}(b(x(\beta)))$ and F(x) is W^{4} -small as desired.

LEMMA 1.2 [see 1, Proposition 3.1 + Proposition 5.4]. Let E be an infinite dimensional Hausdorff LCTVS and let \mathscr{S} be an equiuniformly- $LC^n \subseteq \mathscr{B}_0(E)$. Then $\forall R, T \in \mathscr{U}(E), \exists M \in \mathscr{U}(E)$ depending on R, T and $\exists S \in \mathscr{U}(E)$ depending only on R such that if X is a paracompact space and if $\varphi : X \to \mathscr{S}$ is a l.s.c. map and if $F_k : X \to \mathscr{B}_0(E)$ is a k-step function such that $F_k(x) \subseteq M(\varphi(x))$ and $F_k(x)$ is S-small for all $x \in X$, where $0 \le k \le n$, then there exists $F_{k+1} : X \to \mathscr{B}_0(E)$, a contractible k + 1-step function such that $F_{k+1}(x) \subseteq T(\varphi(x))$ and $F_{k+1}(x)$ is R^2 -small for all $x \in X$, and $G_k \le^* F_{k+1}$ for some k-step function G_k where $G_k \le F_k$. If \mathscr{S} is C^n then for $R = E \times E$ we may take $S = E \times E$.

Proof. For $R, T \in \mathcal{U}(E)$, let $S, M \in \mathcal{U}(E)$ be as given by lemma 2. If $F_k = \{A_\alpha\} \otimes \{K_\alpha\}$, then $F_k(x) = \bigcup \{K_\alpha : x \in A_\alpha\}$ is a compact polyhedron [10, p. 2] of dimension $k \leq n$. By lemma 2 and [4, II.31] $F_k(x)$ extends to an *R*-small PL-embedding of $\operatorname{Con}(F_k(x))$ in $T(\varphi(x))$. We identify $\operatorname{Con}(F_k(x))$ by its image under this PL embedding.

By lemma 3 and the paracompactness of X [14, p. 70], there exists $\{O(x) : x \in X\}$ an open star refinement of $\{A_{\alpha}\}$ such that $x \in O(x)$ and $O(x) \times \operatorname{Con}(F_k(x)) \subseteq \operatorname{Gr}(T(\varphi))$ (where $T(\varphi)$ is the map $X \ni z \to T(\varphi(z)) \in \mathscr{B}_0(E)$). Let $\{B_{\beta}\}$ be a locally finite open refinement of $\{O(x)\}$ and let $B_{\beta} \subseteq O(x_{\beta})$ and $N(B_{\beta}, \{O(x)\}) = \bigcup \{O(x) : O(x) \cap B_{\beta} \neq \emptyset\} \subseteq A_{\alpha(\beta)}$.

Define $G_k = \{B_\beta\} \otimes \{K_{\alpha(\beta)}\} \leq F_k$ and $F_{k+1} = \{B_\beta\} \otimes \{\operatorname{Con}(F_k(x_\beta))\}$. Note that

$$B_{\beta} \cap B_{s} \neq \emptyset \Rightarrow O(x_{\beta}) \cap B_{s} \supseteq B_{\beta} \cap B_{s} \neq \emptyset$$

$$\Rightarrow x_{\beta} \in O(x_{\beta}) \subseteq N(B_{s}, \{O(x)\}) \subseteq A_{\alpha(s)}$$

$$\Rightarrow \operatorname{Con}(F_{k}(x_{\beta})) \supseteq F_{k}(x_{\beta}) = \bigcup \{K_{\alpha} : x_{\beta} \in A_{\alpha}\} \supseteq K_{\alpha(s)}$$

hence $G_k \leq F_{k+1}$. Also, $F_{k+1}(x) = \bigcup \{ \operatorname{Con}(F_k(x_\beta)) : x \in B_\beta \} \subseteq T(\varphi(x)) \text{ and }$

$$x \in B_s \Rightarrow \forall B_\beta \ni x \quad \operatorname{Con}(F_k(x_\beta)) \supseteq K_{\alpha(s)}$$
$$\Rightarrow F_{k+1}(x) \text{ is } R^2\text{-small.}$$

LEMMA 1.3 [see 1, Proposition 3.4]. Let X be a normal topological space of covering dimension $\leq n + 1$ and let E be a topological space and let $G_i : X \rightarrow \mathscr{B}_0(E)$ be a contractible i-step function for $0 \leq i \leq n + 1$ such that $G_0 \leq^* G_1 \leq^* \cdots \leq^* G_n \leq^* G_{n+1}$. Then G_{n+1} admits a continuous selection.

Proof. Let $G_i = \{A_{\alpha}(i) : \alpha \in \Lambda(i)\} \otimes \{K_{\alpha}(i) : \alpha \in \Lambda(i)\}$ for $0 \le i \le n + 1$. Then there exists $\omega_i = \{W_{\gamma}(i) : \gamma \in J\}$ a discrete family of closed sets such that ω_i refines $\{A_{\alpha}(i) : \alpha \in \Lambda(i)\}$ for $0 \le i \le n + 1$ and $\omega = \bigcup \{\omega_i : 0 \le i \le n + 1\}$ is a locally finite closed covering of X [5, IX.107, Ex.27]. For each $0 \le i \le n + 1$, take $\alpha(\gamma) \in \Lambda(i)$ such that $W_{\gamma}(i) \subseteq A_{\alpha(\gamma)}(i)$ and put $X_i = \bigcup \{W_{\gamma}(i) : \gamma \in J\}$.

468

It suffices to construct by induction on $0 \le k \le n+1$, continuous maps $s_k : \bigcup \{X_i : 0 \le i \le k\} \to E$ such that $s_k(W_{\gamma}(k)) \subseteq K_{\alpha(\gamma)}(k)$ for $\gamma \in J$, $0 \le k \le n$ and $s_k = s_{k-1}$ on $\bigcup \{X_i : 0 \le i \le k-1\}$ for $0 < k \le n$.

Define $s_0: X_0 \to E$ such that $s_0(W_{\gamma}(0))$ is an arbitrary point in $K_{\alpha(\gamma)}(0)$ for $\gamma \in J$. Assume that s_j have been defined inductively satisfying hypotheses for $0 \le j < k \le n+1$. Note that for $0 \le j < k$ and $\gamma, \beta \in J$

$$W_{\gamma}(k) \cap W_{\beta}(j) \neq \emptyset \Rightarrow K_{\alpha(\beta)}(j) \subseteq K_{\alpha(\gamma)}(k)$$
$$\Rightarrow s_{k-1}(W_{\gamma}(k) \cap W_{\beta}(j)) \subseteq K_{\alpha(\gamma)}(k)$$

so that $s_{k-1}(W_{\gamma}(k) \cap X_j) \subseteq K_{\alpha(\gamma)}(k)$. Define $s_k : \bigcup \{X_i : 0 \le i \le k\} \to E$ such that $s_k = s_{k-1}$ on $\bigcup \{X_i : 0 \le i \le k-1\}$ and $s_k|_{W_{\gamma}(k)}$ to be any continuous extension of $s_{k-1}|_{W_{\gamma}(k)\cap(\bigcup \{X_i:0\le i\le k-1\})} : W_{\gamma}(k)\cap(\bigcup \{X_i:0\le i\le k-1\}) \to K_{\alpha(\gamma)}(k)$ [9, p. 43, p. 68].

As indicated in [1, p. 4374], a direct extension of these lemmas yields another proof of the following Uspenskij's theorem [15] for paracompact spaces with property C.

[15, Theorem 1.3]: Let X be a paracompact space with property C. Then any map $\varphi: X \to \mathscr{B}_0(E)$ where E is a Hausdorff LCTVS space, $Gr(\varphi)$ open $\subseteq X \times E$ and $\varphi(x)$ contractible for all $x \in X$ admits a continuous selection.

Indeed, we may assume that *E* is infinite dimensional by replacing φ , if necessary, by the map $X \to \mathscr{B}_0(E \times l_2)$ defined by $X \ni x \to \varphi(x) \times l_2$, where l_2 is the Hilbert space. Using the facts that $Gr(\varphi)$ open $\subseteq X \times E$ and $\varphi(x)$ contractible for all $x \in X$, we can construct inductively by the same methods of lemma 1.1 and lemma 1.2, with no approximations required, a sequence $G_0 \leq^* G_1 \leq^* \cdots \leq^* G_n \leq^* \cdots$ where G_i is a contactible *i*-step function with $G_i(x) \subseteq \varphi(x)$ for all $x \in X$ [1, lemma 2.7, Proposition 3.1, Proposition 4.1]. Using the property *C*, a continuous selection of φ is established by the same method of lemma 1.3 [1, Proposition 3.4].

Now we get the following theorem.

THEOREM 1.4 [see 1, Theorem 5.1]. Let E be an infinite dimensional Hausdorff LCTVS and let \mathscr{S} be an equiuniformly- $LC^n \subseteq \mathscr{B}_0(E)$. Then $\forall R \in \mathscr{U}(E)$, $\exists W \in \mathscr{U}(E)$ such that if X is a paracompact space of covering dimension $\leq n+1$ and if $\varphi: X \to \mathscr{S}$ is a l.s.c. map and if $k: X \to E$ is a continuous map with $k(x) \in W(\varphi(x))$ for all $x \in X$, it follows that $\forall V \in \mathscr{U}(E)$ there exists a continuous map $f: X \to E$ such that $f(x) \in V(\varphi(x)) \cap R(k(x))$ for all $x \in X$. If \mathscr{S} is C^n then for $R = E \times E$ we may take $W = E \times E$.

Proof. Let $K \in \mathcal{U}(E)$ such that $K^4 \subseteq R$. By induction using lemma 1.2, $\exists M \in \mathcal{U}(E)$ depending on K, V and $\exists S \in \mathcal{U}(E)$ depending only on K such that if $F_0: X \to \mathcal{B}_0(E)$ is a contractible 0-step function such that $F_0(x) \subseteq M(\varphi(x))$ and $F_0(x)$ is S-small for all $x \in X$, then there exists G_k contractible k-step function and F_{k+1} contractible k+1-step function such that $G_k \leq^* F_{k+1}$, $G_k \leq F_k$ for $0 \leq k \leq n$, $F_{n+1}(x) \subseteq V(\varphi(x))$ and $F_{n+1}(x)$ is K^2 -small for all $x \in X$.

Let $W \in \mathscr{U}(E)$ such that $W^3 \subseteq K$ and $W^4 \subseteq S$ and let $k: X \to E$ be a continuous map with $k(x) \in W(\varphi(x))$ for all $x \in X$. Lemma 1.1 provides $F_0: X \to \mathscr{B}_0(E)$ a contractible 0-step function such that $F_0(x) \subseteq M(\varphi(x))$ and $F_0(x)$ is W^4 -small (hence S-small) and with $k(x) \in W^2(F_0(x))$ for all $x \in X$. Applying the above mentioned induction it follows that there exists $G_i: X \to \mathscr{B}_0(E)$ a contractible *i*-step function for $0 \le i \le n+1$ such that $G_0 \le^* G_1 \le^* \cdots \le^* G_n \le^* G_{n+1}, G_{n+1}(x) \subseteq V(\varphi(x))$ and $G_{n+1}(x)$ is K^2 -small and with $k(x) \in W^6(G_0(x))$ for all $x \in X$. Now lemma 1.3 shows that there exists a continuous map $f: X \to E$ such that $f(x) \in G_{n+1}(x) \subseteq V(\varphi(x))$ for all $x \in X$. Note that $k(x) \in W^6(G_0(x)), G_0 \le^* G_{n+1}$ and $G_{n+1}(x)$ is K^2 -small give $k(x) \in K^4(f(x)) \subseteq R(f(x))$ as desired.

2. Main theorem

The following convergence theorem is all what we need to establish our main theorem.

THEOREM 2.1. Let *E* be a Hausdorff uniform space and let \mathscr{S} be an equimetrizable, equiuniformly- LC^n family of complete subsets of *E*. Then $\forall R \in \mathcal{U}(E)$, $\exists W \in \mathcal{U}(E)$ such that if *X* is a paracompact space of covering dimension $\leq n+1$ and if $\varphi: X \to \mathscr{S}$ is a l.s.c. map and if $k: X \to E$ is a continuous map with $k(x) \in W(\varphi(x))$ for all $x \in X$, it follows that there exists a continuous selection $f: X \to E$ of φ such that $f(x) \in R(k(x))$ for all $x \in X$. If \mathscr{S} is C^n then for $R = E \times E$ we may take $W = E \times E$.

Proof. By [3] we may assume that E is an infinite dimensional Hausdorff LCTVS. Let $\mathcal{U}_0 = \{V_n : n \ge 1\} \subseteq \mathcal{U}(E)$ be a filter basis such that $(V_{n+1})^2 \subseteq V_n$ for all $n \ge 1$ and \mathcal{S} is \mathcal{U}_0 equimetrizable. Let $K \in \mathcal{U}(E)$ such that $K^3 \subseteq R$ and let $k \ge 0$ such that $A \times A \cap (V_k)^4 \subseteq K$ for all $A \in \mathcal{S}$ where $V_0 = E$.

By theorem 1.4, for all $n \ge 0$ $V_{n+k} \cap K \in \mathcal{U}(E)$ defines $W_n \in \mathcal{U}(E)$, $W_n \subseteq V_{n+k} \cap K$. Set $W = W_0$. Again theorem 1.4 defines inductively for all $n \ge 0$ continuous maps $f_n : X \to E$ such that $f_0 = k$ and $f_{n+1}(x) \in W_{n+1}(\varphi(x)) \cap (V_{n+k} \cap K(f_n(x)))$ for all $n \ge 0$.

Note that $\emptyset \neq \varphi(x) \cap (V_{n+k}(f_{n+1}(x))) \subseteq \varphi(x) \cap (V_{n+k-1}(f_n(x)))$ for all $n \ge 1$ and since $\varphi(x)$ is complete, we get $\emptyset \neq \bigcap \{(\varphi(x) \cap (V_{n+k-1}(f_n(x))))^- : n \ge 1\}$ and since \mathscr{S} is \mathscr{U}_0 equimetrizable, we get $\bigcap \{(\varphi(x) \cap (V_{n+k-1}(f_n(x))))^- : n \ge 1\}$ $= \{f(x)\}$ for all $x \in X$. We have $f(x) \in (V_k(f_1(x))))^- \subseteq (V_k)^-(f_1(x)) \subseteq (V_k)^3(f_1(x))$ [4, II.4, Proposition 2]. Also, $f_1(x) \in W_1(\varphi(x)) \subseteq V_{k+1} \cap K(\varphi(x))$ shows that there exists $z(x) \in \varphi(x)$, $(z(x), f_1(x)) \in K$ such that $(z(x), f(x)) \in (\varphi(x) \times \varphi(x)) \cap (V_k)^4 \subseteq K$ so that $f(x) \in K^3(k(x)) \subseteq R(k(x))$.

To establish the continuity of f, let $x_0 \in X$ and let $U, M \in \mathcal{U}(E)$ such that $M^2 \subseteq U$ and let $m \ge 1$ such that $(\varphi(x) \times \varphi(x)) \cap (V_{m+k})^6 \subseteq M$ for all $x \in X$. Note that $x_0 \in O = \{x \in X : (\varphi(x) \cap (V_{m+k}(f_{m+1}(x))))^- \cap M(f(x_0)) \neq \emptyset\}$ open [11, proposition 2.3 + proposition 2.5] so that

470

$$x \in O \Rightarrow \exists a \in (\varphi(x) \cap (V_{m+k}(f_{m+1}(x))))^{-} \cap M(f(x_0)), \text{ therefore}$$
$$(a, f(x)) \in (\varphi(x) \times \varphi(x)) \cap (V_{m+k})^{6} \subseteq M$$
$$\Rightarrow f(x) \in M^{2}(f(x_0)) \subseteq U(f(x_0)).$$

Now we can establish our main theorem.

THEOREM 2.2. Let E be a Hausdorff uniform space, X a paracompact space, A closed $\subseteq X$ with dim $(X \mod A) \le n+1$, $\varphi: X \to \mathscr{B}_0(E)$ l.s.c. map such that $\{\varphi(x): x \in X \setminus A\}$ is an equimetrizable, equiuniformly-LCⁿ family of complete subsets of E and let $g: A \to E$ be a continuous selection of φ . Then there exists U open $\supseteq A$ and a continuous selection of φ on U extending g. If $\{\varphi(x): x \in X\}$ is C^n then we may take U = X.

Proof. By [3] we may assume that *E* is an infinite dimensional Hausdorff LCTVS which is the product of Banach spaces [6]. Let $G: X \to E$ be any continuous extension of *g* [2, theorem 4.1]. Note that $\mathscr{S} = \{\varphi(x) : x \in X \setminus A\} \cup \{\{z\} : z \in E\}$ is an equimetrizable, equiuniformly-*LC*^{*n*} family of complete subsets of *E*. Let $\mathscr{U}_0 = \{V_n : n \ge 1\} \subseteq \mathscr{U}(E)$ be a filter basis such that $(V_{n+1})^2 \subseteq V_n$ for all $n \ge 1$ and \mathscr{S} is \mathscr{U}_0 equimetrizable. Define $\psi : X \to \mathscr{B}_0(E)$ by $\psi(x) = g(x)$ for $x \notin A$, then ψ is l.s.c. [11, example 1.3*].

By theorem 2.1, for all $i \ge 0$, V_i defines $W_i \in \mathscr{U}(E)$, $W_i \subseteq V_i$, $(W_{i+1})^- \subseteq W_i$ where $V_0 = E \times E$. Again by theorem 2.1, for all $i \ge 0$, W_i defines $Z_i \in \mathscr{U}(E)$, $Z_i \subseteq W_i$, $(Z_{i+1})^- \subseteq Z_i$. We have $A \subseteq U_i = \{x \in X : G(x) \in Z_i(\psi(x))\} = \{x \in X : \psi(x) \cap Z_i(G(x)) \ne \emptyset\}$ open [11, proposition 2.5]. Observe that if $x \in \bigcap \{U_i : i \ge 1\}$ then $\bigcap \{\psi(x) \cap Z_i(G(x)) : i \ge 1\} = \{a(x)\}$ for some $a(x) \in E$ and a(x) = g(x) for all $x \in A$. Define, for all $i \ge 0$, $A \subseteq O_i$ open $\subseteq (O_i)^- \subseteq U_i$, $(O_{i+1})^- \subseteq O_i$. If $\{\varphi(x) : x \in X\}$ is C^n then we may take $U_0 = O_0 = E$.

Theorem 2.1 defines, for all $i \ge 0$, $h_i : (O_i)^- \setminus O_i \to E$ a continuous selection of φ such that $h_i(x) \in W_i(G(x))$. Again, theorem 2.1 defines, for all $i \ge 0$ using [11, example 1.3*], $g_i : (O_i)^- \setminus O_{i+1} \to E$ a continuous selection of φ such that $g_i = h_i$ on $(O_i)^- \setminus O_i$, $g_i = h_{i+1}$ on $(O_{i+1})^- \setminus O_{i+1}$ and $g_i(x) \in V_i(G(x))$.

Set $U = O_0$, then $(O_0)^- = \bigcup \{ (O_i)^- \setminus O_{i+1} : i \ge 0 \} \cup (\bigcap \{ (O_i)^- : i \ge 0 \}).$ Define $f: U \to E$ by $f(x) = g_i(x)$ if $x \in U \cap ((O_i)^- \setminus O_{i+1})$ for some $i \ge 0$ and f(x) = a(x) where $\{a(x)\} = \bigcap \{ \psi(x) \cap Z_i(G(x)) : i \ge 1 \}$ if $x \in \bigcap \{ (O_i)^- : i \ge 0 \}.$ Clearly f is a selection of ψ and f is continuous on $U \cap (\bigcup \{ (O_i)^- \setminus O_{i+1} : i \ge 0 \}).$ If $x_0 \in \bigcap \{ (O_i)^- : i \ge 0 \} = \bigcap \{ O_i : i \ge 0 \}$ and if $R \in \mathcal{U}(E)$, then there exists $m \ge 1$ such that $(\varphi(x) \times \varphi(x)) \cap (V_m)^4 \subseteq K$ for all $x \in X \setminus A$ where $K \in \mathcal{U}(E)$, $K^2 \subseteq R$. Note that $x_0 \in O = \{ x \in X : \varphi(x) \cap (K \cap V_m(a(x_0))) \neq \emptyset \} \cap \{ x \in X : G(x) \in V_m(G(x_0)) \} \cap O_m$ open. If $x \in O$, let $c \in \varphi(x) \cap (K \cap V_m(a(x_0))).$ Then $(c, a(x_0)) \in K \cap V_m, (f(x), G(x)) \in V_m, (G(x), G(x_0)) \in V_m, (G(x_0, a(x_0)) \in Z_m.$ Therefore, $(c, f(x)) \in (\varphi(x) \times \varphi(x)) \cap (V_m)^4 \subseteq K$. Hence, $f(x) \in K^2(a(x_0)) \subseteq R(f(x_0)).$ We have the following generalization of Fahkoury-Gieler theorem [7, 8].

COROLLARY 2.3. Let *E* be a Hausdorff uniform space, *X* a paracompact space, *A* closed $\subseteq X$ with dim $(X \mod A) = 0$, $\varphi : X \to \mathscr{B}_0(E)$ l.s.c. map such that $\{\varphi(x) : x \in X \setminus A\}$ is an equimetrizable family of complete subsets of *E* and let $g : A \to E$ be a continuous selection of φ . Then *g* extends to a continuous selection of φ over *X*.

Proof. Put n = -1 in theorem 2.2.

The following corollary generalizes [12, Corollary 1.3].

COROLLARY 2.4. Let G be a Hausdorff topological group and let H be a complete metrizable LC^n subgroup of G such that G/H is paracompact and dim $G/H \le n + 1$. Then the canonical map $p: G \to G/H$ is a locally trivial fibration.

Proof. We consider the left uniform structure on G, then $\mathscr{S} = \{gH : g \in G\}$ is an equimetrizable, equiuniformly- LC^n [12, Example 2.6] family of complete subsets of G and $\varphi : G/H \to \mathscr{B}_0(G)$ defined by $\varphi(x) = p^{-1}(x)$ for all $x \in G/H$ is l.s.c. [11, Example 1.1*], hence p admits a local cross section by theorem 2.2 and therefore it is a locally trivial fibration.

Similarly we can establish the following corollary.

COROLLARY 2.5. Let G be a Hausdorff topological group and let H be a complete metrizable LC^{∞} and C^{∞} subgroup of G. Then the canonical map $p: G \rightarrow G/H$ is a Serre fibration.

References

- S. M. AGEEV, A Non-polyhedral proof of the Michael finite-dimensional selection theorem, J. Math. Sci. (N. Y.) 144 (2007), 4367–4379.
- [2] R. ARENS, Extension of functions in fully normal spaces, Pacific J. Math. 2 (1952), 11-23.
- [3] R. F. ARENS AND J. EELLS, On embedding uniform and topological spaces, Pacific J. Math. 6 (1956), 397–403.
- [4] N. BOURBAKI, Éléments de mathématique, Topologie générale, Chapitres 14, Hermann, Paris, 1971.
- [5] N. BOURBAKI, Éléments de mathématique, Topologie générale, Chapitres 5-10, Hermann, Paris, 1974.
- [6] N. BOURBAKI, Éléments de mathématique, Livre V, Espaces vectoriels topologiques, Hermann, Paris, 1966.
- [7] M. H. FAKHOURY, Sélections continues dans les espaces uniformes, C.R. Acad. Sci., Paris 280 (1975), Serie A, 213–216.
- [8] B. A. GIELER, On continuous selections in uniform spaces, Soviet Math. Dokl. 11 (1970), 1400-1402.

- [9] S. T. Hu, Theory of retracts, Wayne State Univ. Press, 1965.
- [10] J. F. P. HUDSON, Piecewise linear topology, W.A. Benjamin, INC., 1969.
- [11] E. MICHAEL, Continuous selections I, Ann. of Math. 63 (1956), 361-382.
- [12] E. MICHAEL, Continuous selections II, Ann. of Math. 64 (1956), 562-580.
- [13] K. NAGAMI, Dimension theory, Academic Press, New York and London, 1970.
- [14] A. R. PEARS, Dimension theory of general spaces, Cambridge University Press, 1975.
- [15] V. V. USPENSKIJ, A selection theorem for C-spaces, Topology and its Applications 85 (1998), 351–374.

Adel A. George Michael DEPARTMENT OF MATHEMATICS VOORHEES COLLEGE P.O. BOX 678 DENMARK, SC 29042 U.S.A. E-mail: adelgeorge1@yahoo.com