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A CLASSIFICATION OF CERTAIN ALMOST a-KENMOTSU

MANIFOLDS

Giulia Dileo

Abstract

We study D-homothetic deformations of almost a-Kenmotsu structures. We

characterize almost contact metric manifolds which are CR-integrable almost

a-Kenmotsu manifolds, through the existence of a canonical linear connection, invari-

ant under D-homothetic deformations. If the canonical connection associated to the

structure ðj; x; h; gÞ has parallel torsion and curvature, then the local geometry is

completely determined by the dimension of the manifold and the spectrum of the

operator h 0 defined by 2ah 0 ¼ ðLxjÞ � j. In particular, the manifold is locally equiv-

alent to a Lie group endowed with a left invariant almost a-Kenmotsu structure. In

the case of almost a-Kenmotsu ðk; mÞ 0-spaces, this classification gives rise to a scalar

invariant depending on the real numbers k and a.

Introduction

Almost Kenmotsu manifolds are a special class of almost contact metric
manifolds, recently investigated in [16, 14, 7, 8, 9]. An almost contact metric
manifold ðM 2nþ1; j; x; h; gÞ is said to be an almost Kenmotsu manifold if dh ¼ 0
and dF ¼ 2h5F, where F is the fundamental 2-form associated to the structure.
Normal almost Kenmotsu manifolds are known as Kenmotsu manifolds [13]:
they set up one of the three classes of almost contact metric manifolds whose
automorphism group attains the maximum dimension [19].

The class of almost Kenmotsu manifolds is not invariant with respect to
D-homothetic deformations, that is changes of the structure tensors of the form

j ¼ j; x ¼ 1

b
x; h ¼ bh; g ¼ bgþ bðb � 1Þhn h;ð1Þ

where b is a positive constant. These deformations were introduced by Tanno in
[18] and largely studied for the class of contact metric manifolds. Indeed, for an
almost contact metric structure, such a change preserves the property of being

426

2010 Mathematics Subject Classification: 53C15; 53C25.

Key words and phrases: almost a-Kenmotsu manifolds, D-homothetic deformations, CR-

manifolds, h-parallel structures, nullity distributions.

Received November 16, 2010; revised February 22, 2011.



contact metric, K-contact, Sasakian or strongly pseudo-convex CR, and the
property for the characteristic vector field of a contact metric structure to belong
to the ðk; mÞ-nullity distribution. In [4] E. Boeckx provides a full classification of
non-Sasakian contact metric ðk; mÞ-spaces up to D-homothetic deformations. He
associates to each non-Sasakian ðk; mÞ-space M an invariant IM depending on the
real numbers k, m, and provides an explicit example of such a space for every
dimension 2nþ 1 and for every value of the invariant.

In this paper we consider the class of almost a-Kenmotsu manifolds [16, 14,
12]. They are almost contact metric manifolds with structure ðj; x; h; gÞ such
that dh ¼ 0 and dF ¼ 2ah5F, a being a non-zero real constant. Applying

deformation (1), one obtains an almost
a

b
-Kenmotsu structure.

After some preliminaries on general properties of almost a-Kenmotsu
manifolds, concerning the Levi-Civita connection and the Riemannian curvature,
also under the hypothesis of local symmetry, we focus on some properties
which are invariant under D-homothetic deformations. The first one is the

h-parallelism of the operator h 0 ¼ 1

2a
ðLxjÞ � j, where L denotes the Lie

derivative. The vanishing of the covariant derivative ‘xh
0 is also an invariant

property. If both these conditions are satisfied and h 0 0 0, then the spectrum of
h 0 is of type f0; l1;�l1; . . . ; lr;�lrg, each li being a positive constant. Denoting
by ½0� the distribution of the eigenvectors of h 0 with eigenvalue 0 and orthogonal
to x, and by ½li� and ½�li� the eigendistributions with eigenvalues li and �li
respectively, the manifold is locally the warped product

M 0 �f0 M0 �f1 Ml1 �g1 M�l1 �f2 � � � �fr Mlr �gr M�lr ;

where M 0 is an open interval, M0, Mli and M�li are integral submanifolds
of the distributions ½0�, ½li� and ½�li�. The warping functions are f0 ¼ c0e

at,
fi ¼ cie

að1þliÞt and gi ¼ c 0i e
að1�liÞt, with c0, ci and c 0i positive constants. More-

over, M0 is an almost Kähler manifold and the structure is CR-integrable if
and only if 0 is a simple eigenvalue or M0 is a Kähler manifold (Theorem 4).

As a special case, we consider almost a-Kenmotsu manifolds whose char-
acteristic vector field x belongs to the ðk; mÞ0-nullity distribution, that is, for some
real numbers k, m, the Riemannian curvature tensor satisfies

RXYx ¼ kðhðYÞX � hðXÞY Þ þ mðhðYÞh 0X � hðX Þh 0YÞð2Þ

for all vector fields X and Y . Applying a D-homothetic deformation, condition
(2) is preserved up to a change of the real numbers k, m. We show that, for an
almost a-Kenmotsu ðk; mÞ0-space, the operator h 0 is h-parallel and ‘xh

0 ¼ 0. We
also prove that ka�a2. If k ¼ �a2, then h 0 ¼ 0. If k < �a2 then m ¼ �2a2,
the structure is CR-integrable and the Riemannian curvature is completely deter-
mined (Theorem 5).

In order to obtain a local classification of the above manifolds, up to
D-homothetic deformations, we consider in section 3 an invariant linear con-
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nection, called the canonical connection, which was introduced in [8] for almost
Kenmotsu manifolds. The existence of this connection characterizes almost
contact metric manifolds which are CR-integrable almost a-Kenmotsu manifolds;
it can be viewed as the analogue of the Tanaka-Webster connection in contact
geometry. In [5] E. Boeckx and J. T. Cho study Tanaka-Webster parallel
spaces, i.e. CR-integrable contact metric manifolds for which the Tanaka-Webster
connection has parallel torsion and curvature tensors; they prove that these
spaces are Sasakian locally j-symmetric spaces or non-Sasakian contact metric
manifolds such that the characteristic vector field belongs to the ðk; 2Þ-nullity
distribution.

Considering the canonical connection ~‘‘ of a CR-integrable almost
a-Kenmotsu manifold, we prove that the torsion ~TT is parallel with respect to ~‘‘ if
and only if the tensor field h 0 is h-parallel and satisfies ‘xh

0 ¼ 0. If, furthermore,
the curvature tensor ~RR satisfies ~‘‘ ~RR ¼ 0, then ~RR vanishes and this occurs if
and only if 0 is a simple eigenvalue of h 0 or the integral submanifolds of the
distribution ½x�l ½0� have constant Riemannian curvature k ¼ �a2 (Theorem 7).
For a fixed dimension of the manifold, supposing ~‘‘ ~TT ¼ 0 and ~‘‘ ~RR ¼ 0, we prove
that the local geometry is completely determined, up to D-homothetic defor-
mations, by the spectrum of the operator h 0 (Theorem 9). In particular, the
manifold is locally equivalent to a solvable non-nilpotent Lie group, which is
a subgroup of the a‰ne group A¤ ð2nþ 1;RÞ, endowed with a left invariant
almost a-Kenmotsu structure, whose canonical connection coincides with the left
invariant linear connection.

Applying the above classification to almost a-Kenmotsu ðk; mÞ0-spaces, with
non-vanishing h 0, we obtain a scalar invariant IM , depending on the real numbers
k and a. Together with the dimension of the manifold, IM determines the local
structure up to D-homothetic deformations. We also show that such a manifold
is locally D-conformal to an almost cosymplectic manifold whose characteristic
vector field x belongs to the kc-nullity distribution, with kc ¼ kþ a2.

1. Preliminaries

An almost contact metric manifold is a di¤erentiable manifold M 2nþ1

endowed with a structure ðj; x; h; gÞ, given by a tensor field j of type ð1; 1Þ,
a vector field x, a 1-form h and a Riemannian metric g satisfying

j2 ¼ �I þ hn x; hðxÞ ¼ 1; jðxÞ ¼ 0; h � j ¼ 0;

gðjX ; jY Þ ¼ gðX ;Y Þ � hðX ÞhðY Þ EX ;Y A XðMÞ:

Such a structure is said to be CR-integrable if the associated almost CR-structure
ðD; JÞ is integrable, where D ¼ ImðjÞ ¼ KerðhÞ is the 2n-dimensional distribution
orthogonal to x and J is the restriction of j to D. The structure is normal if the
tensor field N ¼ ½j; j� þ 2dhn x identically vanishes, where ½j; j� is the Nijenhuis
torsion of j. It is well known that normal almost contact metric manifolds are
CR-manifolds [11]. We refer to [2, 3] for more details.
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An almost a-Kenmotsu manifold is an almost contact metric manifold M 2nþ1

with structure ðj; x; h; gÞ such that

dh ¼ 0; dF ¼ 2ah5F;ð3Þ

where a is a non-zero real constant and F is the fundamental 2-form defined by
FðX ;YÞ ¼ gðX ; jYÞ for any vector fields X and Y . Normal almost a-Kenmotsu
manifolds are known as a-Kenmotsu manifolds. Let us consider the ð1; 1Þ-tensor
field

h 0 :¼ 1

2a
ðLxjÞ � j:

This operator satisfies h 0ðxÞ ¼ 0, is symmetric and anticommutes with j. If X is
an eigenvector of h 0 with eigenvalue l, then jX is an eigenvector with eigenvalue
�l, and thus l and �l have the same multiplicity. If l0 0, we denote by ½l�
the distribution of the eigenvectors of h 0 with eigenvalue l; if l ¼ 0, we denote
by ½0� the distribution of the eigenvectors of h 0 with eigenvalue 0 and orthogonal
to x, which has even rank.

The Levi-Civita connection of g satisfies ‘xj ¼ 0, which implies that ‘xx ¼ 0
and ‘xX A D for any X A D. Moreover, ‘Xx ¼ aðX þ h 0X � hðX ÞxÞ for any
vector field X , or equivalently,

ð‘XhÞðYÞ ¼ agðX þ h 0X ;Y Þ � ahðX ÞhðY Þð4Þ

for all vector fields X , Y . From (3) it follows that the distribution D is
integrable with almost Kähler leaves. The mean curvature vector field of the
integral manifolds of D is H ¼ �ax and these manifolds are totally umbilical if
and only if h 0 ¼ 0 [14].

An almost a-Kenmotsu structure is CR-integrable if and only if the tensor N
vanishes on D, or equivalently, the integral manifolds of D are Kähler manifolds.
In terms of the Levi-Civita connection, the CR-integrability of the structure can
be characterized by the condition

ð‘XjÞðYÞ ¼ agðjX þ jh 0X ;YÞx� ahðYÞðjX þ jh 0XÞð5Þ

for all vector fields X , Y , which is equivalent to the h-parallelism of the tensor
field j, that is gðð‘XjÞY ;ZÞ ¼ 0 for any vector fields X , Y , Z orthogonal to x.

Analogously, the operator h 0 is said to be h-parallel if gðð‘Xh
0ÞY ;ZÞ ¼ 0

for any vector fields X , Y , Z orthogonal to x, and this is equivalent to requiring
that

ð‘Xh
0ÞY ¼ �agðY ; h 0X þ h 02X Þx� ahðY Þðh 0X þ h 02XÞ þ hðXÞð‘xh

0ÞYð6Þ

for any vector fields X , Y .
Most of the results proved in [7] for the class of almost Kenmotsu manifolds

can be generalized to the class of almost a-Kenmotsu manifolds. We omit the
proofs since they are similar.
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Theorem 1. Let ðM 2nþ1; j; x; h; gÞ be an almost a-Kenmotsu manifold such
that h 0 ¼ 0. Then M 2nþ1 is locally a warped product M 0 �f N

2n, where N 2n is
an almost Kähler manifold, M 0 is an open interval with coordinate t, f ¼ ceat, for
some positive constant c.

Proposition 1. Let ðM 2nþ1; j; x; h; gÞ be an almost a-Kenmotsu manifold
such that the integral manifolds of D are Kähler. Then, M 2nþ1 is an a-Kenmotsu
manifold if and only if h 0 ¼ 0, or equivalently, ‘x ¼ �aj2. Therefore, a 3-
dimensional almost a-Kenmotsu manifold such that h 0 ¼ 0 is an a-Kenmotsu
manifold.

Consequently, an a-Kenmotsu manifold M 2nþ1 is a warped product of type
M 0 �f N

2n, where M 0 is an open interval, N 2n is a Kähler manifold and f ¼ ceat,
for some positive constant c.

As regards the Riemannian curvature of an almost a-Kenmotsu manifold, an
easy computation shows that

RXYx ¼ a2ðhðXÞðY þ h 0YÞ � hðYÞðX þ h 0X ÞÞ þ aðð‘Xh
0ÞY � ð‘Yh

0ÞXÞð7Þ
for every vector fields X , Y , which implies that

RxXx ¼ a2ð�j2X þ 2h 0X þ h 02X Þ þ að‘xh
0ÞX :

If the almost a-Kenmotsu manifold is locally symmetric, then the operator h 0

satisfies ‘xh
0 ¼ 0, and for any unit eigenvector X of h 0 with eigenvalue l, the

x-sectional curvature is given by

Kðx;X Þ ¼ �a2ð1þ lÞ2;
which implies that Ricðx; xÞ < 0. The geometry of a locally symmetric almost
a-Kenmotsu manifold is quite di¤erent in the two cases with vanishing or non-
vanishing h 0. Indeed, we have the following results.

Theorem 2. Let ðM 2nþ1; j; x; h; gÞ be a locally symmetric almost a-Kenmotsu
manifold. Then, M 2nþ1 is an a-Kenmotsu manifold if and only if h 0 ¼ 0; in this
case the manifold has constant sectional curvature k ¼ �a2.

Given an almost a-Kenmotsu manifold of constant curvature k, it can be proved
that h 0 ¼ 0, and the above Theorem implies that the structure is normal and
k ¼ �a2. In the case of non-vanishing h 0 we have

Theorem 3. Let ðM 2nþ1; j; x; h; gÞ be a locally symmetric almost a-Kenmotsu
manifold with h 0 0 0. Then the operator h 0 admits the eigenvalues þ1 and �1.
If, moreover, the Riemannian curvature satisfies RXYx ¼ 0 for any X ;Y A D, then
the spectrum of h 0 is f0; 1;�1g, with 0 as simple eigenvalue. The distributions
½x�l ½þ1� and ½�1� are integrable with totally geodesic leaves and M 2nþ1 is locally
isometric to the Riemannian product of an ðnþ 1Þ-dimensional manifold of constant
curvature �4a2 and a flat n-dimensional manifold.
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In the following we consider almost a-Kenmotsu manifolds with a > 0.
Notice that if ðj; x; h; gÞ is an almost a-Kenmotsu structure with a < 0, then
ðj;�x;�h; gÞ is an almost a 0-Kenmotsu structure with a 0 ¼ �a > 0.

2. D-homothetic deformations and invariant properties

Let ðM 2nþ1; j; x; h; gÞ be an almost a-Kenmotsu manifold and ðj; x; h; gÞ

the almost
a

b
-Kenmotsu structure obtained by the D-homothetic deformation (1).

Notice that the operators h 0 and h 0 associated to these structures coincide. Let ‘
and ‘ be the Levi-Civita connections of g and g respectively. We prove that for
all vector fields X , Y ,

‘XY ¼ ‘XY þ a
b � 1

b
ðgðX þ h 0X ;YÞ � hðXÞhðYÞÞx:ð8Þ

Indeed, applying the Koszul formula and dh ¼ 0, we have

‘XY ¼ ‘XY þ b � 1

b
ð‘XhÞðYÞx

and using (4), we obtain (8). The covariant derivatives of j and h 0 satisfy

ð‘XjÞðY Þ ¼ ð‘XjÞðY Þ þ a
b � 1

b
gðX þ h 0X ; jY Þx;

ð‘Xh
0ÞðY Þ ¼ ð‘Xh

0ÞðY Þ þ a
b � 1

b
gðX þ h 0X ; h 0Y Þx;

for all vector fields X and Y , so that the property for the tensor fields j and h 0

to be h-parallel and the vanishing of the covariant derivative ‘xh
0 are invariant

under D-homothetic deformations.
An easy computation shows that the Riemannian curvature tensors R and R

of g and g are related by the following formula:

RXYZ ¼ RXYZ þ a
b � 1

b
gðð‘Xh

0ÞY � ð‘Yh
0ÞX ;ZÞxð9Þ

þ a2
b � 1

b
ðgðY þ h 0Y ;ZÞ � hðY ÞhðZÞÞðX þ h 0XÞ

� a2
b � 1

b
ðgðX þ h 0X ;ZÞ � hðX ÞhðZÞÞðY þ h 0YÞ

for every vector fields X , Y , Z. It follows that RXYx ¼ RXYx for every vector
fields X , Y . If x belongs to the ðk; mÞ0-nullity distribution, i.e. the Riemannian
curvature tensor satisfies (2), then x belongs to the ðk; mÞ0-nullity distribution, with

k ¼ k

b2
; m ¼ m

b2
:
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Let us analyze now the geometry of almost a-Kenmotsu manifolds such
that h 0 is h-parallel and satisfies ‘xh

0 ¼ 0.

Theorem 4. Let ðM 2nþ1; j; x; h; gÞ be an almost a-Kenmotsu manifold such
that h 0 is h-parallel and ‘xh

0 ¼ 0. Then the eigenvalues of the operator h 0 are
constant. Let f0; l1;�l1; . . . ; lr;�lrg be the spectrum of h 0, with li > 0. Then
M 2nþ1 is locally the warped product

M 0 �f0 M0 �f1 Ml1 �g1 M�l1 �f2 � � � �fr Mlr �gr M�lr ;ð10Þ

where M 0 is an open interval, M0, Mli and M�li are integral submanifolds of the
distributions ½0�, ½li� and ½�li� respectively. The warping functions are f0 ¼ c0e

at,
fi ¼ cie

að1þliÞt and gi ¼ c 0i e
að1�liÞt, with c0, ci and c 0i positive constants. Finally,

M0 is an almost Kähler manifold and the structure is CR-integrable if and only if 0
is a simple eigenvalue or M0 is a Kähler manifold.

Proof. The result is proved in [9] for almost Kenmotsu manifolds, corre-
sponding to the case a ¼ 1. Let us consider an almost a-Kenmotsu structure
ðj; x; h; gÞ, with a0 1, such that h 0 is h-parallel and ‘xh

0 ¼ 0. Applying the
D-homothetic deformation (1) with b ¼ a, we obtain an almost Kenmotsu struc-
ture ðj; x; h; gÞ such that h 0 is h-parallel and ‘

x
h 0 ¼ 0, and the result applies to this

structure. In particular, the distributions ½0�, ½li� and ½�li� are integrable and for
any distinct eigenvalues li1 ; . . . ; lis of h 0, the distribution ½x�l ½li1 �l � � �l ½lis � is
integrable with totally geodesic leaves with respect to g; (8) implies that such
leaves are totally geodesic also with respect to g.

Let us consider an eigenvalue l0 0 of h 0. We prove that the leaves of
the distribution ½l� are totally umbilical. Indeed, since ½x�l ½l� is totally geo-
desic, choosing a local orthonormal frame feig of ½l�, the second fundamental
form satisfies IIðei; ejÞ ¼ �að1þ lÞdijx; the mean curvature vector field is H ¼
�að1þ lÞx and, for any X ;Y A ½l�, we have IIðX ;Y Þ ¼ gðX ;Y ÞH, so that the
leaves of ½l� are totally umbilical. Since the orthogonal distribution ½l�? is
integrable with totally geodesic leaves, then M 2nþ1 is locally a warped product
B�fl Ml such that TB ¼ ½l�? and TMl ¼ ½l� (see [10]). We denote by g0 and ĝg
the Riemannian metrics on B and Ml respectively, such that the warped metric
is given by g0 þ f 2l ĝg. The projection p : B�fl Ml ! B is a Riemannian sub-
mersion with horizontal distribution H ¼ ½l�? and vertical distribution V ¼ ½l�.
The mean curvature vector field H ¼ �að1þ lÞx of the immersed submanifold

ðMl; ĝgÞ is p-related to � 1

fl
gradg0 fl ([1], 9.104) and thus, að1þ lÞ flx ¼ gradg0 fl.

If ml is the multiplicity of l, we choose local coordinates ft; x1; . . . ; x2n�mlg

on B such that x ¼ q

qt
and

q

qxi
A ½l� for any i ¼ 1; . . . ; 2n�ml. Hence, we get

fl ¼ cle
að1þlÞt, cl > 0.

Now, let us consider TB ¼ ½x�l ½�l�l0
m0Gl

½m�. The distribution ½x�l
0

m0Gl
½m� is integrable with totally geodesic leaves in M 2nþ1 and ½�l� is
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integrable with totally umbilical leaves in M 2nþ1. Since B is a totally geodesic
submanifold of M 2nþ1, these distributions are respectively totally geodesic and
totally umbilical in B and, arguing as above, B is locally a warped product.
This argument can be applied to each distribution ½li� and ½�li�, i A f1; . . . ; rg,
obtaining that M 2nþ1 is locally the warped product

N �f1 Ml1 �g1 M�l1 �f2 � � � �fr Mlr �gr M�lr ;

where fi ¼ cie
að1þliÞt and gi ¼ c 0i e

að1�liÞt, with ci and c 0i positive constants. The

manifold N is a totally geodesic submanifold of M 2nþ1 and it is an integral
submanifold of the distribution ½x�l ½0�. By Theorem 1, N is locally a warped
product M 0 �f0 M0 of an open interval M 0 and an almost Kähler manifold M0,
with f0 ¼ c0e

at, c0 > 0. r

Under the hypotheses of the above Theorem, applying (6), we have

ð‘Xh
0ÞY � ð‘Yh

0ÞX ¼ �ahðYÞðh 0X þ h 02X Þ þ ahðX Þðh 0Y þ h 02YÞð11Þ

for any X ;Y A XðMÞ. Now, if we suppose that Spðh 0Þ ¼ f0; l;�lg, with 0
simple eigenvalue, then h 02 ¼ l2ðI � hn xÞ and thus, from (11) and (7) it follows
that

RXYx ¼ �a2ð1þ l2ÞðhðY ÞX � hðX ÞYÞ � 2a2ðhðYÞh 0X � hðXÞh 0Y Þ:
Hence, we have

Proposition 2. Let ðM 2nþ1; j; x; h; gÞ be an almost a-Kenmotsu manifold
such that h 0 is h-parallel and ‘xh

0 ¼ 0. If Spðh 0Þ ¼ f0; l;�lg, with 0 simple
eigenvalue, then x belongs to the ðk; mÞ0-nullity distribution, with k ¼ �a2ð1þ l2Þ
and m ¼ �2a2.

As regards almost a-Kenmotsu ðk; mÞ0-spaces we have the following result.

Theorem 5. Let ðM 2nþ1; j; x; h; gÞ be an almost a-Kenmotsu manifold such
that x belongs to the ðk; mÞ0-nullity distribution. Then ka�a2.

If k ¼ �a2, then h 0 ¼ 0 and M 2nþ1 is locally a warped product M 0 �f N
2n,

where N 2n is an almost Kähler manifold, M 0 is an open interval with coordinate t,
f ¼ ceat, for some positive constant c.
If k < �a2, then h 0 0 0, m ¼ �2a2 and Spðh 0Þ ¼ f0; l;�lg, with 0 as simple

eigenvalue and l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1� k

a2

r
. The operator h 0 is h-parallel and satisfies

‘xh
0 ¼ 0. The integral manifolds of D are Kähler manifolds. The distributions

½l� and ½�l� are integrable with totally umbilical leaves; the distributions ½x�l ½l�
and ½x�l ½�l� are integrable with totally geodesic leaves. Finally, M 2nþ1 is
locally isometric to the warped products

Bnþ1ðkþ 2a2lÞ �f R
n; Hnþ1ðk� 2a2lÞ �f 0 Rn;
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where Bnþ1ðkþ 2a2lÞ is a space of constant curvature kþ 2a2la 0, tangent to

the distribution ½x�l ½�l�, Hnþ1ðk� 2a2lÞ is the hyperbolic space of constant

curvature k� 2a2l < �a2, tangent to the distribution ½x�l ½l�, f ¼ ceað1þlÞt and
f 0 ¼ c 0eað1�lÞt, with c, c 0 positive constants.

Proof. The result is proved in [8] for almost Kenmotsu manifolds. Let us
consider an almost a-Kenmotsu structure ðj; x; h; gÞ, with a0 1, such that x
belongs to the ðk; mÞ0-nullity distribution. Applying the D-homothetic defor-
mation (1) with b ¼ a, we obtain an almost Kenmotsu structure ðj; x; h; gÞ such

that x belongs to the ðk; mÞ0-nullity distribution, with k ¼ k

a2
, and m ¼ m

a2
. Then

ka�1. If k ¼ �1, or equivalently k ¼ �a2, then h 0 ¼ 0 and we apply Theorem
1.

If k < �1 then h 0 0 0, m ¼ �2 and Spðh 0Þ ¼ f0; l;�lg, with 0 as simple

eigenvalue and l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1� k

p
. The tensor fields j and h 0 are h-parallel and

‘xh
0 ¼ 0, since these properties are invariant under D-homothetic deformations;

in particular, the integral manifolds of D are Kähler manifolds. From Theorem
4 it follows that M 2nþ1 is locally the warped product

M 0 �f Ml �f 0 M�l;

where M 0 is an open interval, Ml and M�l are integral submanifolds of the
distributions ½l� and ½�l� respectively, f ¼ ceað1þlÞt and f 0 ¼ c 0eað1�lÞt, with c, c 0

positive constants.
We compute now the Riemannian curvature of M 2nþ1. Recall that the

integral submanifolds of the distribution ½x�l ½l� have constant Riemannian
curvature k� 2l with respect to the deformed Riemannian metric g. Let us
compute the relation between the curvature tensors R and R of g and g
respectively. Combining (7) with the ðk; mÞ0-nullity condition, m ¼ �2a2, we get

aðð‘Xh
0ÞY � ð‘Yh

0ÞXÞ ¼ ðkþ a2ÞðhðYÞX � hðX ÞYÞ � a2ðhðYÞh 0X � hðX Þh 0Y Þ;

and thus, applying (9), we obtain

RXYZ ¼ RXYZ þ aða� 1ÞðhðYÞgðX � h 0X ;ZÞ � hðX ÞgðY � h 0Y ;ZÞÞx

þ k
a� 1

a
ðhðYÞgðX ;ZÞ � hðXÞgðY ;ZÞÞx

þ aða� 1ÞðgðY þ h 0Y ;ZÞ � hðYÞhðZÞÞðX þ h 0X Þ
� aða� 1ÞðgðX þ h 0X ;ZÞ � hðXÞhðZÞÞðY þ h 0Y Þ

for any X ;Y ;Z A XðMÞ. On the distribution ½x�l ½l� we have h 0 ¼ lðI � hn xÞ
and applying the above formula, for any X ;Y ;Z A ½x�l ½l�, we get

RXYZ ¼ �a2ð1þ lÞ2ðgðY ;ZÞX � gðX ;ZÞYÞ:
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Therefore, the leaves of the distribution ½x�l ½l� have constant Riemannian
curvature �a2ð1þ lÞ2 ¼ k� 2a2l < �a2 with respect to g and analogously,
the leaves of the distribution ½x�l ½�l� have constant Riemannian curvature
�a2ð1� lÞ2 ¼ kþ 2a2la 0. Then, M 2nþ1 is locally isometric to the warped
products

Hnþ1ðk� 2a2lÞ �f 0 M�l; Bnþ1ðkþ 2a2lÞ �f Ml:

We prove that the fibers of the two warped products are flat Riemannian spaces.
Denote by g0 and ĝg the Riemannian metrics on Hnþ1ðk� 2a2lÞ and Ml re-
spectively, such that the first warped metric is given by g0 þ f 02ĝg. Applying
Proposition 7.42 in [17], for any U ;V ;W A ½�l�, we have

R̂RUVW ¼ RUVW � kgrad f 0k2

f 02 ðgðU ;WÞV � gðV ;WÞUÞ:

On the other hand, RUVW ¼ �a2ð1� lÞ2ðgðV ;WÞU � gðU ;WÞVÞ and kgrad f 0k2
¼ a2ð1� lÞ2 f 02. Then, R̂RUVW ¼ 0. Analogously, the fibers of the second
warped product are flat Riemannian spaces. r

Under the hypotheses of the above Theorem, if l ¼ 1 then both the distri-
butions ½x�l ½þ1� and ½�1� are integrable with totally geodesic leaves and
the manifold turns out to be locally isometric to the Riemannian product
Hnþ1ð�4a2Þ � Rn, which is locally symmetric. Conversely, supposing that M 2nþ1

is locally symmetric, then, by Theorem 3, l ¼ 1 and M 2nþ1 is locally isometric to
Hnþ1ð�4a2Þ � Rn. Hence, we have

Corollary 1. Let ðM 2nþ1; j; x; h; gÞ be an almost a-Kenmotsu manifold
such that h 0 0 0 and x belongs to the ðk; mÞ0-nullity distribution, m ¼ �2a2. Then
M 2nþ1 is locally symmetric if and only if Spðh 0Þ ¼ f0; 1;�1g, or equivalently
k ¼ �2a2, in which case the manifold is locally isometric to Hnþ1ð�4a2Þ � Rn.

As another consequence of Theorem 5, we can obtain more information on
the Riemannian curvature of an almost a-Kenmotsu manifold ðM 2nþ1; j; x; h; gÞ
such that h 0 is h-parallel and ‘xh

0 ¼ 0, as in the hypotheses of Theorem 4.
Indeed, for any eigenvalue l of the operator h 0, the distribution ½x�l ½l�l ½�l�
is integrable with totally geodesic leaves which inherit an almost a-Kenmotsu
structure from M 2nþ1. If l ¼ 0, then the distribution ½x�l ½l�l ½�l� reduces to
½x�l ½0� and the leaves are local warped products M 0 �f0 M0, where M0 is a
Kähler manifold in hypothesis of CR-integrability. If l > 0 then, by Prop-
osition 2, the leaves of ½x�l ½l�l ½�l� are almost a-Kenmotsu manifolds with
characteristic vector field belonging to the ðk; mÞ0-nullity distribution, with k ¼
�a2ð1þ l2Þ and m ¼ �2a2. By Theorem 5, the leaves of ½x�l ½l� have constant
Riemannian curvature k� 2a2l and the leaves of ½x�l ½�l� have constant
Riemannian curvature kþ 2a2l.
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3. The canonical connection

Theorem 6. Let ðM 2nþ1; j; x; h; gÞ be an almost contact metric manifold.
Then M 2nþ1 is a CR-integrable almost a-Kenmotsu manifold if and only if there
exists a linear connection ~‘‘ such that the tensor fields j, g, h are parallel with
respect to ~‘‘ and the torsion ~TT satisfies:

a) ~TTðX ;Y Þ ¼ 0, for any X ;Y A D,

b) 2 ~TTðx;XÞ ¼ aðX þ h 0XÞ, for any X A D,
c) ~TTx is selfadjoint.

The connection ~‘‘ is invariant under D-homothetic deformations and it is uniquely
determined by

~‘‘XY ¼ ‘XY þ agðX þ h 0X ;Y Þx� ahðY ÞðX þ h 0XÞ;ð12Þ

where ‘ is the Levi-Civita connection. The connection ~‘‘ will be called the
canonical connection associated to the structure ðj; x; h; gÞ.

Proof. The result of existence and uniqueness of the connection is proved
in [8] for almost Kenmotsu manifolds. Let ðj; x; h; gÞ be the almost contact
metric structure obtained from ðj; x; h; gÞ through deformation (1) with b ¼ a.
Then ðj; x; h; gÞ is a CR-integrable almost a-Kenmotsu structure if and only if
ðj; x; h; gÞ is a CR-integrable almost Kenmotsu structure, and this is equivalent
to the existence of a unique linear connection ~‘‘ such that the tensor fields j, g
and h are parallel with respect to ~‘‘, and the torsion ~TT vanishes on D and satisfies

b 0) 2 ~TTðx;X Þ ¼ X þ h 0X , for any X A D,
c 0) ~TT

x
is selfadjoint with respect to g.

The parallelism of j, g, h is equivalent to the parallelism of j, g, h and b 0) is
obviously equivalent to b). Moreover, for any vector fields X , Y , we have

gð ~TT
x
X ;Y Þ ¼ gð ~TTxX ;Y Þ þ ða� 1Þhð ~TT

x
X ÞhðYÞ:

If ~TT
x
is selfadjoint with respect to g, then ~TTx is selfadjoint with respect to g

since hð ~TT
x
X Þ ¼ gðX ; ~TT

x
xÞ ¼ 0. Hence, c 0) implies c). Analogously, one verifies

that c) implies c 0).
Denoting by ‘ the Levi-Civita connection of g, for any vector fields X and

Y , we have

~‘‘XY ¼ ‘XY þ gðX þ h 0X ;Y Þx� hðY ÞðX þ h 0XÞ;

and applying (8) with b ¼ a, we get (12). Finally, the connection is invariant
under D-homothetic deformations. Indeed, if ~‘‘ is the canonical connection
associated to the almost a-Kenmotsu structure ðj; x; h; gÞ, it can be easily veri-
fied that ~‘‘ satisfies the axioms defining the canonical connection associated to

the almost
a

b
-Kenmotsu structure ðj; x; h; gÞ obtained through a D-homothetic

deformation of constant b. r

436 giulia dileo



Now, let ðM 2nþ1; j; x; h; gÞ be a CR-integrable almost a-Kenmotsu manifold.
Let ~‘‘ be the canonical connection and ~RR its curvature tensor. A straightforward
computation using (12) shows that for every vector fields X , Y , Z

~RRXYZ ¼ RXYZ þ a2ðgðY þ h 0Y ;ZÞðX þ h 0X Þ � gðX þ h 0X ;ZÞðY þ h 0Y ÞÞð13Þ
þ agðð‘Xh

0ÞY � ð‘Yh
0ÞX ;ZÞx� ahðZÞðð‘Xh

0ÞY � ð‘Yh
0ÞXÞ;

where R is the Riemannian curvature tensor. Consequently, we obtain the
following result.

Proposition 3. Let ðM 2nþ1; j; x; h; gÞ be an a-Kenmotsu manifold. Then the
following conditions are equivalent:

a) ~‘‘ ~RR ¼ 0,
b) ~RR ¼ 0,
c) M 2nþ1 has constant Riemannian curvature k ¼ �a2,
d) M 2nþ1 is a locally symmetric Riemannian manifold.

Proof. Since the structure is normal, the operator h 0 vanishes and the
equivalence of b) and c) immediately follows from (13). In order to prove the
equivalence of a) and b), we show that for any X A D, ~‘‘xX ¼ aX . Indeed,
the manifold is locally a warped product of an open interval M 0, which is
tangent to the vector field x, and a Kähler manifold N 2n, orthogonal to x.
Therefore, ½x;X � ¼ 0 for any X A D and applying b) of Theorem 6, we have
~‘‘xX ¼ 2 ~TTðx;XÞ ¼ aX . We also notice that, since ~‘‘j ¼ 0, then ~‘‘ZX A D for
any X A D and Z A XðMÞ. Hence, for any X ;Y ;Z A D, ~RRXYZ A D. Suppos-

ing ~‘‘ ~RR ¼ 0, from ð~‘‘x
~RRÞðX ;Y ;ZÞ ¼ 0 we get ~RRXYZ ¼ 0. On the other hand,

~RRXYx ¼ ~RRxXY ¼ 0 for any vector fields X , Y , and thus the curvature tensor ~RR
vanishes. The equivalence of c) and d) is a consequence of Theorem 2. r

We shall discuss now the geometry of CR-integrable almost a-Kenmotsu
manifolds such that h 0 0 0 and ~‘‘ ~TT ¼ 0. First of all we prove the following
Lemma.

Lemma 1. Let ðM 2nþ1; j; x; h; gÞ be a CR-integrable almost a-Kenmotsu
manifold. Then the following conditions are equivalent:

a) ~‘‘ ~TT ¼ 0,
b) ~‘‘h 0 ¼ 0,
c) the tensor field h 0 is h-parallel and ‘xh

0 ¼ 0.

Proof. Recall that ~‘‘ZX A D for any X A D and Z A XðMÞ. On the other
hand, the torsion ~TT vanishes on D and thus ð~‘‘Z

~TTÞðX ;Y Þ ¼ 0 for any X ;Y A D
and Z A XðMÞ. Now, applying ~‘‘x ¼ 0 and b) of Theorem 6, for any X A D and
Z A XðMÞ, we have

2ð~‘‘Z
~TTÞðx;XÞ ¼ a~‘‘ZðX þ h 0X Þ � að~‘‘ZX þ h 0ð~‘‘ZXÞÞ ¼ að~‘‘Zh

0ÞX ;
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which proves the equivalence of a) and b), since ð~‘‘Zh
0Þx ¼ 0. Applying (12), we

get

ð~‘‘Zh
0ÞX ¼ afð‘Zh

0ÞX þ agðh 0Z þ h 02Z;XÞxg A D

and thus, the covariant derivative ~‘‘h 0 vanishes if and only if for any X ;Y A D
and Z A XðMÞ, gðð‘Zh

0ÞX ;Y Þ ¼ 0, which is equivalent to requiring the
h-parallelism of the tensor field h 0 and the vanishing of the covariant derivative
‘xh

0. r

Under the hypotheses of the above Lemma, Theorem 4 implies that M 2nþ1

is locally isometric to the warped product (10), where M0 has dimension 0 or it
is a Kähler manifold. For any eigenvalue l of the operator h 0, each integral
submanifold N of the distribution ½x�l ½l�l ½�l� is auto-parallel with respect
to the canonical connection ~‘‘; moreover, the connection induced by ~‘‘ on N
coincides with the canonical connection associated to the induced almost a-
Kenmotsu structure.

Let us investigate now the properties of the curvature tensor ~RR in the non-
normal case.

Theorem 7. Let ðM 2nþ1; j; x; h; gÞ be a CR-integrable almost a-Kenmotsu
manifold such that h 0 0 0 and the canonical connection ~‘‘ has parallel torsion.
Then the following conditions are equivalent:

a) ~‘‘ ~RR ¼ 0,
b) ~RR ¼ 0,
c) 0 is a simple eigenvalue of h 0 or the integral submanifolds of the distribution

½x�l ½0� have constant Riemannian curvature k ¼ �a2.

Proof. By Lemma 1, the operator h 0 is h-parallel and ‘xh
0 ¼ 0. Hence,

applying (11) and (13), we obtain that the curvature tensors R and ~RR are related
by

~RRXYZ ¼ RXYZ � a2ðhðYÞgðh 0X þ h 02X ;ZÞ � hðXÞgðh 0Y þ h 02Y ;ZÞÞxð14Þ

þ a2hðZÞðhðY Þðh 0X þ h 02XÞ � hðXÞðh 0Y þ h 02Y ÞÞ

þ a2ðgðY þ h 0Y ;ZÞðX þ h 0XÞ � gðX þ h 0X ;ZÞðY þ h 0YÞÞ

for any X ;Y ;Z A XðMÞ. We know that M 2nþ1 is locally isometric to the warped
product (10), where M0 has dimension 0 or it is a Kähler manifold. Let us
consider an eigenvalue l0 0 of h 0 and the warped product B�f Ml such that
TB ¼ ½l�?, TMl ¼ ½l� and f ¼ ceað1þlÞt, c > 0. From Proposition 7.42 in [17] it
follows that for any X ;Y A TB and V ;W A ½l�,

RXYV ¼ RVWX ¼ 0; RVXY ¼ �H f ðX ;YÞ
f

V ; RXVW ¼ � gðV ;WÞ
f

‘X ðgrad f Þ:
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For any vector field Z, we have Zð f Þ ¼ hðZÞxð f Þ ¼ að1þ lÞhðZÞ f . Therefore,

H f ðX ;Y Þ ¼ XðYf Þ � ð‘XYÞð f Þ
¼ að1þ lÞðXðhðYÞÞ f þ að1þ lÞhðX ÞhðY Þ f � hð‘XYÞ f Þ
¼ að1þ lÞðð‘XhÞðYÞ þ að1þ lÞhðX ÞhðYÞÞ f

¼ a2ð1þ lÞðgðX þ h 0X ;YÞ þ lhðXÞhðYÞÞ f ;

where we used (4). Hence,

RVXY ¼ �a2ð1þ lÞðgðX þ h 0X ;Y Þ þ lhðX ÞhðYÞÞV :

Since grad f ¼ að1þ lÞ f x, then

‘X ðgrad f Þ ¼ að1þ lÞfað1þ lÞhðXÞ f xþ af ðX þ h 0X � hðX ÞxÞg

¼ a2ð1þ lÞðX þ h 0X þ lhðXÞxÞ f ;

and thus

RXVW ¼ �a2ð1þ lÞgðV ;WÞðX þ h 0X þ lhðXÞxÞ:
Using (14), a straightforward computation shows that

~RRXYV ¼ ~RRVWX ¼ ~RRVXY ¼ ~RRXVW ¼ 0:ð15Þ
We know that the distribution ½x�l ½l� has totally geodesic leaves with constant
Riemannian curvature k� 2a2l, and applying (14) again, we have

~RRUVW ¼ 0ð16Þ
for any U ;V ;W A ½l�. It remains to analyze the curvatures ~RRXYZ, with
X ;Y ;Z A TB. Considered the eigenvalue �l, we regard B as the warped product
B 0 �f 0 M�l such that TB 0 ¼ ½x�l0

m0Gl
½m�, TM�l ¼ ½�l� and f 0 ¼ c 0eað1�lÞt,

c 0 > 0. Analogous computations give (15) and (16) for any U ;V ;W A ½�l� and
X ;Y A TB 0. In fact this argument can be applied for each non-vanishing eigen-
value of h 0, proving that if 0 is a simple eigenvalue, then the curvature tensor ~RR
vanishes on M 2nþ1.

If 0 has multiplicity greater than 1, we have to analyze the curvature tensor
~RR on the integral submanifolds of the distribution ½x�l ½0�. These leaves are
endowed with an almost a-Kenmotsu structure with vanishing operator h 0 and
such that the integral manifolds of ½0� are Kähler. Hence, the leaves of ½x�l ½0�
are a-Kenmotsu manifolds and, by Proposition 3, the curvature tensor ~RR vanishes
on them if and only if it is parallel with respect to ~‘‘, or equivalently the leaves
have constant Riemannian curvature k ¼ �a2. r

Remark 1. Di¤erently from the normal case, which is described in Prop-
osition 3, in the hypotheses of Theorem 7, conditions a) and b) are not equivalent
to the local Riemannian symmetry. Indeed in this case, combining (7) and (11)
it follows that the Riemannian curvature satisfies RXYx ¼ 0 for any X ;Y A D.
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By Theorem 3 it follows that M 2nþ1 is locally symmetric if and only if Spðh 0Þ ¼
f0; 1;�1g, with 0 simple eigenvalue.

Corollary 2. Let ðM 2nþ1; j; x; h; gÞ be an almost a-Kenmotsu manifold such
that h 0 0 0 and x belongs to the ðk; mÞ0-nullity distribution, m ¼ �2a2. Then ~RR ¼ 0
and the Riemannian curvature tensor is given by

RXYZ ¼ khðZÞðhðY ÞX � hðXÞYÞ þ kðgðY ;ZÞhðXÞ � gðX ;ZÞhðYÞÞxð17Þ

þ a2ðgðY � h 0Y ;ZÞhðXÞ � gðX � h 0X ;ZÞhðY ÞÞx

þ a2hðZÞðhðYÞðX � h 0XÞ � hðXÞðY � h 0Y ÞÞ

� a2ðgðY þ h 0Y ;ZÞðX þ h 0X Þ þ gðX þ h 0X ;ZÞðY þ h 0Y ÞÞ

for any X ;Y ;Z A XðMÞ.

Proof. The operator h 0 is h-parallel and satisfies ‘xh
0 ¼ 0. The eigenvalue

0 of h 0 is simple and Theorem 7 implies that the curvature tensor ~RR vanishes.

Moreover, since h 02 ¼ l2ðI � hn xÞ, with l2 ¼ �1� k

a2
, applying (14) we get

(17). r

4. The local classification

Theorem 8. Let ðM 2nþ1; j; x; h; gÞ and ðM 2nþ1; j; x; h; gÞ be CR-integrable

almost a-Kenmotsu manifolds with canonical connections ~‘‘ and ~‘‘ respectively.

Let us suppose that ~‘‘ and ~‘‘ have parallel torsion and curvature tensors and the
operators h 0 and h 0 associated to the structures have the same eigenvalues with
the same multiplicities. Then M 2nþ1 and M 2nþ1 are locally equivalent as almost
contact metric manifolds.

Proof. Let us suppose that h 0 and h 0 have the same eigenvalues with the
same multiplicities. Fixed two points p A M 2nþ1 and q A M 2nþ1, we can choose
orthonormal bases fxp; e1; . . . ; en; jpe1; . . . ; jpeng of TpM

2nþ1 and fxq; e1; . . . ; en;
jqe1; . . . ; jqeng of TqM

2nþ1 in such a way that, for any i ¼ 1; . . . ; n, ei and ei are
eigenvectors of h 0

p and h 0
q, respectively, with eigenvalue li, while jpei and jqei are

eigenvectors of h 0
p and h 0

q with eigenvalue �li. We define a linear isometry

F : TpM
2nþ1 ! TqM

2nþ1 such that

F ðxpÞ ¼ xq; FðeiÞ ¼ ei; F ðjpeiÞ ¼ jqei

for every i ¼ 1; . . . ; n. Then, we have

F �hq ¼ hp; F �jq ¼ jp; F �h 0
q ¼ h 0

p:

From Theorem 6, the torsion tensors satisfy F � ~TTq ¼ ~TTp. On the other hand, the

curvatures ~RR and ~RR vanish. It follows that there exists an a‰ne di¤eomorphism
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f of a neighborhood U of p onto a neighborhood V of q such that f ðpÞ ¼ q and
the di¤erential of f at p coincides with F [15]. The local di¤eomorphism f

maps the structure tensors ðj; x; h; gÞ to ðj; x; h; gÞ, since they are parallel with

respect to ~‘‘ and ~‘‘ respectively. Hence M 2nþ1 and M 2nþ1 are locally equivalent
as almost contact metric spaces. r

Theorem 9. Let ðM 2nþ1; j; x; h; gÞ and ðM 2nþ1; j; x; h; gÞ be CR-integrable

almost a and almost a-Kenmotsu manifolds with canonical connections ~‘‘ and ~‘‘

respectively. Let us suppose that ~‘‘ and ~‘‘ have parallel torsion and curvature
tensors. Then M 2nþ1 and M 2nþ1 are locally equivalent as almost contact metric
manifolds, up to D-homothetic deformations, if and only if the operators h 0 and h 0

associated to the structures have the same eigenvalues with the same multiplicities.

Proof. Let us suppose that h 0 has eigenvalues 0; l1; . . . ; ln;�l1; . . . ;�ln,

with 0a li a lj for any ia j. Analogously, let 0; l1; . . . ; ln;�l1; . . . ;�ln be the

eigenvalues of h 0, with 0a li a lj for any ia j. Since a D-homothetic defor-
mation of the structure leaves the operator h 0 invariant, if M 2nþ1 and M 2nþ1

are locally equivalent up to D-homothetic deformations, then li ¼ li for any
i ¼ 1; . . . ; n. Conversely, let us suppose li ¼ li for any i ¼ 1; . . . ; n. We apply a

D-homothetic deformation with constant b ¼ a

a
to the structure ðj; x; h; gÞ, thus

obtaining a CR-integrable almost a-Kenmotsu structure ðj1; x1; h1; g1Þ on M 2nþ1

for which the canonical connection has parallel torsion and vanishing curvature
and the operator h 0

1 has eigenvalues 0; l1; . . . ; ln;�l1; . . . ;�ln. From Theorem 8

it follows that ðM 2nþ1; j1; x1; h1; g1Þ and ðM 2nþ1; j; x; h; gÞ are locally equivalent
as almost contact metric spaces. r

For any odd dimension 2nþ 1 and for any nonnegative and not all
vanishing real numbers l1; . . . ; ln, we give an example of a CR-integrable almost
a-Kenmotsu manifold whose canonical connection has parallel torsion and
vanishing curvature and such that the operator h 0 has eigenvalues 0; l1; . . . ;
ln;�l1; . . . ;�ln. The example is given by a Lie group endowed with a left
invariant almost a-Kenmotsu structure.

Let G be the connected and simply connected Lie group of real matrices of
the form

A ¼

e�að1þl1Þt 0 � � � 0 0 0 x1

0 e�að1�l1Þt � � � 0 0 0 y1

..

. ..
. . .

. ..
. ..

. ..
. ..

.

0 0 � � � e�að1þlnÞt 0 0 xn

0 0 � � � 0 e�að1�lnÞt 0 yn

0 0 � � � 0 0 1 t

0 0 � � � 0 0 0 1

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

;
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which is a subgroup of the a‰ne group A¤ ð2nþ 1;RÞ and whose Lie algebra g
is given by the real matrices

X ¼

�að1þ l1Þc 0 � � � 0 0 0 a1

0 �að1� l1Þc � � � 0 0 0 b1

..

. ..
. . .

. ..
. ..

. ..
. ..

.

0 0 � � � �að1þ lnÞc 0 0 an

0 0 � � � 0 �að1� lnÞc 0 bn

0 0 � � � 0 0 0 c

0 0 � � � 0 0 0 0

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

:

For any i ¼ 1; . . . ; n denote by Xi and Yi the matrices in g whose coe‰cients
are all vanishing except for ai ¼ 1 and bi ¼ 1 respectively. Let x be the ma-
trix corresponding to c ¼ 1 and ai ¼ bi ¼ 0, i ¼ 1; . . . ; n. Then fx;X1; . . . ;Xn;
Y1; . . . ;Yng is a basis of g which satisfies

½x;Xi� ¼ �að1þ liÞXi; ½x;Yi� ¼ �að1� liÞYi;

½Xi;Xj� ¼ ½Xi;Yj� ¼ ½Yi;Xj� ¼ ½Yi;Yj� ¼ 0:

The above relations imply that G is a solvable non-nilpotent Lie group. We
consider the endomorphism j : g ! g and the 1-form h : g ! R such that

jðxÞ ¼ 0; jðXiÞ ¼ Yi; jðYiÞ ¼ �Xi; hðxÞ ¼ 1; hðXiÞ ¼ hðYiÞ ¼ 0;

for any i ¼ 1; . . . ; n, and denote by g the inner product on g such that the basis
fx;Xi;Yig is orthonormal. The tensors defined on g determine a left invariant
CR-integrable almost a-Kenmotsu structure ðj; x; h; gÞ on G. Each Xi is an
eigenvector of h 0 with eigenvalue li, while each Yi is eigenvector with eigenvalue
�li. Moreover, the canonical connection ~‘‘ coincides with the left invariant
connection on the Lie group, which has vanishing curvature and parallel torsion.
Indeed, denoting by ‘ 0 the left invariant connection on G, the structure tensor
fields j, x, h, g are parallel with respect to ‘ 0. Since the torsion T 0 is given by
2T 0ðX ;YÞ ¼ �½X ;Y � for any X ;Y A g, T 0 satisfies a), b), c) of Theorem 6,
so that ‘ 0 coincides with the canonical connection associated to the structure
ðj; x; h; gÞ.

Finally, considering the coordinate system ft; x1; y1; . . . ; xn; yng on the Lie
group G, we have

Xi ¼ e�að1þliÞt q

qxi
; Yi ¼ e�að1�liÞt q

qyi
;

x ¼ q

qt
; h ¼ dt; j ¼

Xn

i¼1

e2ali t dxi n
q

qyi
�
Xn

i¼1

e�2ali t dyi n
q

qxi
;ð18Þ

g ¼ dtn dtþ
Xn

i¼1

e2að1þliÞt dxi n dxi þ
Xn

i¼1

e2að1�liÞt dyi n dyi:ð19Þ
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Therefore, from Theorem 8 we have the following

Proposition 4. Let ðM 2nþ1; j; x; h; gÞ be an almost a-Kenmotsu manifold.
Then M 2nþ1 is a CR-integrable almost a-Kenmotsu manifold with canonical connec-
tion ~‘‘ satisfying ~‘‘ ~TT ¼ 0 and ~‘‘ ~RR ¼ 0 if and only if for any point p A M 2nþ1 there
exists an open neighbourhood with local coordinates ft; x1; y1; . . . ; xn; yng on which
(18) and (19) hold.

As a consequence of Theorem 9, we can associate to each almost a-
Kenmotsu ðk; mÞ0-space M 2nþ1, with h 0 0 0, the real number

IM 2nþ1 ¼ k

a2
;

which classifies such spaces up to D-homothetic deformations, as stated in the
following Theorem.

Theorem 10. Let ðM 2nþ1; j; x; h; gÞ be an almost a-Kenmotsu manifold
with h 0 0 0 and x belonging to the ðk; mÞ0-nullity distribution, m ¼ �2a2, and let
ðM 2nþ1; j; x; h; gÞ be an almost a-Kenmotsu manifold with h 0 0 0 and x belonging
to the ðk; mÞ0-nullity distribution, m ¼ �2a2. Then, M 2nþ1 and M 2nþ1 are locally
equivalent up to a D-homothetic deformation, as almost contact metric spaces, if
and only if IM 2nþ1 ¼ IM 2nþ1 .

Proof. The operators h 0 and h 0 have eigenvalues 0, l, �l and 0, l, �l

respectively, where 0 is simple, l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1� k

a2

r
and l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1� k

a2

r
. The result

immediately follows from Theorem 9. In particular, if IM 2nþ1 ¼ IM 2nþ1 , we have
to apply a D-homothetic deformation to the structure ðj; x; h; gÞ with constant

b ¼ a

a
¼

ffiffiffi
k

k

r
. r

Notice that IM 2nþ1 < �1 since k < �a2. By Corollary 1, M 2nþ1 is locally
symmetric if and only if IM 2nþ1 ¼ �2. For any dimension 2nþ 1 and for
any value of the invariant I < �1, an explicit example of these manifolds is
given by the Lie group G described above, with l1 ¼ � � � ¼ ln ¼ l. Indeed,
considered the left invariant almost a-Kenmotsu structure ðj; x; h; gÞ, by Prop-
osition 2, the characteristic vector field x belongs ðk; mÞ0-nullity distribution, with
k ¼ �a2ð1þ l2Þ and m ¼ �2a2. The invariant is

IG ¼ �1� l2

which attains any real value smaller than �1.

Remark 2. In [4] E. Boeckx introduces a scalar invariant which classifies,
up to D-homothetic deformations, non-Sasakian contact metric manifolds whose
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characteristic vector field belongs to a ðk; mÞ-nullity distribution. The proof of
the equivalence theorem involves the Levi-Civita connection and the properties of
the covariant derivatives of the Riemannian curvature R and the structure tensors
j, x, h, g. Here, the classification theorem for almost a-Kenmotsu ðk; mÞ0-spaces,
is obtained as a consequence of the more general Theorem 9, which involves the
canonical connection and the parallelism with respect to it of the torsion ~TT , the
curvature ~RR and the structure tensors. One could wonder if it is possible to
prove the equivalence theorem for non-Sasakian ðk; mÞ-contact metric spaces by
using the Tanaka-Webster connection. The answer is negative, since in this case
the torsion tensor ~TT and the curvature tensor ~RR of the Tanaka-Webster con-
nection ~‘‘ in general are not parallel with respect to ~‘‘; this happens if and only if
m ¼ 2, as proved in [5].

We conclude the analysis of the local geometry of almost a-Kenmotsu
ðk; mÞ0-spaces with the following result.

Proposition 5. Let ðM 2nþ1; j; x; h; gÞ be an almost a-Kenmotsu manifold
such that h 0 0 0 and x belongs to the ðk; mÞ0-nullity distribution, m ¼ �2a2. Let g 0

be the Riemannian metric locally defined by the D-conformal change

g 0 ¼ e�2atgþ ð1� e�2atÞhn h:

Then ðj; x; h; g 0Þ is an almost cosymplectic structure such that x belongs to the
kc-nullity distribution, with kc ¼ kþ a2.

Proof. The fundamental 2-form F 0 associated to the structure ðj; x; h; g 0Þ is
locally given by F 0 ¼ e�2atF and thus dF 0 ¼ 0, so that ðj; x; h; g 0Þ is an almost
cosymplectic structure. By Proposition 4, for any point p A M 2nþ1 there exist
local coordinates ft; x1; y1; . . . ; xn; yng, such that

x ¼ q

qt
; h ¼ dt; j ¼ e2alt

Xn

i¼1

dxi n
q

qyi
� e�2alt

Xn

i¼1

dyi n
q

qxi
;

g ¼ dtn dtþ e2að1þlÞt
Xn

i¼1

dxi n dxi þ e2að1�lÞt
Xn

i¼1

dyi n dyi;

with l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1� k

a2

r
. Hence, the Riemannian metric g 0 is locally given by

g 0 ¼ dtn dtþ e2alt
Xn

i¼1

dxi n dxi þ e�2alt
Xn

i¼1

dyi n dyi:

By a result of P. Dacko [6], it follows that ðj; x; h; g 0Þ is an almost cosymplectic
structure such that x belongs to the kc-nullity distribution, with kc ¼ �l2a2 ¼
kþ a2 < 0. r
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