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AN INEQUALITY OF FRANK, STEINMETZ AND WEISSENBORN

James K. Langley

Abstract

An inequality proved by Frank, Steinmetz and Weissenborn relates the frequency

of poles of a function meromorphic in the plane to the frequency of zeros of a linear

di¤erential polynomial in that function with small coe‰cients. A version of this

inequality is established in terms of the frequency of distinct zeros of the linear

di¤erential polynomial.

1. Introduction

The starting point is the following theorem due to Frank, Steinmetz and
Weissenborn [1, 2, 10].

Theorem 1.1 ([1, 2, 10]). Let the function f be transcendental and mero-
morphic in the plane and let

F ¼ Lð f Þ; L ¼ Dp þ ap�1D
p�1 þ � � � þ a0; D ¼ d

dz
;ð1Þ

where pb 2 and the aj are meromorphic in the plane with Tðr; ajÞ ¼ Sðr; f Þ. Let
e > 0. Then either (i) f is a rational function in (local) solutions of the equation
LðwÞ ¼ 0, or (ii)

Nðr;F ÞaNðr; 1=F Þ þ ð2þ eÞNðr; f Þ þ Sðr; f Þ:ð2Þ

Here Sðr; f Þ denotes as usual any quantity which is oðTðr; f ÞÞ as r tends to
infinity outside a set of finite measure [4]. Theorem 1.1 was first proved by
Frank and Weissenborn [2] (see also [3]) for the case where all the aj are
identically zero, in which case conclusion (i) is impossible. The result was then
established by Steinmetz [10] when the aj are rational functions, and the general
case was completed by Frank [1]. The methods of [1, 2, 10] are related to
Steinmetz’ proof of the second fundamental theorem for small functions [9]. It is
reasonable to ask whether some version of Theorem 1.1 holds with Nðr; 1=F Þ
replaced by Nðr; 1=F Þ, and the aim of this note is to show that such a result does
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indeed follow from the approach of [1, 10]. However, the constants which arise
are not so easy to control, and it is necessary to keep track of the orders of the
di¤erential operators which appear in the proof. The following theorem will be
proved.

Theorem 1.2. Let 1 < Aa 2 and 2a p A N and let f be a transcendental
meromorphic function in the plane. Let L and F be given by (1), where
a0; . . . ; ap�1 are functions meromorphic in the plane, and write

T �ðrÞ ¼ log rþ
Xp�1

j¼0

Tðr; ajÞ:ð3Þ

Then at least one of the following two conclusions holds:
(i) the function f is a rational function in (local) solutions of the equation

LðwÞ ¼ 0;
(ii) the functions f and F satisfy

Nðr;F ÞaCNðr; 1=FÞ þ ð1þ AÞNðr; f Þ þ S �ðr;FÞ:ð4Þ

Here S �ðr;F Þ denotes any quantity which is OðT �ðrÞ þ logþ Tðr;FÞÞ as r tends to
infinity outside a set of finite measure, and C is a positive constant which may be
chosen so that

Ca ð1þ AÞ exp 4ðp� 1Þ
log A

� �
:ð5Þ

Corollary 1.1. Let pb 2 and let the function f be transcendental and
meromorphic in the plane. Assume that Nðr; 1=f ðpÞÞ ¼ Sðr; f Þ and that all but
finitely many poles of f have multiplicity at most p� 1. Then Nðr; f Þ ¼ Sðr; f Þ.

Corollary 1.1 follows by taking F ¼ f ðpÞ and A close to 1 in (4) and observing
that in this case Nðr;FÞ �Nðr; f Þ ¼ pNðr; f Þ and ANðr; f ÞaAðp� 1ÞNðr; f Þþ
Oðlog rÞ.

2. Preliminaries

As in [1, 10] a key role is played by a result of Spigler [8] and a Wronskian
identity [7].

Theorem 2.1 ([8]). Let a0; . . . ; am�1; b0; . . . ; bn�1 be functions analytic on a
simply connected plane domain U , and let u1; . . . ; um and v1; . . . ; vn be fundamental
solution sets in U of the equations

uðmÞðzÞ þ
Xm�1

j¼0

ajðzÞuð jÞðzÞ ¼ 0 and vðnÞðzÞ þ
Xn�1

j¼0

bjðzÞvð jÞðzÞ ¼ 0
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respectively. Let H be the vector space over C generated by all the products usvt
(1a sam, 1a ta n), and let qamn be the dimension of H. Then there exist
meromorphic functions c0; . . . ; cq�1 on U , each of which is a rational function over
C in the aj , bj and their derivatives, such that H is the solution space of

wðqÞðzÞ þ
Xq�1

j¼0

cjðzÞwð jÞðzÞ ¼ 0:

Lemma 2.1 ([7]). Let f1; . . . ; fk and g1; . . . ; gn be functions meromorphic on a
plane domain U. Then the following identity holds on U :

Wð f1; . . . ; fk; g1; . . . ; gnÞWð f1; . . . ; fkÞn�1 ¼ Wðh1; . . . ; hnÞ; hj ¼ Wð f1; . . . ; fk; gjÞ:

3. Proof of Theorem 1.2

The proof mainly follows [1, 10], but requires additional detail in places.
Let A, p, L and the aj be as in the statement of the theorem, and let L denote
the field consisting of those meromorphic functions which are rational functions,
with coe‰cients in C, in the aj and their derivatives. Then Tðr; bÞ ¼ OðT �ðrÞÞ as
r tends to infinity outside a set of finite measure, for every b A L, by (3). Write
L½D� for the set of homogeneous linear di¤erential operators with coe‰cients in
L. Let U JC be a simply connected domain on which all the aj are analytic,
and let w1; . . . ;wp be linearly independent solutions of LðwÞ ¼ 0 on U . For
s A N let Ms denote the vector space over C generated by all elements of the form

wa1
1 � � �wap

p ; 0a aj A Z; a1 þ � � � þ ap ¼ s:ð6Þ

Choose s A N, let n ¼ dimðMsÞ and k ¼ dimðMsþ1Þ and let u1; . . . ; un be a basis
for Ms, and U1; . . . ;Uk be a basis for Msþ1. It is clear that pa na k. For the
time being let f be any function meromorphic on U , and set

W ¼ Wð f Þ ¼ WðU1; . . . ;Uk; u1 f ; . . . ; un f Þ
WðU1; . . . ;UkÞWðu1; . . . ; unÞ

:ð7Þ

Then Lemma 2.1 and standard properties of Wronskians [6] give

W ¼ WðWðU1; . . . ;Uk; u1 f Þ; . . . ;WðU1; . . . ;Uk; un f ÞÞ
WðU1; . . . ;UkÞnWðu1; . . . ; unÞ

and so

W ¼ WðKðu1 f Þ; . . . ;Kðun f ÞÞ
Wðu1; . . . ; unÞ

; where KðwÞ ¼ WðU1; . . . ;Uk;wÞ
WðU1; . . . ;UkÞ

:ð8Þ

Now U1; . . . ;Uk are linearly independent solutions of KðwÞ ¼ 0, but by Theorem
2.1 they also solve a kth order equation with coe‰cients in L, from which it
follows that K A L½D� in (8).
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Lemma 3.1. There exist operators Nq;m A L½D�, for 0a qa n� 1, 0a ma
n� 1, each of order at most k þ n, such that

W ¼ Wð f Þ ¼ detðNq;mðFÞÞ; F ¼ Lð f Þ:ð9Þ

Proof. It is shown in [1, 10] that Wð f Þ is a homogeneous di¤erential
polynomial in F , of degree n, with coe‰cients in L, but (4) requires a bound for
the orders of the Nq;m, and so the argument will be sketched. The uj solve a
homogeneous nth order linear di¤erential equation QðwÞ ¼ 0 over L, by Theorem
2.1. Hence Leibniz’ rule and the division algorithm [5, p. 126] give operators Lm,
Mm, Pm in L½D�, of orders at most k, k � p and p� 1 respectively, such that

Kðuj f Þ ¼
Xn�1

m¼0

u
ðmÞ
j Lmð f Þ ¼

Xn�1

m¼0

u
ðmÞ
j ðMmðFÞ þ Pmð f ÞÞ; F ¼ Lð f Þ;ð10Þ

for j ¼ 1; . . . n. But ujwn A Msþ1 and LðwnÞ ¼ 0 and so 0 ¼
Pn�1

m¼0 u
ðmÞ
j PmðwnÞ for

j ¼ 1; . . . n and n ¼ 1; . . . ; p. Since the uj are linearly independent it follows
that PmðwnÞ ¼ 0 for m ¼ 0; . . . ; n� 1 and n ¼ 1; . . . ; p. But the Pm have order at
most p� 1 and the wn are linearly independent, and so each Pm is the zero
operator. Now di¤erentiating (10) and using the equation for the uj gives

ðKðuj f ÞÞðqÞ ¼ ujNq;0ðFÞ þ � � � þ u
ðn�1Þ
j Nq;n�1ðF ÞÞ for 0a qa n� 1; 1a ja n;

with Nq;m A L½D�, of order at most k þ qa k þ n. But then ðKðuj f ÞÞðqÞ is the
dot product of the vector ðNq;0ðF Þ; . . . ;Nq;n�1ðFÞÞ with the jth column of the

Wronskian matrix of u1; . . . ; un. Thus (8) leads to (9). r

Henceforth let f be transcendental and meromorphic in the plane, and let
F ¼ Lð f Þ.

Lemma 3.2. The functions f , W and F satisfy

Nðr;Wð f ÞÞa ðnþ kÞNðr; f Þ þ S �ðr;F Þ:ð11Þ

Proof. The uj solve a homogeneous linear di¤erential equation QðwÞ ¼ 0 in
U , while the Uj solve KðwÞ ¼ 0, where Q and K are elements of L½D�. As in [1],
writing (7) in the form

Wð f Þ ¼ f nþkWðU1=f ; . . . ;Uk=f ; u1; . . . ; unÞ
WðU1; . . . ;UkÞWðu1; . . . ; unÞ

takes care of poles of W arising from poles of f at which all coe‰cients of L,
Q, K and the Nq;m are analytic. On the other hand if at least one coe‰cient
from L, Q, K or some Nq;m has a pole at z1, let s be the largest multiplicity
among these poles at z1. Then Nq;mðF Þ has at most a pole of multiplicity
gþ tþ 2s at z1, where gb 0 is the multiplicity of the pole of f at z1 and t
depends only on p, k and n. r
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Lemma 3.3. If Wð f Þ2 0 then F and Wð f Þ satisfy

Nðr; 1=F Þ � 1

n
Nðr; 1=Wð f ÞÞa ðk þ nÞNðr; 1=FÞ þ S �ðr;FÞ:ð12Þ

Proof. Write (9) in the form

Wð f Þ ¼ F nG;
1

F n
¼ G

Wð f Þ ; where G ¼ det
Nq;mðFÞ

F

� �
:

The operators Nq;m all have order at most k þ n, by Lemma 3.1, and F ð jÞ=F has
a pole of multiplicity at most j at a zero of F . This proves (12) and Lemma 3.3.

r

If Wð f Þ1 0 then (7) implies that U1; . . . ;Uk, u1 f ; . . . un f are linearly
dependent on U and so f is a rational function of the Uj and uj and hence
of the wj, which gives conclusion (i) of the theorem. Assume henceforth that
Wð f Þ does not vanish identically. Then (9) gives

nmðr; 1=F Þ ¼ mðr; 1=F nÞamðr; 1=WÞ þmðr;W=F nÞamðr; 1=WÞ þ S �ðr;F Þ:ð13Þ
But (9), (13) and the first fundamental theorem now lead to

nmðr; 1=FÞ þNðr; 1=Wð f ÞÞamðr;Wð f ÞÞ þNðr;Wð f ÞÞ þ S �ðr;FÞ
a nmðr;FÞ þNðr;Wð f ÞÞ þ S �ðr;FÞ
a nmðr;FÞ þ ðnþ kÞNðr; f Þ þ S �ðr;FÞ;

using Lemma 3.2. Dividing through by n and adding Nðr;F Þ þNðr; 1=FÞ to
both sides gives

Nðr;F Þ þ 1

n
Nðr; 1=Wð f ÞÞaNðr; 1=FÞ þ 1þ k

n

� �
Nðr; f Þ þ S �ðr;FÞ:ð14Þ

This inequality, but without the term involving zeros of W, is used in [1, 10] to
prove Theorem 1.1, based on the fact that inffk=ng ¼ 1 [9]. The presence of
Nðr; 1=Wð f ÞÞ in (14) yields, using Lemma 3.3,

Nðr;FÞa ðk þ nÞNðr; 1=F Þ þ 1þ k

n

� �
Nðr; f Þ þ S �ðr;F Þ:ð15Þ

It remains only to determine s in order to ensure that k=naA, while keeping a
reasonable bound on k þ n. As in [9] the dimension lðsÞ ¼ dimðMsÞ is at most
the number of distinct products (6). This yields, since logð1þ s=xÞ is decreasing
and logð1þ xÞa

ffiffiffi
x

p
for x > 0,

log lðsÞa log
ðsþ p� 1Þ!
s!ðp� 1Þ!

� �
¼

Xp�1

j¼1

log 1þ s

j

� �
ð16Þ

a

ð p�1

0

log 1þ s

x

� �
dxa

ð p�1

0

ffiffiffi
s

x

r
dx ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðp� 1Þ

p
:
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With ½x� the greatest integer not exceeding x A R, set

t ¼ 4ðp� 1Þ
ðlog AÞ2

" #
þ 1b 2;ð17Þ

and assume that

lðsþ 1Þ
lðsÞ > A for s ¼ 1; . . . ; t� 1:ð18Þ

Since lð1Þ ¼ pb 2 and Aa 2 this gives lðtÞb pAt�1 bAt and, using (16),

t log Aa log lðtÞa 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tðp� 1Þ

p
; ta

4ðp� 1Þ
ðlog AÞ2

;

which contradicts (17). Hence the assumption (18) must be false, and so by (16)
and (17) there exists s with 1a sa t� 1 such that

k

n
¼ ks

ns
¼ lðsþ 1Þ

lðsÞ aAð19Þ

and

k þ na ð1þ AÞlðsÞ; log lðsÞa 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðp� 1Þ

p
a 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðt� 1Þðp� 1Þ

p
a

4ðp� 1Þ
log A

;

which on combination with (15) gives (4) and (5). This completes the proof of
Theorem 1.2. r

Remark. When e ¼ A� 1 is small and positive a better bound for C is
obtained as follows. For fixed pb 2 define m and t by

e@ log A ¼
ðy
m

logð1þ uÞ
u2

du@
log m

m
; t ¼ ½mðp� 1Þ� þ 1;

as e ! 0þ. Then t=ðp� 1Þ > m and (16) gives

log lðtÞa
ð p�1

0

log 1þ t

x

� �
dx ¼ t

ðy
t=ðp�1Þ

logð1þ uÞ
u2

du

< t log A@ mðp� 1Þ log A@ mðp� 1Þe@ ðp� 1Þ logð1=eÞ:

Hence the argument following (18) shows that there exists s with 1a sa t� 1
such that (19) holds, as well as

Ca k þ na 2lðsþ 1Þa 2lðtÞa 2e�p:
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