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Abstract

We study Z-homothetic deformations of almost o-Kenmotsu structures. We
characterize almost contact metric manifolds which are CR-integrable almost
o-Kenmotsu manifolds, through the existence of a canonical linear connection, invari-
ant under Z-homothetic deformations. If the canonical connection associated to the
structure (¢,¢,7,9) has parallel torsion and curvature, then the local geometry is
completely determined by the dimension of the manifold and the spectrum of the
operator i’ defined by 2uh’ = (%¢)o¢p. In particular, the manifold is locally equiv-
alent to a Lie group endowed with a left invariant almost z-Kenmotsu structure. In
the case of almost a-Kenmotsu (i, u) -spaces, this classification gives rise to a scalar
invariant depending on the real numbers x and o.

Introduction

Almost Kenmotsu manifolds are a special class of almost contact metric
manifolds, recently investigated in [16, 14, 7, 8, 9]. An almost contact metric
manifold (M ¢, &, n,g) is said to be an almost Kenmotsu manifold if dy = 0
and d® = 25y A ®, where @ is the fundamental 2-form associated to the structure.
Normal almost Kenmotsu manifolds are known as Kenmotsu manifolds [13]:
they set up one of the three classes of almost contact metric manifolds whose
automorphism group attains the maximum dimension [19].

The class of almost Kenmotsu manifolds is not invariant with respect to
Z-homothetic deformations, that is changes of the structure tensors of the form

1
B

where f is a positive constant. These deformations were introduced by Tanno in
[18] and largely studied for the class of contact metric manifolds. Indeed, for an
almost contact metric structure, such a change preserves the property of being

(1) p=9, ==& qi=pn, G=Ppg+BB-1)n®mn,
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contact metric, K-contact, Sasakian or strongly pseudo-convex CR, and the
property for the characteristic vector field of a contact metric structure to belong
to the (x, #)-nullity distribution. In [4] E. Boeckx provides a full classification of
non-Sasakian contact metric (i, u)-spaces up to Z-homothetic deformations. He
associates to each non-Sasakian (r, u)-space M an invariant Ij; depending on the
real numbers x, u, and provides an explicit example of such a space for every
dimension 27+ 1 and for every value of the invariant.

In this paper we consider the class of almost a-Kenmotsu manifolds [16, 14,
12]. They are almost contact metric manifolds with structure (¢,&,7,g) such
that dyn =0 and d® =2ay A D, o being a non-zero real constant. Applying

. . o
deformation (1), one obtains an almost E—Kenmotsu structure.

After some preliminaries on general properties of almost «-Kenmotsu
manifolds, concerning the Levi-Civita connection and the Riemannian curvature,
also under the hypothesis of local symmetry, we focus on some properties
which are invariant under %-homothetic deformations. The first one is the

. 1 .
n-parallelism of the operator A’ :2—06(340) op, where ¥ denotes the Lie

derivative. The vanishing of the covariant derivative V¢4’ is also an invariant
property. If both these conditions are satisfied and A’ # 0, then the spectrum of
h' is of type {0,41,—41,..., 4, —4}, each ; being a positive constant. Denoting
by [0] the distribution of the eigenvectors of 4’ with eigenvalue 0 and orthogonal
to & and by [4] and [-/] the eigendistributions with eigenvalues 4; and —1,
respectively, the manifold is locally the warped product

M x5 Mo Xp My, Xgo Mg, Xpy oo X My, X M,

where M’ is an open interval, My, M, and M_, are integral submanifolds
of the distributions [0], [4;] and [—A;]. The warping functions are fy = cpe”,
fi = c;e® 1) and g; = cle®1=4)! with ¢p, ¢; and ¢/ positive constants. More-
over, My is an almost Kéhler manifold and the structure is CR-integrable if
and only if 0 is a simple eigenvalue or M, is a Kéhler manifold (Theorem 4).

As a special case, we consider almost a-Kenmotsu manifolds whose char-
acteristic vector field ¢ belongs to the (i, x)"-nullity distribution, that is, for some
real numbers x, u, the Riemannian curvature tensor satisfies

2) Ryy&=rm(Y)X —n(X)Y) + u(n(Y)I'X = n(X)h'Y)

for all vector fields X and Y. Applying a Z-homothetic deformation, condition
(2) is preserved up to a change of the real numbers x, 4. We show that, for an
almost a-Kenmotsu (x, u)"-space, the operator /' is n-parallel and Vei' = 0. We
also prove that x < —o?. If k = —«?, then ' =0. If x < —o? then u = —202,
the structure is CR-integrable and the Riemannian curvature is completely deter-
mined (Theorem 5).

In order to obtain a local classification of the above manifolds, up to
“-homothetic deformations, we consider in section 3 an invariant linear con-
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nection, called the canonical connection, which was introduced in [8] for almost
Kenmotsu manifolds. The existence of this connection characterizes almost
contact metric manifolds which are CR-integrable almost o-Kenmotsu manifolds;
it can be viewed as the analogue of the Tanaka-Webster connection in contact
geometry. In [5] E. Boeckx and J. T. Cho study Tanaka-Webster parallel
spaces, i.e. CR-integrable contact metric manifolds for which the Tanaka-Webster
connection has parallel torsion and curvature tensors; they prove that these
spaces are Sasakian locally ¢-symmetric spaces or non-Sasakian contact metric
manifolds such that the characteristic vector field belongs to the (x,2)-nullity
distribution. .

Considering the canonical connection V _of a CR-integrable almost
o-Kenmotsu manifold, we prove that the torsion 7 is parallel with respect to V if
and only if the tensor field /' is »-parallel and satisfies Vei' = 0. If, furthermore,
the curvature tensor R satisfies VR =0, then R vanishes and this occurs if
and only if 0 is a simple eigenvalue of 4’ or the integral submanifolds of the
distribution [£] @ [0] have constant Riemannian curvature k = —o* (Theorem 7).
For a fixed dimension of the manifold, supposing VI' = 0 and VR = 0, we prove
that the local geometry is completely determined, up to Z-homothetic defor-
mations, by the spectrum of the operator 4’ (Theorem 9). In particular, the
manifold is locally equivalent to a solvable non-nilpotent Lie group, which is
a subgroup of the affine group Aff(2n+ 1,R), endowed with a left invariant
almost a-Kenmotsu structure, whose canonical connection coincides with the left
invariant linear connection.

Applying the above classification to almost a-Kenmotsu (r, 1) -spaces, with
non-vanishing /', we obtain a scalar invariant I);, depending on the real numbers
i and . Together with the dimension of the manifold, 7, determines the local
structure up to Z-homothetic deformations. We also show that such a manifold
is locally Z-conformal to an almost cosymplectic manifold whose characteristic
vector field & belongs to the x.-nullity distribution, with x, = x + o>,

1. Preliminaries

An almost contact metric manifold is a differentiable manifold M ?'+!
endowed with a structure (¢,&,7,¢), given by a tensor field ¢ of type (1,1),
a vector field £, a I-form # and a Riemannian metric g satisfying

pP=-T+nQ®¢& n&E =1, @& =0, nop=0,
g(pX,0Y) =g(X,Y) —n(X)n(Y) VX,Y eX(M).

Such a structure is said to be CR-integrable if the associated almost CR-structure
(2,J) is integrable, where & = Im(p) = Ker(n) is the 2n-dimensional distribution
orthogonal to & and J is the restriction of ¢ to . The structure is normal if the
tensor field N = [p, ¢] + 2dn ® ¢ identically vanishes, where [p, ¢] is the Nijenhuis
torsion of ¢. It is well known that normal almost contact metric manifolds are
CR-manifolds [11]. We refer to [2, 3] for more details.
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An almost a-Kenmotsu manifold is an almost contact metric manifold M 2*+!
with structure (¢,&,#,¢9) such that

(3) dn=0, d®=2unn®,

where o is a non-zero real constant and @ is the fundamental 2-form defined by
O(X,Y) =g(X,pY) for any vector fields X and Y. Normal almost a-Kenmotsu
manifolds are known as a-Kenmotsu manifolds. Let us consider the (1, 1)-tensor
field

1

h o=
! 20

(Zep) o9
This operator satisfies 4'(£) = 0, is symmetric and anticommutes with ¢. If X is
an eigenvector of i’ with eigenvalue A, then pX is an eigenvector with eigenvalue
—/, and thus A2 and —2 have the same multiplicity. If 1 # 0, we denote by [4]
the distribution of the eigenvectors of 4’ with eigenvalue A; if 1 =0, we denote
by [0] the distribution of the eigenvectors of /4’ with eigenvalue 0 and orthogonal
to &, which has even rank.

The Levi-Civita connection of g satisfies V:¢ = 0, which implies that V:¢ =0
and VeX € Z for any X € 2. Moreover, Vyé =a(X +h'X —n(X)<E) for any
vector field X, or equivalently,

(4) (Vxn)(Y) = og(X +h'X,Y) — on(X)n(Y)

for all vector fields X, Y. From (3) it follows that the distribution & is
integrable with almost Kéhler leaves. The mean curvature vector field of the
integral manifolds of & is H = —a¢ and these manifolds are totally umbilical if
and only if 2/ =0 [14].

An almost o-Kenmotsu structure is CR-integrable if and only if the tensor N
vanishes on &, or equivalently, the integral manifolds of & are Kédhler manifolds.
In terms of the Levi-Civita connection, the CR-integrability of the structure can
be characterized by the condition

(5) (Vxo)(Y) = ag(pX + oh' X, Y)E — on(Y)(pX + ph'X)

for all vector fields X, Y, which is equivalent to the #-parallelism of the tensor
field ¢, that is g((Vxe)Y,Z) =0 for any vector fields X, Y, Z orthogonal to &.

Analogously, the operator i’ is said to be y-parallel if g((Vxh')Y,Z) =0
for any vector fields X, Y, Z orthogonal to &, and this is equivalent to requiring
that

6) (Vxh')Y = —ag(Y,h'X + h2X)E — an(Y)(W'X + W2X) + n(X)(Veh') Y

for any vector fields X, Y.

Most of the results proved in [7] for the class of almost Kenmotsu manifolds
can be generalized to the class of almost a-Kenmotsu manifolds. We omit the
proofs since they are similar.
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THEOREM 1. Let (M*™*' 9. & n,9) be an almost o-Kenmotsu manifold such
that h' = 0. Then M**! is locally a warped product M' x; N", where N>" is
an almost Kéhler manifold, M' is an open interval with coordinate t, = ce™, for
some positive constant c.

PROPOSITION 1. Let (Mt 9. & n,9) be an almost o-Kenmotsu manifold
such that the integral manifolds of & are Kihler. Then, M*'*' is an a-Kenmotsu
manifold if and only if h' =0, or equivalently, Vé = —ap®. Therefore, a 3-
dimensional almost o-Kenmotsu manifold such that h' =0 is an o-Kenmotsu
manifold.

Consequently, an a-Kenmotsu manifold M?>'*! is a warped product of type
M’ xy N 2 where M' is an open interval, N2 is a Kihler manifold and f = ce*,
for some positive constant c.

As regards the Riemannian curvature of an almost a-Kenmotsu manifold, an
easy computation shows that

(1) Ryyé=2(X)(Y +1'Y) = (Y X +WX))+a((Vxh')Y — (Vyh')X)
for every vector fields X, Y, which implies that
Rexé = a?(—p* X + 210" X + W*X) + a(V:h') X

If the almost a-Kenmotsu manifold is locally symmetric, then the operator A’
satisfies Vei' =0, and for any unit eigenvector X of A’ with eigenvalue A, the
&-sectional curvature is given by

K(& X) = —a2(1+ )%,

which implies that Ric(&, &) < 0. The geometry of a locally symmetric almost
a-Kenmotsu manifold is quite different in the two cases with vanishing or non-
vanishing 4’. Indeed, we have the following results.

THEOREM 2. Let (M ¢, &1, g) be a locally symmetric almost o-Kenmotsu
manifold. Then, M**" is an oa-Kenmotsu manifold if and only if W' =0; in this
case the manzfold has constant sectional curvature k = —o?.

Given an almost a-Kenmotsu manifold of constant curvature k, it can be proved
that 4’ =0, and the above Theorem implies that the structure is normal and
k = —o?. In the case of non-vanishing 4’ we have

THEOREM 3. Let (M ¢, & 1, g) be a locally symmetric almost o-Kenmotsu
manifold with h' # 0. Then the operator h' admits the eigenvalues +1 and —1.
If, moreover, the Riemannian curvature satisfies RyyE =0 for any X,Y € 9, then
the spectrum of h' is {0,1,—1}, with 0 as simple eigenvalue. The distributions
[€] @ [+1] and [—1] are integrable with totally geodesic leaves and M*'*! is locally
isometric to the Riemannian product of an (n+ 1)-dimensional manifold of constant
curvature —4o” and a flat n-dimensional manifold.
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In the following we consider almost a-Kenmotsu manifolds with « > 0.
Notice that if (¢,&,7,9) is an almost a-Kenmotsu structure with o < 0, then
(p,—&,—n,g) is an almost o'-Kenmotsu structure with o’ = —a > 0.

2. 2-homothetic deformations and invariant properties
Let (M ¢, & n,9) be an almost a-Kenmotsu manifold and (,¢&,7, )
the almost %—Kenmotsu structure obtained by the Z-homothetic deformation (1).

Notice that the operators /4’ and h' associated to these structures coincide. Let V
and V be the Levi-Civita connections of g and g respectively. We prove that for
all vector fields X, Y,

(8) VoY = Vyy 4ol - Lo + 10X, v) — gxm(¥))e.

Indeed, applying the Koszul formula and dy =0, we have

Vet =Vay +E o wan(n)e

and using (4), we obtain (8). The covariant derivatives of ¢ and &’ satisfy

(Vap) (V) = (Vo) (V) + b Lgx 1 hx, o1,
-1
5

for all vector fields X and Y, so that the property for the tensor fields ¢ and A’
to be #-parallel and the vanishing of the covariant derivative V:i' are invariant
under Z-homothetic deformations.

An easy computation shows that the Riemannian curvature tensors R and R
of g and g are related by the following formula:

(Vxh')(Y) = (Vxh')(Y) + o

g(X +h X, h'Y)E,

9) RwZ = Ry Z + a2~ Lg((vih!) Y — (Vo) X, 2)¢

+ M%W WY, Z) = n(Y)n(Z)(X +H'X)

2B -
B

for every vector fields X, Y, Z. It follows that Ryy& = Ryy¢ for every vector
fields X, Y. If & belongs to the _(K,,u)/—nullity distribution, i.e. the Riemannian
curvature tensor satisfies (2), then & belongs to the (&, ) -nullity distribution, with

K

B B

Lo + WX, 2) —g(Xm(2)(Y + 'Y

— o
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Let us analyze now the geometry of almost o-Kenmotsu manifolds such
that 4’ is n-parallel and satisfies V:i' = 0.

THEOREM 4. Let (M**! 9. & n,9) be an almost o-Kenmotsu manifold such
that h' is w-parallel and V:h' = 0. Then the eigenvalues of the operator h' are
constant. Let {0,211, -4, . ..,/1,,, —A} be the spectrum of h', with 2; > 0. Then
M+ s locally the warped product

(10) M g Mo Xy My, Xgy Mgy Xpy oo X M, Xg, M,

where M' is an open interval, My, M), and M_;, are integral submanifolds of the
distributions [O], [4:] and [—A;] respectively. The warping functions are fy = coe™,
fi = c;e® V4 and g; = cle* V=4 with ¢, ¢; and c| positive constants. Finally,
My is an almost Kdihler manzfold and the structure is CR-integrable if and only if 0
is a simple eigenvalue or My is a Kdhler manifold.

Proof. The result is proved in [9] for almost Kenmotsu manifolds, corre-
sponding to the case o = 1. Let us consider an almost a-Kenmotsu structure
(p,&,n,9), with o # 1, such that /' is y-parallel and Ve’ =0. Applying the
Z-homothetic deformation (1) with f = o, we obtain an almost Kenmotsu struc-
ture (¢, &, 7, §) such that i’ is ij-parallel and V sh’" =0, and the result applies to this
structure. In particular, the distributions [0], [4;] and [—4;] are integrable and for
any distinct eigenvalues 4;,,...,4; of /', the distribution [£]® [4,]® - @ [4;] is
integrable with totally geodesic leaves with respect to g; (8) implies that such
leaves are totally geodesic also with respect to g.

Let us consider an eigenvalue A # 0 of 4. We prove that the leaves of
the distribution [4] are totally umbilical. Indeed, since [£] @ [4] is totally geo-
desic, choosing a local orthonormal frame {e;} of [4], the second fundamental
form satisfies I(e;,e;) = —a(l + A)0;¢; the mean curvature vector field is H =
—a(l + A)¢ and, for any X,Y €[], we have II(X,Y) =¢g(X, Y)H, so that the
leaves of [1] are totally umbilical. Since the orthogonal distribution [4]* is
integrable with totally geodesic leaves, then M?'*! is locally a warped product
B x;, M, such that TB = [A]" and TM; = [/] (see [10]). We denote by go and §
the Riemannian metrics on B and M respectively, such that the warped metric
is glven by go + f?§. The projection 7 : B x;, M; — B is a Riemannian sub-
mersion with horizontal distribution # = [2]* and vertical distribution 7~ = [].

The mean curvature vector field H = —a(l + A)¢ of the immersed submanifold
. 1

(M, §) is n-related to 7 grad, f; ([1], 9.104) and thus, «(1 + 1) f;¢ = grad,, f;.

If m; is the multiplicity of 4, we choose local coordinates {z,x!, ... x>}

on B such that é:% and % €[] for any i=1,...,2n —m,;. Hence, we get
fi = e ;> 0.
Now, let us consider TB = [¢] @ [—4] @@# 41,4 The distribution [{] @

@, zsal4] is integrable with totally geodesic leaves in M 1 and [-4] s
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integrable with totally umbilical leaves in M>**!. Since B is a totally geodesic
submanifold of M?'*!  these distributions are respectively totally geodesic and
totally umbilical in B and, arguing as above, B is locally a warped product.
This argument can be applied to each distribution [4;] and [—4;], ie {1,...,r},
obtaining that M?*! is locally the warped product

N xp My, X M_j Xp - X M, Xg, M,

where f; = c;e”*4)" and g; = cle*1=%)" with ¢; and ¢! positive constants. The

manifold N is a totally geodesic submanifold of M?*! and it is an integral
submanifold of the distribution [¢] @ [0]. By Theorem 1, N is locally a warped
product M’ x; M, of an open interval M’ and an almost Kéhler manifold Mo,
with fy = coe™, ¢y > 0. O

Under the hypotheses of the above Theorem, applying (6), we have
(11)  (VyhY — (Vyh X = —a(Y)(W'X + W' X) + an(X) (W'Y + h'?Y)

for any X,Y € X(M). Now, if we suppose that Sp(h’) = {0,4,—1}, with 0
simple eigenvalue, then 4’2 = A*(I — 5y ® &) and thus, from (11) and (7) it follows
that

Ryyé = —*(1+22) (V)X = n(X)Y) = 22> ((Y)h'X = n(X)A'Y).

Hence, we have

PROPOSITION 2. Let (M*"*' ¢, n,g) be an almost o-Kenmotsu manifold
such that h' is n-parallel and Veh' =0. If Sp(h') = {0, 4, =2}, with 0 simple
eigenvalue, then & belongs to the (i, ) -nullity distribution, with k = —a*(1 +}v2)
and p= —20°.

As regards almost o-Kenmotsu (i, u)'-spaces we have the following result.

THEOREM 5. Let (M**! 9. & n,9) be an almost o-Kenmotsu manifold such
that & belongs to the (ic,p) -nullity distribution. Then Kk < —o?.

If Kk = —o?, then h' =0 and M* is locally a warped product M' x; N*",
where N?" is an almost Kdihler manifold, M' is an open interval with coordinate t,
f = ce*, for some positive constant c.

If kK< —o? then h" #0, u= —20> and Sp(h’) ={0,4,—1}, with 0 as simple
eigenvalue and A= ,/—1— %. The operator h' is n-parallel and satisfies
Veh' = 0. The integral manifolds of & are Kdihler manifolds. The distributions
[4] and [—2] are integrable with totally umbilical leaves; the distributions [£] @ [
and [E] @ [—A] are integrable with totally geodesic leaves. Finally, M?*'*! is
locally isometric to the warped products

B (i 4+ 20%2) x, R, H"™(x — 24%2) x R",
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where B"*\(x +24%)) is a space of constant curvature x +20*) <0, tangent to
the distribution [£] @ [—4], H""(x — 242)) is the hyperbolic space of constant
curvature x — 20*) < —o?, tangent to the distribution [£] ® [, f = ce* D and
f1=c'e® VA0 with ¢, ¢ positive constants.

Proof. The result is proved in [8] for almost Kenmotsu manifolds. Let us
consider an almost o-Kenmotsu structure (¢,&,7,g), with o # 1, such that &
belongs to the (x,u)'-nullity distribution. Applying the Z-homothetic defor-
mation (1) with f = «, we obtain an almost Kenmotsu structure (¢,¢,7,g) such
that & belongs to the (%, /) -nullity distribution, with & = %, and g = % Then
k< —1. If k= —1, or equivalently x = —a?, then 4’ = 0 and we apply Theorem
1.

If @ <—1 then ' #0, i=—2 and Sp(h') ={0,4,—4}, with 0 as simple
eigenvalue and A =+—1—k. The tensor fields ¢ and %’ are y-parallel and
V:h' = 0, since these properties are invariant under Z-homothetic deformations;
in particular, the integral manifolds of & are Kéhler manifolds. From Theorem
4 it follows that M?'*! is locally the warped product

M/ X/‘ MA Xf/ M,/Q,

where M’ is an open interval, M, and M_, are integral submanifolds of the
distributions [1] and [—1] respectively, f = ce**4" and [’ = c'e*!="! with ¢, ¢’
positive constants.

We compute now the Riemannian curvature of M?*'*!. Recall that the
integral submanifolds of the distribution [¢] @ [A] have constant Riemannian
curvature k¥ — 214 with respect to the deformed Riemannian metric §. Let us

compute the relation between the curvature tensors R and R of g and g
respectively. Combining (7) with the (i, x)"-nullity condition, u = —24?, we get

A(Vxh')Y — (Vyh')X) = (k + o) (n(Y)X = n(X)Y) — &> (q(Y)I'X —n(X)h'Y),
and thus, applying (9), we obtain
RevZ = RyyZ + o — ) (n(Y)g(X — W'Y, Z) —n(X)g(Y — W'Y, Z))¢

+ K

L (n)g(X.2) — n(X)a( Y. 2))¢
+oa(a—1)(g(Y + h/Y,Z) —n(Y)n(2)(X + h’X)
—o(a—1)(gX +h'X,Z) —n(X)n(Z))(Y +1h'Y)

for any X, Y,Z e X(M). On the distribution [£] ® [A] we have i’ = A(I —y ® &)
and applying the above formula, for any X,Y,Z € [{] @ [4], we get

RyyZ = —>(1+ 2)*(g(Y,Z)X — g(X,2)Y).
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Therefore, the leaves of the distribution [¢] @ [A] have constant Riemannian
curvature —o2(1 + A)? =k — 2421 < —o> with respect to ¢ and analogously,
the leaves of the distribution [£] @ [-4] have constant Riemannian curvature
—02(1 = 2)* =k +2424 < 0. Then, M?*! is locally isometric to the warped
products

Hn+1(K — 20(22) Xy M,;L, Bn+1(K + 20(2&) Xf M;v.

We prove that the fibers of the two warped products are flat Riemannian spaces.
Denote by go and § the Riemannian metrics on H""!'(x —2021) and M, re-
spectively, such that the first warped metric is given by go+ f’>§. Applying
Proposition 7.42 in [17], for any U, V, W € [—]], we have

lgrad //|*
f/2
On the other hand, Ryy W = —a2(1 — 2)*(g(V, W)U — g(U, W) V) and | grad /||

=o2(1 —2)*f’2. Then, RyyW =0. Analogously, the fibers of the second
warped product are flat Riemannian spaces. O

Ryy W = Ryy W — (g(U, W)V —g(V, W)U).

Under the hypotheses of the above Theorem, if 4 =1 then both the distri-
butions [¢] @ [+1] and [—1] are integrable with totally geodesic leaves and
the manifold turns out to be locally isometric to the Riemannian product
H"!(—40%) x R", which is locally symmetric. Conversely, supposing that Af2"+!
is locally symmetric, then, by Theorem 3, A = 1 and M>**! is locally isometric to
H"*!(—40%) x R”. Hence, we have

COROLLARY 1. Let (M 9 & n,9) be an almost a-Kenmotsu manifold
such that ' # 0 and & belongs to the (i, p) -nullity distribution, u = —2a>  Then
M** s locally symmetric if and only if Sp(h') ={0,1,—1}, or equivalently
K = =202, in which case the manifold is locally isometric to H"™'(—4a?) x R".

As another consequence of Theorem 5, we can obtain more information on
the Riemannian curvature of an almost a-Kenmotsu manifold (M ¢, & 7, g)
such that A’ is n-parallel and V:i' =0, as in the hypotheses of Theorem 4.
Indeed, for any eigenvalue 4 of the operator /', the distribution [¢] @ [4] @ [—1]
is integrable with totally geodesic leaves which inherit an almost a-Kenmotsu
structure from M?*!. If 1 =0, then the distribution [¢] @ [4] @ [~4] reduces to
] @ [0] and the leaves are local warped products M’ x; Mo, where M, is a
Kéhler manifold in hypothesis of CR-integrability. If A >0 then, by Prop-
osition 2, the leaves of [£] @ [A] @ [—4] are almost a-Kenmotsu manifolds with
characteristic vector field belonging to the (i,u) -nullity distribution, with x =
—?(1 4 4%) and 4= —24>. By Theorem 5, the leaves of [¢] @ [4] have constant
Riemannian curvature x — 20?4 and the leaves of [¢] @ [—4] have constant
Riemannian curvature x + 20.2/.
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3. The canonical connection

THEOREM 6. Let (M**!' ¢.& n,9) be an almost contact metric manifold.
Then M**' is a CR- integrable almost o-Kenmotsu manifold if and only if there
exists a linear connection V such that the tensor fields ¢, g, n are parallel with
respect to V and the torsion T satisfies:

a) T(X,Y)=0, for any X,Y € 9,

b) 2T(&,X) = a(X + h'X), for any X € D,

c) T: is selfadjoint.

The connection V is invariant under %-homothetic deformations and it is uniquely
determined by

(12) VxY =VyxY +oag(X +h'X, Y)E—an(Y)(X +h'X),

where V is the Levi-Civita connection. The connection V will be called the
canonical connection associated to the structure (p,&,n,9).

Proof. The result of existence and uniqueness of the connection is proved
in [8] for almost Kenmotsu manifolds. Let (¢,&,7,7) be the almost contact
metric structure obtained from (¢,&,%,¢g) through deformation (1) with f = o.
Then ((p7f7777g) is a CR-integrable almost o-Kenmotsu structure if and only if
(p,¢,7,9) is a CR- mtegrable almost Kenmotsu structure, and this is equlvalent
to the existence of a unique linear connection V such that the tensor fields ¢, g
and ;7 are parallel with respect to V, and the torsion T vanishes on & and satisfies

b’) 2~T(f,X) =X +h'X, for any X € 7,

¢’) T: is selfadjoint with respect to g.

The parallelism of @, g, 77 is equivalent to the parallelism of ¢, g, # and b’) is
obviously equivalent to b). Moreover, for any vector fields X, Y, we have

J(T:X,Y) = g(TeX, Y) + (= Di(T:X )y (Y).

If Tf is selfadjoint with respect to g, then T: z is selfadjoint with respect to g
since 17(T X)=g§(X,T: f) =0. Hence, ¢’) implies ¢). Analogously, one verifies
that c) 1mphes ¢').

Denoting by V the Levi-Civita connection of g, for any vector fields X and
Y, we have

VY =VyY +§(X + "X, Y)E—7(Y)(X +h'X),

and applying (8) with f =, we get (12). Finally, the connection is invariant
under Z-homothetic deformations. Indeed, if V is the canonical connection
associated to the almost a-Kenmotsu structure (¢,¢,7,g), it can be easily veri-
fied that V satisfies the axioms defining the canonical connection associated to

the almost %—Kenmotsu structure (¢, ¢,7,J) obtained through a Z-homothetic

deformation of constant f. O
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Now, let (M 2+l . & n,9) be a CR-integrable almost a-Kenmotsu manifold.
Let V be the canonical connection and R its curvature tensor. A straightforward
computation using (12) shows that for every vector fields X, Y, Z

(13)  RyyZ=RyyZ+o2(g(Y + 1Y, Z)(X + W' X) — g(X + W' X, Z)(Y +I'Y))
+ag(Veh') Y — (Vyh')X, Z)E — an(Z)(Vxh') Y — (Vyh')X),

where R is the Riemannian curvature tensor. Consequently, we obtain the
following result.

PROPOSITION 3.  Let (M*"*! ¢, &1, g) be an a-Kenmotsu manifold.  Then the
following conditions are equivalent:

) viz o
) M 2"“ has constant Riemannian curvature k = —oc2
d) M+ is a locally symmetric Riemannian manifold.

Proof. Since the structure is normal, the operator /4’ vanishes and the
equivalence of b) and c) immediately follows from (13). In order to prove the
equivalence of a) and b), we show that for any X € &, V:X =aX. Indeed,
the manifold is locally a warped product of an open interval M’, which is
tangent to the vector field ¢, and a Kihler manifold N?", orthogonal to &.
Therefore, [¢,X] =0 for any X € 2 and applying b) of Theorem 6, we have
VeX =2T(,X) = aX. We also notice that, since Vo =0, then VX € & for
any X € Z and Z e X(M). Hence, for any X,Y,Z € 2, RyyZ e . Suppos-
ing VR =0, from (V:R)(X,Y,Z)=0 we get RyyZ =0. On the other hand,
Ryyé = CXY 0 for any vector fields X, Y, and thus the curvature tensor R
vanishes. The equivalence of c¢) and d) is a consequence of Theorem 2. []

We shall discuss now the geometry of CR-integrable almost a-Kenmotsu
manifolds such that 4’ #0 and VI =0. First of all we prove the following
Lemma.

Lemma 1. Let (Mt 9, n,g) be a CR-integrable almost o-Kenmotsu
manifold. Then the following conditions are equivalent:

a) VI =0,

b) Vi' =0,

c) the tensor field h' is n-parallel and V:h' = 0.

Proof. Recall that V,X € & for any X € 7 and Z € ¥(M). On the other
hand, the torsion 7" vanishes on & and thus (V;T)(X,Y) =0 for any X,Y € &
and Z € X(M). Now, applying Vé =0 and b) of Theorem 6, for any X € & and
Z e X(M), we have

2(VZT)(EX) = oV (X + W' X) —a(VzX +H (VX)) = a(VZh') X
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which proves the equivalence of a) and b), since (V)¢ = 0. Applying (12), we
get

(V2h'\X = of (V2h'\X +og(h'Z + W2 Z,X)E} € @

and thus, the covariant derivative VA’ vanishes if and only if for any X,Y € &
and ZeX(M), g((Vzh")X,Y)=0, which is equivalent to requiring the
n-parallelism of the tensor field 2’ and the vanishing of the covariant derivative
Veh'. ]

Under the hypotheses of the above Lemma, Theorem 4 implies that A£%'+!
is locally isometric to the warped product (10), where M, has dimension 0 or it
is a Kdhler manifold. For any eigenvalue A of the operator h’, each integral
submanifold N of the distribution [{] @ [A] @ [-4] is auto-parallel with respect
to the canonical connection V; moreover, the connection induced by V on N
coincides with the canonical connection associated to the induced almost o-
Kenmotsu structure. ~

Let us investigate now the properties of the curvature tensor R in the non-
normal case.

THEOREM 7. Let (M>"*', ¢9,&,n,9) be a CR-integrable almost o-Kenmotsu
manifold such that h' # 0 and the canonical connection V has parallel torsion.
Then the following conditions are equivalent:

a) ?R =0,

b) R=0,

c) 0 is a simple eigenvalue of h' or the integral submanifolds of the distribution
[€] @ [0] have constant Riemannian curvature k = —o?.

Proof. By Lemma 1, the operator /' is n-parallel and V:i' = 0. Hence,
applying (11) and (13), we obtain that the curvature tensors R and R are related
by

(14)  RyyZ=RxyZ—o*(n(Y)g(h'X +h"*X,Z) —n(X)g(h'Y + h"*Y,Z))&
+a2n(Z) (V)WY +12X) —p(X)(W'Y + 7))
+o22(g(Y +h'Y, Z)(X +h'X) = g(X +h'X,Z)(Y +h'Y))
for any X, Y,Z e X(M). We know that M>**! is locally isometric to the warped
product (10), where M, has dimension 0 or it is a Kdhler manifold. Let us
consider an eigenvalue A # 0 of i’ and the warped product B x, M, such that

TB =[], TM; = [)] and f = ce*"*7" ¢>0. From Proposition 7.42 in [17] it
follows that for any X,Y € TB and V, W € [A],

H/'(X,Y)
A

gV, w)

RyyV=RywX =0, RyxY =— 7

V, RXVW: — Vx(grad f)
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For any vector field Z, we have Z(f) =n(Z2)E(f) = a(l + A)n(Z)f. Therefore,
H!(X,Y) = X(Yf) = (Vx Y)(f)

=a(l+ )X (Y))f + ol +)nX)n(Y)f —n(VxY)[)

= a(l+2)((Vxm)(Y) + (1 + D)n(X)n(Y))f

= (1+ 29X +1'X, )+ n(X)n(Y))f,
where we used (4). Hence,

RyxY = —a*(1+2)(g(X + "X, Y) + in(X)n(Y))V.
Since grad f = a(l + 1) f¢, then
Vi(grad f) = a(l + A){a(l + n(X) fE+of (X + 7' X —n(X)E)}
= o?(1+ 2)(X + WX + (X)) f,
and thus
Ryy W = —a>(1 + Dg(V, W) (X + W' X + In(X)E).

Using (14), a straightforward computation shows that
(15) RXYV:RVWX:RVXY:RXVWZO.
We know that the distribution [£] @ [/] has totally geodesic leaves with constant
Riemannian curvature x — 20?4, and applying (14) again, we have
(16) RyyW =0
for any U,V,Wel[l]. It remains to analyze the curvatures RyyZ, with
X,Y,Z e TB. Considered the eigenvalue —/, we regard B as the warped product
B xp M_; such that TB' =[] @D, [, TM_; =[-J] and f'= e~
¢’ > 0. Analogous computations give (15) and (16) for any U, V, W € [—-4] and
X,Y eTB'. In fact this argument can be applied for each non-vanishing eigen-
value of /', proving that if 0 is a simple eigenvalue, then the curvature tensor R
vanishes on M2,
_If 0 has multiplicity greater than 1, we have to analyze the curvature tensor
R on the integral submanifolds of the distribution [¢] @ [0]. These leaves are
endowed with an almost a-Kenmotsu structure with vanishing operator 4’ and
such that the integral manifolds of [0] are Kdhler. Hence, the leaves of [&] ® [0]
are a-Kenmotsu manifolds and, by Proposition 3, the curvature tensor R vanishes

on them if and only if it is parallel with respect to V, or equivalently the leaves
have constant Riemannian curvature k = —o?. O

Remark 1. Differently from the normal case, which is described in Prop-
osition 3, in the hypotheses of Theorem 7, conditions a) and b) are not equivalent
to the local Riemannian symmetry. Indeed in this case, combining (7) and (11)
it follows that the Riemannian curvature satisfies Ryy& =0 for any X, Y € 9.
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By Theorem 3 it follows that M?™*! is locally symmetric if and only if Sp(h') =
{0,1,—1}, with 0 simple eigenvalue.

COROLLARY 2. Let (M*"*! ¢, & 1, g) be an almost a-Kenmotsu manifold such
that h' # 0 and & belongs to the (i, p) -nullity distribution, u = —24*.  Then R =0
and the Riemannian curvature tensor is given by

(17)  RyyZ =n(Z)(n(Y)X —n(X)Y) +x(9(Y, Z)n(X) — g(X, Z)n(Y))¢
o(g(Y —h'Y,Z)n(X) = g(X — "X, Z)n(Y))¢
+ o Z)(Y)(X = W' X) = n(X)(Y = 1'Y))
—2gY +HY, Z) X+ X)+g(X +1'X,Z) (Y +H'Y))
for any X,Y,Z € X(M).

Proof. The operator i’ is n-parallel and satisfies Veh’' = 0. The eigenvalue
0 of i’ is simple and Theorem 7 implies that the curvature tensor R vanishes.

Moreover, since h'> = AZ(I —n® &), with P=—1- %, applying (14) we get
(7). O

4. The local classification

TueOREM 8. Let (M**'.9.& n,q9) and (M>*! ¢, ¢, i,§) be CR-integrable
almost o-Kenmotsu manifolds with canonical connections V and V respectively.
Let us suppose that V and V have parallel torsion and curvature tensors and the
operators h' and h' associated to the structures have the same eigenvalues with
the same multiplicities. Then M\ and M>**' are locally equivalent as almost
contact metric manifolds.

Proof. Let us suppose that 4’ and 4’ have the same eigenvalues with the
same multiplicities. Fixed two points p € M>"*! and g € M>"*!, we can choose
orthonormal bases {fp,el,.. cens 0yl e} of T,M* ! and {&,.e,...,é,
Pgl1s- -, Pgln} of T, M?+! in such a way that, for any i =1,...,n, ¢; and & are
eigenvectors of h’ and h’ respectively, with eigenvalue /;, whlle gyei and @ e; are
eigenvectors of h]’ and h’ with eigenvalue —4;. We define a linear isometry
F: T,M> — T, M**! such that

(ép) = éqa F(ei) - e_i7 F((ﬂpei) = (ﬁqe_i
for every i =1,...,n. Then, we have

F*’_?q = ’71;7 F*(Zq = (ﬂp, F*/’l, = h]/)
From Theorem 6, the torsion tensors satisfy F *T, = T,. On the other hand, the
curvatures R and R vanish. It follows that there exists an affine diffeomorphism
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f of a neighborhood U of p onto a neighborhood V of ¢ such that f(p) = ¢ and
the differential of f at p coincides with F [15]. The local diffeomorphism f
maps the structure tensors (¢, &,7,9) to (¢,&,7,), since they are parallel with
respect to V and V respectively. Hence Mt and M?+! are locally equivalent
as almost contact metric spaces. O

THEOREM 9. Let (M ¢.& n,9) and (M**',p,& 77,) be CR-integrable
almost o and almost a-Kenmotsu manifolds with canonical connections V and V
respectively. Let us suppose that V and V have parallel torsion and curvature
tensors. Then M+ and M are locally equivalent as almost contact metric
manifolds, up to 9-homothetic deformations, if and only if the operators h' and h'
associated to the structures have the same eigenvalues with the same multiplicities.

Proof. Let us suppose that A’ has eigenvalues 0,41,...,4,, —A1,..., =y,
with 0 < 4; < 4; for any i < j. Analogously, let 0,21, Any—A1,...,—n be the
eigenvalues of 4/, with 0 < /; < Zj for any i < j. Since a Z-homothetic defor-
mation of the structure leaves the operator /' invariant, if M**! and M?*"*!
are locally equivalent up to Z-homothetic deformations, then 4; = 4; for any
i=1,...,n. Conversely, let us suppose 4; = 4; foranyi=1,...,n. We apply a

“2-homothetic deformation with constant =

Rl R

to the structure (¢,&,7,g), thus

obtaining a CR-integrable almost &-Kenmotsu structure (¢;,&,,7,,91) on M>"*!
for which the canonical connection has parallel torsion and vanishing curvature

and the operator /] has eigenvalues 0, i, .., A, —)47_. ..,—A,. From Theorem 8
it follows that (M ¢, & ,n,,91) and (M>"*! %, &7, 3) are locally equivalent
as almost contact metric spaces. O

For any odd dimension 2n+1 and for any nonnegative and not all
vanishing real numbers 1i,...,4,, we give an example of a CR-integrable almost
o-Kenmotsu manifold whose canonical connection has parallel torsion and
vanishing curvature and such that the operator /&’ has eigenvalues 0, 4,...,
Any—Al,-..,—Ayn. The example is given by a Lie group endowed with a left
invariant almost z-Kenmotsu structure.

Let G be the connected and simply connected Lie group of real matrices of
the form

eI+t 0 0 0 0 x
0 e r(I=m)e 0 0 0 »
A= 0 0 eI+t 0 0 x, ,
0 0 0 e~ 1=t 0y,
0 0 0 0 1 ¢
0 0 0 0 0 1
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which is a subgroup of the affine group A4ff(2n+ 1,R) and whose Lie algebra g
is given by the real matrices

—a(l + A)c 0 0 0 0 a
0 —(X(l —)»1)6 0 0 0 b1
X = 0 0 —a(1+ Ay)e 0 0 a,
0 0 0 —a(l —A,)c 0 b,
0 0 0 0 0 ¢
0 0 0 0 0 0
For any i =1,...,n denote by X; and Y; the matrices in g whose coefficients

are all vanishing except for a¢; =1 and b; =1 respectively. Let & be the ma-
trix corresponding to ¢=1 and a;=5b;=0, i=1,...,n. Then {& Xj,..., X,
Yi,...,Y,} is a basis of g which satisfies

6, Xi] = —a(l+4)X;, [ Yi]=—a(l-4)Y;,
(X, Xj] = [X;, V)] = [Yi, Xj] = [V, Yj] = 0.

The above relations imply that G is a solvable non-nilpotent Lie group. We
consider the endomorphism ¢ : g — g and the 1-form #:g— R such that

(&) =0, oX)=7Y;, oY)=-X, n& =1 nlX)=n(Y;)=0,

for any i =1,...,n, and denote by ¢ the inner product on g such that the basis
{&, X;, Y;} is orthonormal. The tensors defined on g determine a left invariant
CR-integrable almost a-Kenmotsu structure (¢,&,7,9) on G. Each X; is an
eigenvector of 4" with eigenvalue 4;, while each Y; is eigenvector with eigenvalue
—J;. Moreover, the canonical connection V coincides with the left invariant
connection on the Lie group, which has vanishing curvature and parallel torsion.
Indeed, denoting by V' the left invariant connection on G, the structure tensor
fields ¢, &, i, g are parallel with respect to V’. Since the torsion T’ is given by
2T'(X,Y)=—[X,Y] for any X,Y egq, T’ satisfies a), b), ¢) of Theorem 6,
so that V' coincides with the canonical connection associated to the structure
(9.&m,9).
Finally, considering the coordinate system {¢,xi, y1,...,Xs, yu} on the Lie
group G, we have
X; = efoz(l+).,v)ti, Y, = efoz(lf/l,-)ri
0x; 0y;
18 5_8 — dt _ - Zaﬂ;td ® 0 . 72“)""d~® 0
( ) _57 n=di (ﬂ—;e Xi a_y_ze Vi a_xi7

! i=1

(19) g=di@dt+Y_ P dx; @ dx; + Y P dy; @ dy;.
=1 P

I
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Therefore, from Theorem 8 we have the following

PROPOSITION 4. Let (M**' ¢, & 5,9) be an almost a-Kenmotsu manifold.
Then M s q CR-integrable almost o-Kenmotsu manifold with canonical connec-
tion V satisfying VT =0 and VR = 0 if and only if for any point p € M**" there
exists an open neighbourhood with local coordinates {t,x\, y1,...,Xn, yu} on which
(18) and (19) hold.

As a consequence of Theorem 9, we can associate to each almost o-
Kenmotsu (x,u) -space M>"*! with h’ # 0, the real number

K
IM2n+1 = ? y

which classifies such spaces up to Z-homothetic deformations, as stated in the
following Theorem.

TueoreM 10. Let (M**' 9, E.n,g) be an almost o-Kenmotsu manifold
with h' #0 and & belonging to the (ic, u) -nullity distribution, u = —20?, and let
(M>+,9,E,71,3) be an almost a-Kenmotsu manifold with h' # 0 and & belonging
to the (%, fi) -nullity distribution, fi = —2a°. Then, M**' and M*'*' are locally
equivalent up to a Z-homothetic deformation, as almost contact metric spaces, if
and only if Iy = L.

Proof. The operators 4’ and 4’ have eigenvalues 0, 4, —A and 0, 4, —/

respectively, where 0 is simple, 4= ,/—1 —% and 2= /-1 —%. The result
a

immediately follows from Theorem 9. In particular, if 7yt = 15,1, We have
to apply a Z-homothetic deformation to the structure (¢, &,#,g) with constant

p=2= =

Q
SR

Notice that Iy < —1 since x < —a?. By Corollary 1, M?*"*! is locally
symmetric if and only if Iy = —2. For any dimension 2n+1 and for
any value of the invariant 7 < —1, an explicit example of these manifolds is
given by the Lie group G described above, with 1, =--- =1, = 4. Indeed,
considered the left invariant almost «-Kenmotsu structure (¢, ¢&,7,g), by Prop-
osition 2, the characteristic vector field & belongs (, ) -nullity distribution, with
k= —02(1+4%) and u= —202. The invariant is

Io=—1-,?

which attains any real value smaller than —1.

Remark 2. 1In [4] E. Boeckx introduces a scalar invariant which classifies,
up to Z-homothetic deformations, non-Sasakian contact metric manifolds whose
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characteristic vector field belongs to a (x,u)-nullity distribution. The proof of
the equivalence theorem involves the Levi-Civita connection and the properties of
the covariant derivatives of the Riemannian curvature R and the structure tensors
¢, &, 11, g. Here, the classification theorem for almost a-Kenmotsu (i, u)'-spaces,
is obtained as a consequence of the more general Theorem 9, which involves the
canonical connection and the parallelism with respect to it of the torsion T, the
curvature R and the structure tensors. One could wonder if it is possible to
prove the equivalence theorem for non-Sasakian (x, u)-contact metric spaces by
using the Tanaka-Webster connection. The answer is negative, since in this case
the torsion tensor 7' and the curvature tensor R of the Tanaka-Webster con-
nection V in general are not parallel with respect to V; this happens if and only if
w=2, as proved in [5].

We conclude the analysis of the local geometry of almost o-Kenmotsu
(1, 1) -spaces with the following result.

PROPOSITION 5. Let (Mt 9. & n,9) be an almost o-Kenmotsu manifold
such that h' # 0 and & belongs to the (ic, u) -nullity distribution, u = —20>.  Let g’
be the Riemannian metric locally defined by the Z-conformal change

g/ _ 872atg + (1 . 872‘1,)77 ® 7.

Then (p,&,n,9") is an almost cosymplectic structure such that ¢ belongs to the
K.-nullity distribution, with k. = K + 0.

Proof. The fundamental 2-form @’ associated to the structure (p,¢,7,¢g') is
locally given by @' = ¢ >*® and thus d®' = 0, so that (¢, &,7,g’') is an almost
cosymplectic structure. By Proposition 4, for any point p € M*'*! there exist
local coordinates {¢,xj, yi,...,Xs, Yn}, such that

_ a _ _ Dot . a —20At - 6
E=o, n=di g=e ;dx,®ayi e ;dy@axi,

n n
g=di@di -+ d; @ di + Y dy; @ dyy,
i=1 i=1

with 1=,/-1 —%. Hence, the Riemannian metric g’ is locally given by
\ o

n n

g =dt @ dt + ¥ Z dx; ® dx; + e 2 Z dy; ® dy;.
i=1 i=1

By a result of P. Dacko [6], it follows that (¢,&,#,¢’) is an almost cosymplectic
structure such that & belongs to the x.-nullity distribution, with x. = —220? =
K+ o2 < 0. ]
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