
N. YAGITA
KODAI MATH. J.
34 (2011), 446–463

NOTE ON CHOW RINGS OF NONTRIVIAL

G-TORSORS OVER A FIELD

Nobuaki Yagita

Abstract

Let Gk be a split reductive group over a field k corresponding to a compact Lie

group G. Let Gk be a nontrivial Gk-torsor over a field k. In this paper we study

the Chow ring of Gk . For example when ðG; pÞ ¼ ðG2; 2Þ, we have the isomorphism

CH �ðGkÞð2Þ GZð2Þ.

1. Introduction

Let k be a subfield of C which contains primitive p-th root of the
unity. Let G be a compact connected Lie group. Let us denote by Gk the
split reductive group over k which corresponds G. By definition, a Gk-torsor Gk

over k is a variety over k with a free Gk-action such that the quotient variety
is SpecðkÞ. A Gk-torsor over k is called trivial, if it is isomorphic to Gk or
equivalently it has a k-rational point. Let p be a prime number. In this paper,
we always assume that Gk is nontrivial over any finite extension K=k of degree
coprime to p. (We simply say that Gk is a nontrivial torsor over k at p.)

Let H be a subgroup of G. Given a torsor Gk over k, we can form the
twisted form of G=H by

ðGk � Gk=HkÞ=Gk GGk=Hk:

We mainly study the cases that G are exceptional Lie groups and the
( p component) torsion index tðGÞðpÞ ¼ p. Let T be a maximal torus and B be
the Borel subgroup T HB. In particular, when ðG; pÞ ¼ ðG2; 2Þ, we compute
CH �ðGk=TkÞGCH �ðGk=BkÞ explicitly. Moreover we show CH �ðGkÞð2Þ GZð2Þ.
We also study the case ðG; pÞ ¼ ðSO2 nþ1�1; 2Þ, nb 3. This case CH �ðGkÞð2Þ H
CH �ðGkÞð2Þ but it is not isomorphic to Zð2Þ nor CH �ðGkÞð2Þ. We also have a
partial result for the case ðG; pÞ ¼ ðF4; 3Þ. These are the first examples that
Chow rings are computed for nontrivial torsors.

For these groups, Petrov, Semenov and Zainoulline [Pe-Se-Za] showed that
the Chow motive of Gk=Bk is isomorphic to a direct sum of the generalized Rost
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motives ([Vo4], [Ro2], [Su-Jo], [Vi-Za]). The algebraic cobordism MGL2�;�ð�Þ
of the Rost motives are given in [Vi-Ya], [Ya4]. From this, we show the
multiplicative structure of CH �ðGk=TkÞ. The algebraic cobordism MGL2�;�ðGkÞ
is studied in [Ya1]. By using arguments in [Ya1], we can compute CH �ðGkÞðpÞ.

The author thanks Burt Totaro, Michishige Tezuka, Masaki Kameko and
Kirill Zainoulline who teach him theories of torsors and algebraic groups. He
also thanks the referee who corrected errors in the first version of this paper.

2. Rost motive

Let k be a field of chðkÞ ¼ 0 and X a smooth variety over k. We consider
the Chow ring CH �ðXÞ generated by cycles modulo rational equivalence. For
a non zero symbol a ¼ fa0; . . . ; ang in the mod 2 Milnor K-theory KM

nþ1ðkÞ=2, let
fa ¼ hha0; . . . ; anii be the ðnþ 1Þ-fold Pfister form. Let Xfa be the projective
quadric of dimension 2nþ1 � 2 defined by fa. The Rost motive Mað¼ MfaÞ is
a direct summand of the motive MðXfaÞ representing Xfa so that MðXfaÞG
Ma nMðP2n�1Þ:

Moreover for an odd prime p and nonzero symbol 00 a A KM
nþ1ðkÞ=p, we

can define ([Ro], [Vo], [Su-Jo], [Vi-Za]) the generalized Rost motive Ma, which is
irreducible and is split over K=k if and only if ajK ¼ 0 (as the case p ¼ 2).

The Chow ring of the Rost motive is well known. Let k be an algebraic
closure of k, X j

k
¼ X nk k, and i

k
: CH �ðX Þ ! CH �ðX j

k
Þ the restriction map.

Lemma 2.1 (Rost [Ro1,2], [Vo4], [Vi-Ya], [Ya3,4]). The Chow ring CH �ðMaÞ
is only dependent on n. There are isomorphisms

CH �ðMaÞGZf1gl ðZfc0glZ=pfc1; . . . ; cn�1gÞ½y�=ðci yp�1Þ
and CH �ðMajkÞGZ½y�=ðypÞ

where jyj ¼ 2ðpn�1 þ � � � þ pþ 1Þ and jcij ¼ jyj þ 2� 2pi. Moreover the restric-
tion map is given by i

k
ðc0 y j�1Þ ¼ py j and i

k
ðci y j�1Þ ¼ 0 for i; j > 0.

Remark. The element y does not exist in CH �ðMaÞ while ci y exists.
Usually CH �ðMaÞ is defined only additively, however when CH �ðMaÞ has the
natural ring structure (e.g., p ¼ 2), the multiplications are given by ci � cj ¼ 0 for
all 0a i; ja n� 1.

Remark. In this paper the degree jxj of an element x A CH �ðXÞ means the
2� times of the usual degree of the Chow ring so that it is compatible with the
degree of the (topological) cohomology H �ðX ðCÞÞ.

Let us use notation W2�ðXÞ for the motivic cobordism MGL2�;�ðXÞðpÞ defined
by Voevodsky. (Hence it is the algebraic cobordism defined by Levine and
Morel [Le-Mo1,2], [Le].) It is known that

W2� ¼ W2�ðpt:ÞGMU 2�ðpt:ÞðpÞ GZðpÞ½x1; x2; . . .�
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where MU 2�ðpt:Þ is the complex cobordism ring and jxij ¼ �2i. It is known
that there is a relation ([Le-Mo1,2], [Le], [Ya2])

W�ðX ÞnW � ZðpÞ GCH �ðXÞðpÞ:ð2:1Þ

We can take for xpi�1 the cobordism class of a 2ðpi � 1Þ-dimensional
manifold whose characteristic numbers are divisible by p but the additive
characteristic number sp i�1 is not divisible by p2. Let us denote xpi�1 as vi.
Let In be the ideal in W� generated by v0; . . . ; vn�1, i.e.,

In ¼ ðp ¼ v0; v1; . . . ; vn�1ÞHW�:ð2:2Þ

Then it is well known that In and Iy are the only prime ideals stable under the
Landweber-Novikov cohomology operations ([Ra]) in W�.

The category of cobordism motives is defined and studied in [Vi-Ya]. In
particular, we can define the algebraic cobordism of motives. The following fact
is the main result in [Vi-Ya] (in [Ya4] for odd primes).

Lemma 2.2 ([Vi-Ya], [Ya4]). The restriction map

i
k
: W�ðMaÞ ! W�ðMajkÞGW�½y�=ðypÞ

is injective and there is an W�-module isomorphism

W�ðMaÞGW�f1gl Infy; . . . ; yp�1gHW�½y�=ðypÞ
such that vi y ¼ ci in W�ðMaÞnW � ZðpÞ GCH �ðMaÞðpÞ in (2.1).

Remark. Let BPhni� ¼ ZðpÞ½v1; . . . ; vn�. Recall ([Ya2]) that

ABPhni2�;�ðXÞGW2�ðXÞnW � BPhni�

for smooth X . Then we also see that

i
k
: ABPhn� 1i2�;�ðMaÞ ! ABPhn� 1i2�;�ðMajkÞ

is injective. In particular, when n ¼ 1, ABPh0i2�;�ð�Þ ¼ CH 2�ð�ÞðpÞ and hence

CH �ðMaÞðpÞ GZð pÞf1glZðpÞ½y�=ðyp�1ÞfpygHZðpÞ½y�=ðypÞGCH �ðMajkÞðpÞ:

3. Compact Lie group G

Let G be a compact connected Lie group. By the Borel theorem, we have
the ring isomorphism for p odd

H �ðG;Z=pÞGPðyÞ=ðpÞnLðx1; . . . ; xlÞ with PðyÞ ¼ 1
k

i¼1

Z½yi�=ðypri

i Þð3:1Þ

where jyij ¼ even and jxjj ¼ odd. When p ¼ 2, for each yi, there is xj with
x2
j ¼ yi. Hence we have gr H �ðG;Z=2ÞGPðyÞ=ð2ÞnLðx1; . . . ; xlÞ.
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Let T be the maximal torus of G and BT the classifying space of T . We
consider the fibering

G !p G=T !i BTð3:2Þ
and the induced spectral sequence

E
�;�
2 ¼ H �ðBT ;H �ðG;Z=pÞÞ ) H �ðG=T ;Z=pÞ:

The cohomology of the classifying space of the torus is given by

H �ðBTÞGZ½t1; . . . ; tl� with jtij ¼ 2:

where l is also the number of the odd degree generators xi in H �ðG;Z=pÞ. It is
known that yi are permanent cycles and that there is a regular sequence ([Tod],
[Mi-Ni]) ðb1; . . . ; blÞ in H �ðBTÞ=ðpÞ such that djxi jþ1ðxiÞ ¼ bi. Thus we get

E �;�0

y GPðyÞnZ=p½t1; . . . ; tl�=ðb1; . . . ; blÞ:
Moreover we know that G=T is a manifold (flag manifold) with torsion free

cohomology, and we get

H �ðG=TÞðpÞ GZðpÞ½y1; ::; yk; t1; . . . tl�=ð f1; . . . ; fk; b1; . . . ; blÞð3:3Þ

where bi ¼ bi modðpÞ and fi ¼ y
pri

i modðt1; . . . ; tlÞ: We also know

MU �ðG=TÞðpÞ GW�½y1; . . . ; yk; t1; . . . tl�=ð ~ff1; . . . ; ~ffk; ~bb1; . . . ; ~bblÞð3:4Þ

where ~bbi ¼ bi modðMU<0Þ and ~ffi ¼ fi modðMU<0Þ:
Let Gk be the split reductive algebraic group corresponding G and Tk the

split maximal torus. Since Gk=Bk is cellular, we have

CH �ðGk=TkÞGCH �ðGC=TCÞGH �ðG=TÞ;
and W�ðGk=TkÞGW�ðGC=TCÞGMU �ðG=TÞ:

Next we consider the relation between CH �ðGkÞ and CH �ðGk=TkÞ (or
W�ðGkÞ and W�ðGk=TkÞ).

Theorem 3.1 (Grothendieck [Gr], [Ya1]). Let Gk be a Gk-torsor over k.
(Here we do not assume the nontriviality of Gk). Let h�ðX Þ ¼ CH �ðX Þ or W�ðXÞ.
Then

h�ðGkÞG h�ðGk=TkÞ=ði�h�ðBTkÞÞG h�ðGk=TkÞ=ðt1; . . . ; tlÞ:

Proof. Let Li ! Gk=Tk be the line bundle corresponding the element
ti A CH 2ðGk=TkÞ. Then we can embed the Tk-bundle Gk ! Gk=Tk into the
associated vector bundle 0

i
Li ! Gk=Tk such that Gk is an open subscheme

of 0
i
Li. Consider the localization exact sequence

0
i

h� 0
j0i

Lj

 !
�!lsi�

h� 0
i

Li

� �
�! h�ðGkÞ �! 0
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where si : Gk=Tk ! Li is a zero section. Since Li are vector bundles

h�ðGk=TkÞG h� 0
i0j

Lj

 !
G h� 0

i

Li

� �
:

By the definition of the first Chern class, we know ti ¼ c1ðLiÞ ¼ s�i si�ð1Þ. Thus
we get the desired result h�ðGkÞG h�ðGk=TkÞ=ðt1; . . . ; tlÞ. r

Note that CH �ðGkÞGCH �ðGCÞ from CH �ðGk=TkÞGCH �ðGC=TCÞ.

Corollary 3.2 ([Ya1], [Ka]). CH �ðGkÞðpÞ GPðyÞðpÞ=ðpyi j 1a ia kÞ.

The following theorem for W�ðGCÞ is one of the main result in [Ya1]. Let
Qi be the Milnor primitive operation in H �ðX ;Z=pÞ inductively defined by
Qi ¼ ½Qi�1;P

pi�1 � and Q0 ¼ b where b is the Bockstein operation and Ppp�1
is the

pp�1-th reduced power operation. It is known that we can take generators such
that QiðxjÞ A PðyÞ=ðpÞ for all ib 0, 1a ja l ([Mi-Ni]).

Theorem 3.3 ([Ya1]). Take generators so that QiðxjÞ A PðyÞ=ðpÞ for all
ib 0, 1a ja l. Then there is an W�-module isomorphism

W�ðGkÞ=I 2y GW� nPðyÞ
,

I 2y;
X
i

viQiðxjÞ j 1a ja l

 !
:

Let P be a parabolic subgroup. Then the inclusion T HP induces the
fibering

P=T ! G=T !p G=Pð3:5Þ
and the spectral sequence (see [Tod])

EðG=TÞ�;�
0

2 GH �ðG=PÞnH � 0 ðP=TÞ ) H �ðG=TÞ:
Since these cohomology have no torsion and are even dimensionally generated,
this spectral sequence collapses,

gr H �ðG=TÞGH �ðG=PÞnH �ðP=TÞ:ð3:6Þ
Hence H �ðG=PÞ can be computed from H �ðG=TÞ (while some cases H �ðG=PÞ
are more easy). The cohomology H �ðP=TÞ can be computed by the fibering

P=T ! BT !i BP: Indeed, if i� jH �ðBPÞ is injective, then H �ðP=TÞGH �ðBTÞ=
ði� ~HH �ðBPÞÞ: Note here when P ¼ B the Borel subgroup, we know H �ðG=TÞG
H �ðG=BÞ (similar isomorphisms hold for CH �ð�Þ and W�ð�Þ).

4. Exceptional groups of type (I)

Let G be a simply connected compact Lie group with the flag manifold G=T
of dimension 2d. The torsion index is defined by

tðGÞ ¼ jH 2dðG=T ;ZÞ=i�H 2dðBT ;ZÞj:

450 nobuaki yagita



By Grothendieck, it is known that any Gk-torsor Gk splits over some fields Li

over k with gcd½Li : k� dividing tðGÞ. By Totaro all tðGÞ are recently known
[To2,3]. Let us write by tðGÞð pÞ the p-component of tðGÞ. In this section, we
restrict the cases tðGÞðpÞ ¼ p (for ease of arguments) and G are simply connected
exceptional Lie groups. We call such ðG; pÞ is of type (I), that is

ðG2; 2Þ; ðF4; 2Þ; ðE6; 2Þ
ðF4; 3Þ; ðE6; 3Þ; ðE7; 3Þ; and ðE8; 5Þ:

Throughout this section, we assume ðG; pÞ are type of (I). For these cases,
the ordinary modðpÞ cohomology is well known

gr H �ðG;Z=pÞGZ=p½y�=ðypÞnLðx1; . . . ; xlÞ
where l ¼ rankðGÞb 2, jyj ¼ 2pþ 2, jx1j ¼ 3, jx2j ¼ 2pþ 1. Moreover

Q1ðx1Þ ¼ y; Q0ðx2Þ ¼ y:

From Corollary 3.2, we see

Corollary 4.1. CH �ðGkÞðpÞ GZðpÞ½y�=ðyp; pyÞ.

From Theorem 3.3 and the Qi-actions, we see

W�ðGkÞ=I 2y GW�½y�=ðpy; v1y; yp; I 2yÞ;
while we have more strong result (Theorem 5.1 in [Ya1]).

Corollary 4.2. W�ðGkÞGW�½y�=ðpy; v1y; ypÞ.

Remark. In the Atiyah-Hirzebruch spectral sequence ([Ya2])

E �;� 0;� 00

2 GH �;� 0 ðGk;MU �00 Þ ) MGL�;� 0 ðGkÞ
we know that

d2p�1ðx1Þ ¼ v1 nQ1ðx1Þ ¼ v1y:

Thus we get also E2�;�;�00

y GMU �½y�=ðpy; v1y; ypÞ.

For general G, recall that the polynomial parts PðyÞ of H �ðG;Z=pÞ is
written as 1k

i
Z=p½yi�=ðypri

i Þ. In [Pe-Se-Za], Petrov, Semenov and Zainoulline
defined the J-invariant JpðGkÞ ¼ ði1; . . . ; ikÞ of Gk (roughly speaking) as the
smallest number is such that

ypis

s A ImðCH �ðGk=TkÞ !
i
k
CH �ðGk=TkÞ !

p �
CH �ðGkÞÞ

with some changes for generators. (More accurate definition, see 4.6 in
[Pe-Se-Za].) In particular, JpðGkÞ ¼ ð0; . . . ; 0Þ if and only if Gk splits by a finite
extension K=k of degree coprime to p (4.7, Corollary 6.7 in [Pa-Se-Za]). Hence
if G is a group of type ðIÞ and Gk is nontrivial at p, then JðGkÞ ¼ ð1Þ.
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Theorem 4.3 (Theorem 5.13 in [Pe-Se-Za]). Let JpðGkÞ ¼ ð1Þ. Then there
is a modðpÞ indecomposable motive RpðGÞ such that

CH �ðRpðGÞjkÞÞ=pGZ=p½y�=ðypÞð1Þ
MðGk=Tk;Z=pÞG0

s

RpðGÞnTnjs GRpðGÞnH �ðG=T ;Z=pÞ=ðyÞð2Þ

where we identify H �ðG=T ;ZÞ=ðyÞ as the sum of mod p Tate motives 0Tnjs .

We say that L is splitting field of a variety X if the motive MðX jLÞ of X jL
is isomorphic to a direct sum of twisted Tate motives Tni. A smooth scheme X
is said to be generically split over k if its function field L ¼ kðXÞ is a splitting
field. The complete flag variety Gk=Bk is always generically split.

Theorem 4.4 (Theorem 3.7 in [Pe-Se-Za]). Let Qk HPk be parabolic sub-
groups of Gk which are generically split over k. There is a decomposition of
motive MðGk=QkÞðpÞ GMðGk=PkÞð pÞ nH �ðP=QÞ:

For p ¼ 2; 3, from Proposition 5.21 (for m ¼ p) and §7 in [Pe-Se-Za], we
have the integral motivic decomposition which deduces the modðpÞ decompo-
sition in Theorem 4.3. Moreover when ðG; pÞ ¼ ðG2; 2Þ or ðF4; 3Þ from Bonnet,
Semenov and Zainoulline (see Corollary 6 in [Vi-Za], and also [Se], [Bo],
[Ni-Se-Za]), we know that the integral motive corresponding RpðGÞ is really
generalized Rost motive M2.

Corollary 4.5. Let ðG; pÞ ¼ ðG2; 2Þ or ðF4; 3Þ, and assume that Gk is
nontrivial at p. Then for each parabolic subgroup Pk, Gk=Pk is generically split
and

CH �ðGk=PkÞðpÞ GZ½y�=ðypÞnA and MðGk=PkÞðpÞ GM2 nA

where A is a sum of twisted Tate motives and M2 ¼ Ma is the generalized Rost
motive for some 00 a A KM

3 ðkÞ=p.

The following theorem implies CH �ðGkÞð2Þ GZð2Þ when ðG; pÞ ¼ ðG2; 2Þ.

Theorem 4.6. Let G be type ðIÞ, and assume that

MðGk=BkÞðpÞ GM2 nH �ðG=TÞðpÞ=ðyÞ:

Then the Chow ring CH �ðGk=TkÞðpÞ is multiplicatively generated by t1; . . . ; tl
when p ¼ 2 ( for � < 2pþ 6 when p ¼ odd). Hence CH �ðGkÞðpÞ GZðpÞ when
p ¼ 2 ( for � < 2pþ 6 when p ¼ odd).

Proof. We consider the restriction map

i
k
: W�ðGk=TkÞ ! W�ðGk=TkjkÞGMU �ðG=TÞðpÞ:
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Since i
k
jW�ðM2Þ is injective, so is i

k
above. Let us write

Imði
k
Þ ¼ i

k
ðW�ðGk=TkÞÞHW�ðGk=TkÞ ¼ MU �ðG=TÞðpÞ:

Of course pyi; v1y
i A Imði

k
Þ for i > 0 since so in W�ðM2jkÞ. Note that

t1; ::; tl A Imði
k
Þ because they exist in CH �ðGk=TkÞ since so in CH �ðBTkÞ.

Recall that each element x A W�ðGk=TkjkÞGW�ðGk=TkÞ is represented as

x ¼
Xp�1

i¼0

X
s

vðs; iÞtðs; iÞyi; vðs; iÞ A W�; tðs; iÞ A ZðpÞ½t1; . . . ; tl�ð�Þ

while if x A Imði
k
Þ, then vðs; iÞ A Idealðp; v1Þ for i > 0:

From Corollary 4.2, we see py ¼ v1y ¼ 0 in W�ðGkÞ. From Theorem 3.1,
this means

py; v1y A ðt1; . . . ; tlÞW�ðGk=TkÞ:ð��Þ

(But note that this does not mean py; v1y A ðt1; . . . ; tlÞ Imði
k
Þ while we will see it.)

Let us write v1y ¼
P

vðs; iÞtðs; iÞyi as ð�Þ. The above fact ð��Þ implies jtðs; iÞj > 0
for i > 0, and hence jvðs; iÞj < 0.

Now we consider Wh1i�ð�Þ-theory. Let us write

Wh1i�ðX Þ ¼ W�ðXÞnW � ZðpÞ½v1� ¼ ABPh1i2�;�ðXÞ:

In Wh1i�ðGk=TkÞ, the fact jvðs; iÞj < 0 means

vðs; iÞ A ðv1Þ ¼ ZðpÞ½v1�<0 ¼ Wh1i<0:

Hence v1y A ðt1; . . . ; tlÞ Imði
k
Þ in Wh1i�ð�Þ theory.

Thus we can write

v1y ¼
Xp�1

i>0

X
s

vðs; iÞ0tðs; iÞ0v1yi þ
X
s

vðs; 0Þ0tðs; 0Þ0 in Wh1i�ðGk=TkÞ:

If vðs; iÞ0 0 0 for i > 0, then apply the same equation to the right hand side v1y in
the above equation. Since tðs; iÞ ¼ 0 when jtðs; iÞj > dimðG=TÞ, we can write

v1y ¼
X
s

vðs; 0Þ00tðs; 0Þ00:

We have the similar result for py. Hence i
k
ðWh1i�ðGk=TkÞÞ is generated as an

Wh1i�-algebra by t1; . . . ; tl when p ¼ 2 (for � < jv1y2j ¼ 2pþ 6 when p ¼ odd).
Since we know the isomorphisms

CH �ðGk=TkÞðpÞ GW�ðGk=TkÞnW � ZðpÞ GWh1i�ðGk=TkÞnWh1i � ZðpÞ;

we get the desired results. r
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5. Exceptional Lie group G2

In this section we study CH �ðGk=TkÞ for the case ðG; pÞ ¼ ðG2; 2Þ. We
recall the cohomology from Toda-Watanabe [To-Wa]

H �ðG=T ;ZÞGZ½t1; t2; y�=ðt21 þ t1t2 þ t22 ; t
3
2 � 2y; y2Þ

with jtij ¼ 2 and jyj ¼ 6. Let Pð¼ P1Þ be the maximal parabolic such that G=P
is isomorphic to a quadric. Then from (3.6) and H �ðP=TÞGZf1; t1g, we have

H �ðG=P;ZÞGZ½t2; y�=ðt32 � 2y; y2ÞGZf1; ygn f1; t2; t22g:
By Bonnet, we have the decomposition

Theorem 5.1 ([Bo], §7 in [Pe-Se-Za]).

MðGk=PkÞGM2 lM2ð1ÞlM2ð2Þ:

Theorem 5.2. There is a ring isomorphism

CH �ðGk=PkÞð2Þ GZð2Þ½t2; u�=ðt62 ; 2u; t32u; u2Þ

GZð2Þ½t2�=ðt62ÞlZ=2½t2�=ðt32Þfug

with jt2j ¼ 2, juj ¼ 4:

Proof. From Lemma 2.2, we know

W�ðM2ÞGW�f1; 2y; v1ygHW�f1; yg:
From the preceding theorem, we have the W�-module isomorphism

W�ðGk=PkÞGW�f1; v1y; 2ygn f1; t2; t22gHW�ðGk=PkÞ:
Since CH �ðX ÞðpÞ GW�ðX ÞnW � ZðpÞ, we have the isomorphism

CH �ðGk=PkÞð2Þ GZð2Þf1; 2ygf1; t2; t22glZ=2fv1ygf1; t2; t22g:
(Note 2v1y ¼ v1ð2yÞ A W<0W�ðGk=PkÞ.)

Here the multiplications are given as follows. Since 2y ¼ t32 modðW<0Þ in
W�ðGk=TkÞ, we can take 2y ¼ t32 A CH �ðG=PkÞð2Þ so that

Zð2Þf1; 2ygf1; t2; t22g ¼ Zð2Þ½t2�=ðt62ÞHCH �ðG=PkÞð2Þ:
Let us write u ¼ v1y in CH �ðGk=TkÞð2Þ. Then t32u ¼ 2yv1y ¼ 0 and u2 ¼
v21 y

2 ¼ 0 in W�ðGk=TkÞnW � Zð2Þ. Hence we have the isomorphism in the
theorem. r

Remark. The space Gk=Pk is isomorphic to the quadric defined by the
maximal neighbor of the 3-Pfister form. Hence its Chow ring is computed in
[Ya3]. (See also Lemma 7.2 and 7.4 below.)

Next consider CH �ðGk=TkÞð2Þ.
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Theorem 5.3. There is a ring isomorphism

CH �ðGk=TkÞð2Þ GZð2Þ½t1; t2�=ðt62 ; 2u; t32u; u2Þ
where u ¼ t21 þ t1t2 þ t22 .

Proof. The Chow ring is isomorphic to

CH �ðGk=TkÞð2Þ GCH �ðGk=PkÞf1; t1gð�Þ

G ðZð2Þf1; 2yglZ=2fv1ygÞf1; t2; t22gf1; t1g:

Here 2y ¼ t32 . Since v1y A ðt1; t2Þ and v1y ¼ 0 A CH �ðGk=TkÞ, we see

v1y ¼ lðt21 þ t1t2 þ t22Þ modððt1; t2ÞW<0W�ðGk=TkÞÞ

for l A Zð2Þ. We can take l ¼ 1 modð2Þ. Otherwise v1y ¼ 0 A W�ðGk=TkÞ=2,
which is W�=2-free, and this is a contradiction. Hence we can take t21 þ t1t2 þ t22
as v1y. (This is also proved by Lemma 4.3 in [Ya1], since Q1ðx1Þ ¼ y and

d3ðx1Þ ¼ t21 þ t1t2 þ t22 .) Hence in CH �ðGk=TkÞ we have the relation

ðt32Þ
2 ¼ 0; ðt32Þu ¼ 0; u2 ¼ 0; 2u ¼ 0:

We consider the mod 2 Poincare polynomialX
i

rankZ=2ðCH 2iðGk=TkÞ=2Þti ¼ ð1þ t2 þ t3Þð1þ tþ t2Þð1þ tÞ

¼ 1þ 2tþ 3t2 þ 4t3 þ 4t5 þ 3t5 þ t6 ¼ ð1� t6Þð1� t4Þ
ð1� tÞð1� tÞ � t5ð1þ tÞ2

which is the (modð2Þ) Poincare series of the right hand side ring of the theorem.
(Note ðt62 ; u2Þ is a regular sequence in Z=2½t1; t2� but ðt62 ; u2; ðt32ÞuÞ is not.) r

The author learned the following remarks by Kirill Zainoulline.

Remark. It is well known that there is a bijection between H 1ðk;G2Þ and
the class of Cayley algebras C from the fact G2 ¼ AutðCj

k
Þ. Hence each

torsor Gk over k corresponds a Cayley algebra. Moreover Gk=Bk and Gk=Pk

correspond the following varieties [Ca-Pe-Se-Za]. By an i-space (i ¼ 1; 2), we
mean i-dimensional subspace Vi of C such that u � v ¼ 0 for every u; v A Vi. The
flag variety corresponding Gk=Bk is the full flag variety

Xð1; 2Þ ¼ fV1 HV2jVi; i � subspacesHCg

and the flag variety corresponding Gk=Pk is

Xð2Þ ¼ fV2jV2; 2� subspacesHCg:
Let g be the map

g : H 1ðk;G2Þ ! H 3ðk;Z=2ÞGKM
3 ðkÞ=2
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induced from the Rost cohomological invariant. The symbol of the Rost motive
in Theorem 5.1 is gðGkÞ i.e., M2 ¼ MgðGkÞ.

Remark. Similar facts hold for ðG; pÞ ¼ ðF4; 3Þ. This case, the correspond-
ing algebras are exceptional Jordan algebras of dimension 27 over k, and the
symbol for the generalized motive is the image of also the Rost cohomological
invariant.

6. Exceptional group F4 for p ¼ 3

Let ðG; pÞ ¼ ðF4; 3Þ throughout this section. Let Gk be a nontrivial Gk-
torsor at 3. Let P be a maximal parabolic subgroup of G given by the the first
three vertexes of the Dynkin diagram.

�1 �� �2)¼�3 �� �4:
We also note G=PGF4=B3 � S1.

Theorem 6.1 (Corollary 6 in [Vi-Za], [Se]). Let M2 be the generalized Rost

motive. Then there is an isomorphism MðGk=PkÞG07

i¼0
M2ðiÞ.

We first recall the ordinary cohomology of G=P ([Is-To], Theorem 2 in
[Du-Za]).

H �ðG=PÞGZ½t; y�=ðr8; r12Þ; jtj ¼ 2; jyj ¼ 8

where r8 ¼ 3y2 � t8 and r12 ¼ 26y3 � 5t12: Hence we can rewrite

H �ðG=PÞð3Þ GZð3Þf1; t; . . . ; t7gn f1; y; y2g:
Recall the Chow rings of the Rost motive

CH �ðM2jkÞGZ½y�=ðy3Þ;
CH �ðM2ÞGZf1glZf3y; 3y2glZ=3fv1y; v1y2g:

Of course, the above y A CH �ðMaÞ can be identified with the same named
element in H �ðGk=PkÞð3Þ by the restriction map CH �ðMaÞ ! CH �ðMajkÞH
CH �ðGk=PkÞð3Þ. From the above theorem, we have the decomposition

CH �ðGk=PkÞð3Þ GZð3Þf1; t; . . . ; t7gn ðZð3Þf1; 3y; 3y2glZ=3fv1y; v1y2gÞ:ð�Þ
The ring structure is given as follows.

Theorem 6.2.

CH �ðGk=PkÞð3Þ GZð3Þ½t; b; a1; a2�=ðt16; t8b; b2 ¼ 3t8; bai; 3ai; t
8ai; a1a2Þ

GZð3Þf1; t; . . . ; t7gn ðZð3Þf1; b ¼ p
3t4; t8glZ=3fa1; a2gÞ

where jbj ¼ 8 and ja1j ¼ 4, ja2j ¼ 12.
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Proof. From the relation r8 in CH �ðG=PÞ, we have

3y2 ¼ t8 þ vx A W�ðG=PÞ for v A W<0:

Hence we can take t8 instead of 3y2 in ð�Þ. Of course

ð3yÞ2 ¼ 3t8 þ 3vx A W�ðG=PÞ:

Hence we write by b ¼ p
3t4 the element 3y. Write by a1, a2 the elements

v1y, v1y
2 respectively. Elements in IyW<0 HWðGk=PkÞ reduces to zero in

CH �ðGk=TkÞ. Therefore we have the desired multiplicative results. r

The cohomology H �ðG=TÞ is given by Toda-Watanabe [To-Wa]

H �ðG=TÞð3Þ GZð3Þ½t1; t2; t3; t4; y�=ðr2; r4; r6; r8; r12Þ:

Here relations ri are written by the elementary symmetric functions ci ¼
siðt1; t2; t3; t4Þ, that is,

r2 ¼ c2 � ð1=2Þc21 ; r4 ¼ c4 � c3c1 þ ð1=2Þ3c41 � 3y; r6 ¼ �c4c
2
1 þ c23 ;

r8 ¼ 3c4c
4
1 � ð1=2Þ4c81 þ 3yð24yþ 23c3c1Þ; r12 ¼ y3:

By the arguments similar to the proof of Theorem 5.3 (or Lemma 4.3 in [Ya1]),
we can prove

Theorem 6.3. Let p : Gk=Tk ! Gk=Pk. Then

p�ðtÞ ¼ c1; p�ða1Þ ¼ r2; p�ðbÞ ¼ c4 � c3c1 � ð2Þ�3
c41 :

Hence there is an epimorphism

Zð3Þ½t1; t2; t3; t4�=ðc161 ; c81p
�ðbÞ; p�ðbÞ2 � 3c81 ; p

�ðbÞrj; 3rj; c81rj; r2r6Þ

! CH �ðGk=TkÞð3Þ=ðp�ða2Þ � r6Þ;

where j ¼ 2; 6.

Proof. We consider the composition of maps

CH �ðGk=PkÞ !
p �

CH �ðGk=TkÞ !
i
k
CH �ðGk=TkÞ:

It is known p�ðtÞ ¼ c1 in CH �ðGk=TkÞ. By dimensional reason, so is in
CH �ðGk=TkÞ. Note i

k
p�ðaiÞ ¼ i

k
p�ðv1yiÞ ¼ 0 A CH �ðGk=TkÞ and hence p�ðaiÞ A

Idealðr2; . . . ; r12Þ. By dimensional reason, we see p�ða1Þ ¼ r2 and p�ða2Þ � r6 A
Kerði

k
Þ. The element b is defined from 3y A W�ðGk=TkÞ. So we have the result for

p�ðbÞ from the relation r4. r

If we can take a2 with p�ða2Þ ¼ r6, then we get CH �ðGkÞð3Þ GZð3Þ.
Otherwise we see CH 12ðGkÞð3Þ 0 0.
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7. The orthogonal group SOðmÞ and p ¼ 2

We consider the orthogonal groups G ¼ SOðmÞ and p ¼ 2. The mod 2-
cohomology is written as (see for example [Ni])

gr H �ðSOðmÞ;Z=2ÞGLðx1; x2; . . . ; xm�1Þ
where the multiplications are given by x2

s ¼ x2s. We write y2ðoddÞ ¼ x2ðoddÞ ¼
x2
odd . Hence we can write

H �ðSOðmÞ;Z=2ÞGZ=2½y4iþ2 j 2a 4i þ 2am� 1�=ðysðiÞ
4iþ2ÞnLðx1; x3; . . . xmÞ

where sðiÞ is the smallest number such that 2sðiÞð4i þ 2Þbm and m ¼ m� 1 (resp.
m ¼ m� 2) if m is even (resp. odd).

The Qi-operations are given by Nishimoto [Ni]

Qnxodd ¼ xoddþjQnj; Qnxeven ¼ Qnyeven ¼ 0:

Relations in W�ðSOðmÞÞ are given byX
n

vnQnðxoddÞ ¼
X
n

vnxoddþjQnj ¼ 0 modðI 2yÞ:

For example, the relation in W�ðSOðmÞÞ=I 2y starting with 2y6 are written as

2Q0ðx5Þ þ v1Q1ðx5Þ þ v2Q2ðx5Þ þ v3Q3ðx5Þ þ � � �
¼ 2x6 þ v1x8 þ v2x12 þ v2x20 þ � � �

¼ 2y6 þ v1y
4
2 þ v2 y

2
6 þ v3 y

2
10 þ � � � ¼ 0 modðI 2yÞ:

Theorem 7.1 ([Ya1]). There is an W�
ð2Þ-algebra isomorphism

W�ðSOðmÞÞ=I 2y GW�½y4iþ2 j 2a 4i þ 2am� 1�=ðR; I 2yÞ
where R ¼ frelations starting with y2

sðiÞ

4iþ2; 2y4iþ2; v1y4i 0þ2; i
0 0 0g.

For ease of arguments, we only consider the case G ¼ SOðoddÞ. Let G ¼
SOð2m 0 þ 1Þ and P ¼ SOð2m 0 � 1Þ � SOð2Þ. Then it is well known [To-Wa]

Lemma 7.2. H �ðG=PÞGZ½t; y�=ðtm 0 � 2y; y2Þ jyj ¼ 2m 0.

By Toda-Watanabe [To-Wa], we also know

Theorem 7.3 ([To-Wa]).

H �ðG=TÞGZ½ti; y2i; tm 0 ; y�=ðci � 2y2i; J2i; t
m 0

m 0 � 2y; y2Þ
where 1a iam 0 � 1, ci ¼ sðt1; . . . ; tm 0 Þ and

J2i ¼ 1=4
X2i
j¼0

ð�1Þ jcjc2i�j

 !
¼ y4i �

X
0< j<2i

ð�1Þ jy2jy4i�2j:
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Hence we can write

gr H �ðG=TÞGH �ðG=PÞnA; A ¼ Z½ti; yi�=ðc 0i � 2yi; J2i j 1a iam 0 � 1Þ

where c 0i ¼ sðt1; . . . ; tm 0�1Þ. More precisely, we can write

gr A ¼ PðyÞ0 nPðtÞ0

where PðyÞ0 ¼ 1
i<2 n�1�1 Z½y4iþ2�=ðy2

si Þ so that PðyÞ ¼ PðyÞ0 nZ½y�=ðy2Þ and
where

PðtÞ0 ¼ H �ðBTm 0�1Þ=ðH �ðBUðm 0 � 1ÞÞÞGZ½t1; . . . ; tm 0�1�=ðc 01; . . . ; c 0m 0�1Þ

Indeed, it is also known that

gr H �ðG=ðUðm 0 � 1Þ � SOð2ÞÞÞGPðyÞ0 nH �ðG=PÞ:
Now we recall arguments for quadrics. Let m ¼ 2m 0 þ 1. and let us write

the quadratic form qðxÞ defined by

qðx1; . . . ; xmÞ ¼ x1x2 þ � � � þ xm�2xm�1 þ x2
m

and the projective quadric Xq defined by the quadratic form q. Then it is well
known that (in fact SOðmÞ acts on the a‰ne quadric in Am � 0)

Xq GSOðmÞ=ðSOðm� 2Þ � SOð2ÞÞ:

Hereafter we assume that G ¼ SOðmÞ and P ¼ SOðm� 2Þ � SOð2Þ and Gk

is nontrivial (at p ¼ 2). Moreover we consider the case m ¼ 2nþ1 � 1.
The quadric q is always split over k and we know CH �ðGk=PkÞGCH �ðXqÞ.

Define the quadratic form q 0 by

q 0ðx1; . . . ; xmÞ ¼ x2
1 þ � � � þ x2

m:

Then this q 0 is a subform of

hh�1; . . . ;�1ii ¼ fr nþ1

the ðnþ 1Þ-th Pfister form associated to rnþ1, where r ¼ ð�1Þ A KM
1 ðkÞG

k �=ðk �Þ2. (That is, q 0 is the maximal neighbor of the ðnþ 1Þ-th Pfister form.)
Of course qj

k
¼ q 0j

k
and we can identify Gk=Pk GXq 0 . From Lemma 7.2 (or

Rost’s result), we know

CH �ðXq 0 j
k
ÞGZ½t; y�=ðt2 n�1 � 2y; y2Þ:

(Here note that from the existence of nontrivial Gk, we know 00 rnþ1 A
KM

nþ1ðkÞ=2.) As stated in §2, there is a decomposition of motives

MðXq 0 ÞGMn nZ=2½t�=ðt2 n�1Þ:

Hence we have the additive isomorphism

CH �ðXq 0 ÞGZ½t�=ðt2 n�1Þn ðZf1; cn;0glZ=2fcn;1; . . . ; cn;n�1gÞ:
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With identification t2
n�1 ¼ 2y ¼ cn;0, and ui ¼ cn; i for i > 0, we also get the ring

isomorphism

Lemma 7.4 (§6 or Lemma 2.2 in [Ya3]). There is a ring isomorphism

CH �ðGk=PkÞGZ½t�=ðt2 nþ1�2ÞlZ=2½t�=ðt2n�1Þfu1; . . . ; un�1g

where ui ¼ vi y A W�ðGk=PkÞnW � Zð2Þ so uiuj ¼ 0.

By the projection Gk=Tk ! Gk=Pk, Petrov, Semenov and Zainoulline also
show that the J-invariant J2ðGkÞ ¼ ð0; . . . ; 0; 1Þ (7.5 in [Pe-Se-Za]). So we have

Theorem 7.5. The restriction map i
k
: W�ðGk=BkÞ ! W�ðGk=BkjkÞ ¼

W�ðGk=BkÞ is injective and

gr CH �ðGk=BkÞG gr CH �ðGk=PkÞnA;

gr W�ðGk=BkÞG gr W�ðGk=PkÞnA

where A ¼ Z½ti; y2i�=ðc 0i � 2yi; J2i j 1a iam 0 � 1Þ.

As a corollary, we see that ti, y2i are all in CH �ðGk=TkÞ (but y is not).
Hence CH �ðGk=TkÞ is multiplicatively generated by ti, yi, t and u1; . . . ; un�1.

Theorem 7.6. We have an isomorphism

CH �ðGkÞð2Þ GPðyÞ0=ð2ÞHPðyÞ0 nZ=2½y�=ðy2ÞGCH �ðGkÞð2Þ:

Proof. The proof is quite similar to that of Theorem 4.6. Let us write

Whn� 1i�ðXÞ ¼ W�ðXÞnW � Zð2Þ½v1; . . . ; vn�1�GABPhn� 1i2�;�ðXÞ:
By Theorem 3.1, we want to prove

u1; . . . ; un�1 A ðt1; . . . ; tm 0 ÞCH �ðGk=TkÞ:ð1Þ
This means

u1; . . . ; un�1 A ððt1; . . . ; tm 0 Þ þW<0ÞWhn� 1i�ðGk=TkÞ:
Let us write

Imði
k
Þ ¼ i�

k
ðWhn� 1i�ðGk=TkÞÞHWhn� 1i�ðGk=TkÞ;

Iðt;W<0Þ ¼ ððt1; . . . ; tm 0 Þ þW<0ÞÞ Imði
k
Þ:

(Note I 2y HW<0 Imði
k
Þ.) Thus it is su‰cient for ð1Þ to prove

2y; . . . ; vn�1y A Iðt;W<0Þ:ð2Þ

At first we will show vn�1y A Iðt;W<0Þ. Recall y ¼ y2nþ1�2 ¼ x2 nþ1�2. From
Theorem 7.1 and Nishimoto’s result, we see
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x ¼ 2Q0ðx2 n�1Þ þ v1Q1ðx2 n�1Þ þ � � � þ vn�2Qn�2ðx2 n�1Þ þ vn�1Qn�1ðx2 n�1Þð3Þ
¼ 2x2 n þ v1x2 nþ2 þ � � � þ vn�2x2 nþ2 n�1�2 þ vn�1x2 nþ1�2

¼ 0 in Whn� 1i�ðGkÞ=ðI 2yÞ:

So x A ððt1; ::; tm 0 Þ þ I 2yÞWhn� 1i�ðGk=TkÞ from Theorem 3.1.
Each element z A Whn� 1i�ðGk=TkÞ is written (not uniquely) by

z ¼
X

vI tJyK þ
X

vI 0 tJ 0yK 0yð4Þ

with vI ; vI 0 A Whn� 1i�, tJ ; tJ 0 A Zð2Þ½t1; . . . ; tm 0 � and yK ; yK 0 A PðyÞ0. Note that
if z A ðt1; . . . ; tm 0 ÞWhn� 1i�ðGk=TkÞ, then we can take jtJ j > 0 and jtJ 0 j > 0.

Consider the case z ¼ x in ð3Þ. Since yK A Imði
k
Þ, we see

vI tJyK A ðt1; . . . ; tm 0 Þ Imði
k
Þ:

Since jyj < jtJ 0yK 0yj, we know jvI 0 j < 0, i.e., vI 0y A Imði
k
Þ because vI 0 A Whn� 1i�

¼ Zð2Þ½v1; . . . ; vn�1�. Thus we know vI 0 tJ 0yK 0y A ðt1; . . . ; tm 0 Þ Imði
k
Þ. Therefore

we see

x A Iðt;W<0Þ:ð5Þ
In ð3Þ, x2 nþ2 ¼ y2 nþ2; . . . ; x2 nþ2 n�1�2 are in Imði

k
Þ. So we get

v1x2 nþ2 þ � � � þ vn�2x2 nþ2n�1�2 A W<0 Imði
k
Þ:

Hence we obtain

2x2 n þ vn�1y A Iðt;W<0Þ:ð6Þ

Similarly, we have 2x2 nþ1�2 iþ1 þ vi y A Iðt;W<0Þ, for 0 < i < n� 1.
Next we will see

2y2; . . . ; 2y2 n�2 A Iðt;W<0Þ:ð7Þ

Then in particular, 2x2 n ¼ 2ðx2Þ2
n�1

¼ 2x2x
2 n�1�1
2 A Iðt;W<0Þ implies vn�1y A

Iðt;W<0Þ from ð6Þ. Similarly we can prove vn�2y; . . . ; 2y A Iðt;W<0Þ by using
the arguments (3)–(7). Thus we see ð2Þ and so ð1Þ.

We prove ð7Þ for 2y2 and the other cases are similar. By also using
Nishimoto’s result and Theorem 3.3, we have the relation

x 0 ¼ 2x2 þ v1x4 þ � � � vn�1x2 n ¼ 0 A Whn� 1i�ðGkÞ=I 2y:

By using arguments similar to (3)–(5), we have x 0 A Iðt;W<0Þ. Of course
v1x4 þ � � � vn�1x2 n A W<0 Imði

k
Þ. Thus we see 2y2 A Iðt;W<0Þ. r
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[L-M 2] M. Levine and F. Morel, Cobordisme algébrique II, C. R. Acad. Sci. Paris 332 (2001),

815–820.

[Mi-Ni] M. Mimura and T. Nishimoto, Hopf algebra structure of Morava K-theory of exceptional

Lie groups, Contemp. Math. 293 (2002), 195–231.

[Ni-Se-Za] S. Nikolenko, N. Semenov and K. Zainoulline, Motivic decomposition of anisotropic

varieties of type F4 into generalized Rost motives, J. K-theory 3 (2009), 85–102.

[Ni] T. Nishimoto, Higher torsion in Morava K-theory of SOðmÞ and SpinðmÞ, J. Math. Soc.

Japan. 52 (2001), 383–394.

[Pe-Se-Za] V. Petrov, N. Semenov and K. Zainoulline, J-invariant of linear algebraic groups,

Ann. Sci. Ec. Norm Super. 41 (2008), 1023–1053.

[Ra] D. Ravenel, Complex cobordism and stable homotopy groups of spheres, Pure and applied

mathematics 121, Academic Press, 1986.

[Ro1] M. Rost, Some new results on Chowgroups of quadrics, preprint, 1990.

[Ro2] M. Rost, On the basic correspondence of a splitting variety, preprint, 2006.

[Se] N. Semenov, Motivic decomposition of a compactification of a Merkurjev-Suslin variety, J.

Reine Angew. Math. 617 (2008), 153–167.

[Su-Jo] A. Suslin and S. Joukhovitski, Norm variety, J. Pure and Appl. Algebra 206 (2006),

245–276.

[Tod] H. Toda, On the cohomology ring of some homogeneous spaces, J. Math. Kyoto Univ.

15 (1975), 185–199.

[To-Wa] H. Toda and T. Watanabe, The integral cohomology ring of F4=T and E6=T , J. Math.

Kyoto Univ. 14 (1974), 257–286.

[To1] B. Totaro, The Chow ring of classifying spaces, Algebraic K-theory, University of Wash-

ington, Seattle, 1997, Proc. of Symposia in Pure Math. 67 (1999), 248–281.

[To2] B. Totaro, The torsion index of E8 and other groups, Duke Math. J. 129 (2005), 219–248.

[To3] B. Totaro, The torsion index of the spin groups, Duke Math. J. 129 (2005), 249–290.

[Vi] A. Vishik, Motives of quadrics with applications to the theory of quadratic forms, Geometric

methods in algebraic theory of quadratic forms, Lecture note in math. 1835 (2004), 25–101.

[Vi-Ya] A. Vishik and N. Yagita, Algebraic cobordisms of a Pfister quadric, J. London Math.

Soc. 76 (2007), 586–604.

[Vi-Za] A. Vishik and K. Zainoulline, Motivic splitting lemma, Doc. Math. 13 (2008), 81–96.

[Vo1] V. Voevodsky, Motivic cohomology with Z=2 coe‰cient, Publ. Math. IHES 98 (2003),

59–104.

[Vo2] V. Voevodsky, Voevodsky’s Seattle lectures: K-theory and motivic cohomology, Noted by

C. Weibel, Algebraic K-theory, University of Washington, Seattle, 1997, Proc. of Symposia

in Pure Math. 67 (1999), 283–303.

462 nobuaki yagita



[Vo3] V. Voevodsky, Reduced power operations in motivic cohomology, Publ. Math. IHES 98

(2003), 1–57.

[Vo4] V. Voevodsky, On motivic cohomology with Z=l-coe‰cients, Ann. of Math. 174 (2011),

401–438.

[Ya1] N. Yagita, Algebraic cobordism of simply connected Lie groups, Math. Proc. Camb. Phil.

Soc. 139 (2005), 243–260.

[Ya2] N. Yagita, Applications of Atiyah-Hirzebruch spectral sequence for motivic cobordism,

Proc. London Math. Soc. 90 (2005), 783–816.

[Ya3] N. Yagita, Chow rings of excellent quadrics, J. Pure Appl. Algebra 212 (2008), 2440–2449.

[Ya4] N. Yagita, Algebraic BP-theory and norm varieties, http://hopf.math.purdue.edu/cgi-bin/

generate?/Yagita/abp, 2006.

Nobuaki Yagita

Department of Mathematics

Faculty of Education

Ibaraki University

Mito, Ibaraki

Japan

E-mail: yagita@mx.ibaraki.ac.jp

463chow rings of nontrivial G-torsors over a field


