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DEHN TWISTS COMBINED WITH PSEUDO-ANOSOV MAPS

Chaohui Zhang

Abstract

Let S be a Riemann surface of type ðp; nÞ with 3pþ n > 4 and nb 1. Let a be a

puncture of S. We show that for any Dehn twist tc along a simple closed geodesic c

on S, there exists a sequence f fmg of pseudo-Anosov maps of S such that for su‰ciently

large integers m, the products fm � tkc are pseudo-Anosov for all integers k. As a

corollary, we prove that for a multi-twist M2 on ~SS along two disjoint simple closed

geodesics, there are infinitely many pseudo-Anosov maps of S that are isotopic to M2

as a is filled in.

1. Introduction

By the Nielsen–Thurston classification of surface homeomorphisms [19, 5, 6],
a non-periodic irreducible map f of a surface S onto itself is isotopic to a
pseudo-Anosov map f0, by which we mean that there is a pair of transverse
measured foliations fFþ;F�g on S invariant under f0 such that

f0ðFþÞ ¼ lFþ and f0ðF�Þ ¼
1

l
F�

for a fixed real number l > 1. It is well known that l ¼ lð f0Þ is an algebraic
number and is called the dilatation of f0 in literature. By abuse of language, f
is also called pseudo-Anosov, or we simply call the isotopy class of f0 a pseudo-
Anosov mapping class.

When a pseudo-Anosov map is combined with a Dehn twist tc along a
simple closed geodesic c, the resulting map is not necessarily a pseudo-Anosov
map. For example, we can take two filling simple closed geodesics a, b on S,
then by Thurston [19], for any positive integers m1 and m2, the map
f ¼ t�m2

b � tm1
a is pseudo-Anosov. However, if we choose c ¼ a, then f � tkc

fails to be pseudo-Anosov for at least one integer k ¼ �m1.
There are several articles that deal with the combination of Dehn twists

and pseudo-Anosov maps on S. In [13] Long and Morton proved that for
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a pseudo-Anosov map f : S ! S and the Dehn twist tc along a simple closed
geodesic c, the products f � tkc are pseudo-Anosov for all but at most a finite
number of integer values of k. Fathi [10] elaborated that f � tkc are pseudo-
Anosov for all but at most seven consecutive values of k, and the location of
the gap in the set of integers Z depends on the map f and c. It was shown
recently in Boyer et al. [8] that the number ‘‘seven’’ can be improved to
‘‘six’’.

It is desirable to obtain some pseudo-Anosov maps f so that f � tkc are
pseudo-Anosov for all integers k. Let S be an analytically finite Riemann
surface of type ðp; nÞ with at least one puncture a. Assume that 3pþ n > 4. Set
~SS ¼ S U fag. It was shown in Kra [11] that the set F0 of pseudo-Anosov maps
on S that are isotopic to the identity on ~SS is not empty and contains infinitely
many elements. In [22] we obtained certain pseudo-Anosov maps f A F0 such
that f � tkc are pseudo-Anosov for all integers k. In this article we will obtain
infinitely many pseudo-Anosov maps f B F0 with the same property.

Let aHS be a simple closed geodesic so that ~aa is a non-trivial geodesic,
where and throughout the article ~aa denotes the geodesic homotopic to a as a is
filled in if a is also viewed as a curve on ~SS. Choose x A F0. According to
Masur–Minsky [15], for any large integer n, a and b :¼ xnðaÞ fill S (in fact, by an
author’s recent result [23], n can be chosen to be b 3). Thus by Thurston [19]
again, t�m2

b � tm1
a is pseudo-Anosov for any positive integers m1 and m2. Since x

is isotopic to the identity on ~SS, we see that ~aa ¼ ~bb, and thus t�m2

b � tm1
a A F0 if and

only if m1 ¼ m2.
The aim of this article is to prove the following result.

Theorem A. There exist simple closed geodesics c disjoint from a and an
integer N such that for all integers m1;m2 bN, the products

ðt�m2

b � tm1
a Þ � tkcð1:1Þ

are pseudo-Anosov for all integers k.

Remark. A direct consequence of the theorem is that for any simple closed
geodesic c, there are pseudo-Anosov maps f of forms t�m2

b � tm1
a such that f � tkc

are pseudo-Anosov for all integers k.

To obtain a geodesic c in Theorem A, we let C be an a-punctured cylinder
on S disjoint from a (usually there are infinitely many such a-punctured cylinders
on S). According to the discussion in §2.4 and §3.3, one of the two boundary
components of C can take a role of c in the theorem.

Theorem A does not cover the main result in [22]. Although t�m2

b � tm1
a are

elements of F0 whenever m1 ¼ m2, the set of pseudo-Anosov mapping classes of
forms t�m2

b � tm1
a is a subset of F0. As a matter of fact, if f0 A F0 is such that

lð f0Þ is the minimum value among all dilatations of f A F0, then by Proposition
6.1 of [24], in most cases, f0 is not of the form t�m2

b � tm1
a .

368 chaohui zhang



We believe that (1.1) are pseudo-Anosov maps for all non-zero integers
m1, m2 and all integers k. Our argument is valid only for large integers m1 and
m2, and provides no information on how to determine the smallest values of m1

and m2 so that (1.1) remains pseudo-Anosov. As we will see later, these values
are determined by the relative position of a, b and c. See also §2.6.

A product of Dehn twists along a curve system is called a multi twist. As a
direct consequence of Theorem A, we have the following result.

Theorem B. Assume that 3pþ n > 5. Let Mj , j ¼ 1 or 2, denote an
arbitrary multi twist along j disjoint loops on ~SS. Then there exist (infinitely
many) pseudo-Anosov maps isotopic to Mj as a is filled in.

This article is organized as follows. In Section 2, we briefly review some
notions and facts in Teichmüller theory. In Section 3, a Dehn twist along a
simple loop on S is linked to a mapping class t that can act on the fiber space

Fð ~SSÞ over the Teichmüller space Tð ~SSÞ in a fiber preserving way. We then
reduce the main theorem to the study of interactions of various such automor-
phisms. Section 4 and Section 5 are devoted to the proof of Theorem 3.5.1 and
Theorem 3.5.2. In Section 6, we prove Theorem B and also discuss some other
applications of Theorem A.

Acknowledgment. The author is grateful to the referees for their e¤orts to
read this manuscript, for their helpful comments and thoughtful suggestions, and
for pointing out to him some recent developments in the subject.

2. Notation and background

§2.1. Teichmüller spaces and Bers fiber spaces. Let ~SS be a fixed Riemann
surface of type ðp; n� 1Þ that was introduced in Section 1. Let ~SS1 be a
Riemann surface of the same type ðp; n� 1Þ. Denote by ð ~SS1; f1Þ a marked

Riemann surface, where f1 : ~SS ! ~SS1 is a quasiconformal homeomorphism. The
Teichmüller space Tð ~SSÞ is defined as a set of marked Riemann surfaces ð ~SS1; f1Þ
quotient by an equivalent relation ‘‘@’’, where ð ~SS1; f1Þ@ ð ~SS2; f2Þ if and only
if there is a conformal map h : ~SS1 ! ~SS2 such that h � f1 is isotopic to f2. We

denote by ½ ~SS1; f1� the equivalence class of the marked surface ð ~SS1; f1Þ.
Every marked surface ð ~SS1; f1Þ defines a new conformal structure m1 on ~SS

via pullbacks. Two conformal structures m1 and m2 are called equivalent if and
only if ð ~SS1; f1Þ@ ð ~SS2; f2Þ. Let ½m� denote the equivalence class of a conformal

structure m on ~SS. Thus points ½ ~SS1; f1� in Tð ~SSÞ can also be identified with ½m�. It

is well known that Tð ~SSÞ is homeomorphic to a cell in R6p�8þ2n (Abiko¤ [1]),
and can be endowed with a complex structure so as to become a ð3p� 4þ nÞ-
dimensional complex manifold (Ahlfors–Bers [2]).

Let H be the hyperbolic plane fz A C : Im z > 0g. Associated to each point
½m� A Tð ~SSÞ, there is a Jordan domain wmðHÞ depending holomorphically on ½m�,
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where wm : ĈC ! ĈC is a quasiconformal map such that (i) wmð0Þ ¼ 0, wmð1Þ ¼ 1,
wmðyÞ ¼ y; (ii) wm is conformal o¤ H; and (iii) the Beltrami coe‰cient

qzw
mðzÞ

qzwmðzÞ ¼ mðzÞ; for z A H:

The total space Fð ~SSÞ is called the Bers fiber space over Tð ~SSÞ. Every point in
Fð ~SSÞ can be written as ð½m�; zÞ where ½m� A Tð ~SSÞ and z A wmðHÞ. The pro-
jection p : F ð ~SSÞ ! Tð ~SSÞ that sends ð½m�; zÞ to ½m� is holomorphic. For more
information, we refer to Bers [4] and Kra [11].

§2.2. Mapping class groups. The group of isotopy classes of self-maps of ~SS
forms the mapping class group and is denoted by Mod ~SS. This tells us that each
element w A Mod ~SS is represented by a self-map w : ~SS ! ~SS that can be lifted to a
map ŵw : H ! H with ŵwGŵw�1 ¼ G, where G is the covering group of the universal
covering map % : H ! ~SS. The map ŵw determines an equivalence class ½ŵw� that
consists of all possible lifts ŵw 0 : H ! H of self-maps of ~SS with

ŵwgðŵwÞ�1 ¼ ŵw 0gðŵw 0Þ�1 for every g A G:ð2:1Þ
Condition (2.1) is equivalent to that ŵwjR̂R ¼ ŵw 0jR̂R. The group modð ~SSÞ consists of
equivalence classes ½ŵw� for all w : ~SS ! ~SS. Elements ½ŵw� act on Fð ~SSÞ by the
formula

½ŵw�ð½m�; zÞ ¼ ð½n�;wnŵwðwmÞ�1ðzÞÞ;
where n is the Beltrami coe‰cient of wm � ŵw�1. In this way, GG p1ð ~SS; aÞ is
regarded as a normal subgroup of modð ~SSÞ with modð ~SSÞ=G being isomorphic to
Mod ~SS. The Bers isomorphism (Theorem 9 of [4])

j : F ð ~SSÞ ! TðSÞ

defines an isomorphism j� of modð ~SSÞ onto the group of mapping classes on S
fixing the puncture a. In particular, from [4, 7], j�ðGÞ is the subgroup of the
mapping class group ModS that consists of mapping classes of S fixing a and
projecting to the trivial mapping class on ~SS as a is filled in.

In the sequel, we use the notation ½ŵw�� to denote the mapping class on S
obtained from ½ŵw� under the isomorphism j�.

§2.3. Mapping classes and their projections under forgetful maps. Assume
that ½ŵw�� is a reducible mapping class. That is, there is a representative f of ½ŵw��
such that f keeps a curve system G ¼ fg1; . . . ; gsg invariant. Here by a curve
system G we mean that all elements in G are non-trivial disjoint geodesics and for
elements gi; gj A G with i0 j, we have gi 0 gj (the assumption that 3pþ n > 4
guarantees that there exist curve systems on S).

Now suppose that ½ŵw�� projects to a pseudo-Anosov mapping class w on
~SS. We claim that the only possible reducible mapping classes on S projecting
to w are those elements ½ŵw�� so that ŵw fixes a parabolic fixed point of G. In
other words, if ŵw does not fix any parabolic fixed point of G, then ½ŵw�� is a
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pseudo-Anosov mapping class of S projecting to w. Indeed, assume that ½ŵw�� is
reduced by a curve system G ¼ fg1; . . . ; gsg with sb 2. Let P denote the set of
simple closed geodesics that bound twice punctured disks enclosing a. Note that
any two geodesics in P intersect, there is at least one geodesic g in G that is not
an element of P, which means that ~gg is non-trivial. Thus w is reducible. It
follows that s ¼ 1 and g1 A P. We conclude that ½ŵw��ðg1Þ ¼ g1. By Lemma 5.1
and Lemma 5.2 of [20], ŵw fixes the fixed point of a parabolic element of G.

More generally, a similar argument yields that for any reducible mapping
class ½ŵw��, if the corresponding curve system G ¼ fg1; . . . ; gsg contains an element
of P, then the same lemmas as in [20] can be applied to conclude that ŵw fixes the
fixed point of a parabolic element of G.

In particular, if ~SS is compact, then no twice punctured disks exist on S.
This implies that all mapping classes on S projecting to a pseudo-Anosov
mapping class w are pseudo-Anosov.

§2.4. Dehn twists and their lifts to a universal covering space. Let ĉcHH be
a geodesic such that ~cc ¼ %ðĉcÞ is a non-trivial simple closed geodesic on ~SS. Let
D, D� be the components of H� fĉcg. The Dehn twist t~cc can be lifted to a map
t : H ! H with respect to D in the following way.

Let g A G be a primitive simple hyperbolic element such that gðDÞ ¼ D.
This says that ĉc is the axis of g. Throughout the article we use the symbol
Ag ¼ ĉc to denote the axis of g and assume that Ag is oriented as shown in
Figure 1, which is consistent with the Dehn twist t~cc. We take an earthquake
g-shift on D and leave D� fixed. In Figure 1, the arrow underneath Ag indicates
the direction of the shift that is consistent with that of Ag. We then define a
lift t of t~cc via G-invariance. An equivalent description for t is given in [25].

The construction of t gives rise to a collection Ut of layered half planes in
H in a partial order defined by inclusion. There are infinitely many disjoint
maximal elements of Ut, and if we denote by Wt their complement in H, then

Figure 1
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Wt HD� and the restriction tjWt
is the identity. Also, t keeps each maximal

element of Ut invariant. In Figure 1, D is one of the maximal element of Ut.
Note that D� contains infinitely many maximal elements of Ut.

Obviously, the map t constructed in this way is a quasiconformal mapping

whose Beltrami coe‰cient
qztðzÞ
qztðzÞ

for z A H is supported on the set

N ¼ 6fNhðAgÞ; for all h A Gg;ð2:2Þ
where NhðAgÞ is an arbitrarily thin ‘‘crescent’’ neighborhood of hðAgÞ. Thus t
sends any geodesic d in D disjoint from all hðAgÞ, h A G, to a geodesic in D. In
other words, t sends the half-plane D 0 in D whose geodesic boundary qD 0 ¼ d to
a half-plane D 00 in D with D 0 VD 00 ¼ j.

As discussed in §2.2, the equivalence class of t determines an element ½t� of
modð ~SSÞ. By Lemma 3.2 of [21], ½t�� is represented by a Dehn twist tc along a
simple closed geodesic c on S. Note that if t is a lift of t~cc with respect to D,
then g�1t is also a lift of t~cc (but is with respect to D�). By Lemma 3.2 of [21]
again, ½g�1t�� is represented by the Dehn twist tc0 along another simple closed
geodesic c0. Since g commutes with t, a calculation shows that tc � t�1

c0
¼

t�ð½g�1t��Þ�1 ¼ g� and tc0 � t�1
c ¼ g�. But g� projects to the trivial mapping

class on ~SS. It follows that c is disjoint from c0 and is freely homotopic to c0
as a is filled in. This tells us that c0 and c are the boundary components of an
a-punctured cylinder on S.

Lemma 3.2 of [21] also says that for every simple closed geodesic cHS, we
can obtain a map t constructed above such that ½t�� ¼ tc.

§2.5. Iterates of half-planes under t. Theorem 4.3.10 of Beardon [3] states
that for any loxodromic Möbius transformation h, we let X , Y denote its
attracting and repelling fixed points, respectively. Then for any small neighbor-
hoods UX , UY of X , Y , respectively, there is an integer N, which depends only on
UY and UX and is independent of choices of z A C�UY , such that hmðzÞ A UX

for all mbN.
In our application, h ¼ g A G is a hyperbolic element keeping D invariant,

where D is a maximal element of Ut. In this situation X , Y are attracting and
repelling fixed points of g lying in S1. For any half-plane D 0 HD with qD 0, the
geodesic boundary of D 0 in H, projecting to a simple closed geodesic %ðqD0Þ, the
half-planes gmðD 0Þ are all disjoint and shrink to X as m ! þy, which means
that gmðD 0ÞHUX for large m and the Euclidean area of gmðD 0Þ is smaller than
that of D 0.

Now we proceed to examine the iteration of D 0 under tm. As mentioned
in §2.4, we further assume that either %ðqD 0Þ ¼ ~cc or %ðqD0Þ is disjoint from ~cc.
First, we observe from the construction that for any integer m0 0, tmðqD 0ÞV
qD 0 ¼ j. Second, based upon the result mentioned above and by the construc-
tion of t (see (2.2)), the regions tmðD 0Þ are all half-planes and the sequence
ftmðD 0Þg uniformly shrinks to the attracting fixed point X of g as m ! þy, as
long as D 0 stays away from a small neighborhood of the repelling fixed point
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of g. Thus the Euclidean area of tmðD 0Þ shrinks to zero as m ! þy. This
convergence property for the lift t will be implicitly applied several times in the
article below.

In the sequel, we call the attracting (resp. repelling) fixed point of g the
attracting (resp. repelling) endpoint of D with respect to t.

§2.6. Depths of parabolic fixed points of G. Let T A G be a parabolic
element and let x be its fixed point. We need the following lemma whose proof
was given in [21].

Lemma. There are only finitely many elements of Ut that can cover x.

According to the lemma, every parabolic fixed point x of G is associated
with a positive integer etðxÞ that is the number of elements of Ut covering x.
The integer etðxÞ is called the depth of x with respect to t throughout the rest
of the article. Note that etðxÞ ¼ etðtðxÞÞ for all parabolic fixed points of G.
Moreover, if etðxÞ ¼ 0, then x lies outside of all maximal elements of Ut. In this
case, T commutes with t and the geodesic c on S determined by tc ¼ ½t�� is
disjoint from the boundary of the twice punctured disk determined by T �

(Theorem 2 of [11, 16]).

3. Reduction of Theorem A

§3.1. Pseudo-Anosov maps represented by Dehn twists. Let ~aa0 H ~SS be a
non-trivial simple closed geodesic. Then ~aa0 can be viewed as a curve on S whose
geodesic representative is denoted by a. Choose an element x A F0. Then x
is pseudo-Anosov and is isotopic to the identity on ~SS. For su‰ciently large
integer k, the geodesic representative b in the homotopy class of xkðaÞ together
with a fills S. We must have that ~aa ¼ ~aa0. Here we recall that ~aa denotes the
geodesic on ~SS homotopic to a on ~SS if a is viewed as a curve on ~SS. Since xk is
isotopic to the identity on ~SS, we obtain ~aa ¼ ~bb. Write

f ¼ t�m2

b � tm1
a ; m1;m2 A Zþ:ð3:1Þ

Since ~aa ¼ ~bb, f is isotopic to the identity on ~SS when m1 ¼ m2. In this case, we let
m ¼ m1 ¼ m2. By Theorem 10 of Bers [4] (see also Theorem 4.2 and 4.3 of
Birman [7]), there is non-trivial element gm A G such that g�

m is represented
by f . As usual, we write g�

m ¼ f . On the other hand, by Thurston’s theorem
[19], f is pseudo-Anosov for every non-zero integer m. It follows from Kra
(Theorem 2 of [11]) that all gm are essential hyperbolic in the sense that their axes
Agm , which are denoted by Am in the sequel, project to filling closed geodesics
%ðAmÞ under the universal covering map % : H ! ~SS.

§3.2. Dehn twists interpreted as elements of modð ~SSÞ. Let a, ~aa, b and ~bb
be given in §3.1. Let f%�1ð~aaÞg denote the collection of all disjoint geodesics âa
in H with %ðâaÞ ¼ ~aa. Recall that ~aa ¼ ~bb. The set f%�1ð~aaÞg coincides with the set
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f%�1ð ~bbÞg. By Lemma 3.2 of [21], we can choose geodesics âa; b̂b A f%�1ð~aaÞg, a
component D1 of H� fâag and a component D2 of H� fb̂bg so that the lifts t1
and t2 of t~aa (notice that t~aa is the same as t ~bb) with respect to D1 and D2,
respectively, satisfy

½t1�� ¼ ta and ½t2�� ¼ tb:ð3:2Þ
In addition, since ða; bÞ fills S, ta does not commute with tb. We claim that
Wt1 VWt2 ¼ j (see §2.4 for the definition of Wti , i ¼ 1; 2). Otherwise, suppose
Wt1 VWt2 0j. Then since geodesics in f%�1ð~aaÞg (note that this set coincides with
f%�1ð ~bbÞg) are all disjoint, for any D1 A Ut1 and any D1 A Ut2 , either D1 HD2, or
D2 HD1, or D1 and D2 are disjoint. By the construction, t1 must commute with
t2, thus from (3.2), ta commutes with tb. This is a contradiction. We conclude
that Wt1 VWt2 ¼ j and thus that there exist maximal elements D1 A Ut1 and
D2 A Ut2 such that

D1 VD2 0j; qD1 V qD2 ¼ j; and D1 UD2 ¼ H:ð3:3Þ
In Figure 2 below, D1 and D2 are so chosen that (3.2) and (3.3) hold. That
is, D1 is the region below âa, and D2 is the region above b̂b. The arrows below âa
and above b̂b indicate the motion of t1 and t�1

2 in D1 and D2, respectively.

§3.3. Illustration for Figure 3. Now we can choose a simple closed
geodesic cHS so that c is disjoint from a (this implies that ~cc is disjoint
from ~aa). Since fa; bg fills S and ~aa ¼ ~bb, c must intersect b but ~cc is disjoint
from ~bb. Thus f%�1ð~ccÞg is disjoint from f%�1ð~aaÞg. As discussed in §3.2, there is
a lift t of t~cc such that

½t�� ¼ tc:ð3:4Þ
For convenience, we let U1 and U2 denote the collections of maximal

elements of t1 and t2, and let W1, W2 be the complements in H of maximal
elements of t1 and t2, respectively. Since ~aa ¼ ~bb and ~cc is disjoint from ~aa, all
boundary geodesics of maximal elements of Ut, U1, and U2 are mutually disjoint.

Figure 2 Figure 3
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Let D1, D2 be chosen from §3.2. By assumption, c is disjoint from a, which
means that tc commutes with ta, or via the Bers isomorphism, as elements of
modð ~SSÞ, t commutes with t1. It is easily shown that Wt VW1 0j. We see that
either (i) D1 is contained in a maximal element D of Ut or (ii) D1 contains
infinitely many maximal elements Dti of Ut. From the discussion of §2.4, we
may further choose c (by replacing t with g�1t if necessary, where g A G is
hyperbolic and keeps ĉc invariant) so that (ii) occurs. Note that tc does not
commute with tb. By the same argument in §3.2, Wt VW2 ¼ j. Therefore,
among those maximal elements Dti, there is a maximal element, denoted by
D, such that DVD2 0j, qDV b̂b ¼ j, and DUD2 ¼ H. Set ĉc ¼ qD. In Figure 3,
ĉc lies in the region D1 VD2, and D is the region below ĉc.

§3.4. Notation and convention. We refer to Figure 3. Write âaV qH ¼
fU ;Zg, b̂b V qH ¼ fV ;Yg, and ĉcV qH ¼ fP;Qg. For each pair fU ;Pg, say, of
the adjacent labeling points in fU ;P;V ;Y ;Q;Zg, we use ðU ;PÞ or ðP;UÞ to
denote the open unoriented circular arcs in S1 connecting U and P without
containing any other labeling points. We also use ðU ;P;VÞ to denote the open

unoriented circular arcs in S1 connecting U and V passing through P, and so on.

§3.5. Reduction of Theorem A. From (3.2) and (3.4) we see that

½t�m2

2 tm1

1 tk�� ¼ f � tkc ;
where f is defined as in (3.1). For simplicity, we denote by zk ¼ t�m2

2 tm1

1 tk.
Then it is readily seen that ½zk� A modð ~SSÞ. The proof of Theorem A can be
reduced to prove the following two theorems.

Theorem 3.5.1. For all su‰ciently large integers m1 and m2 and any integer
k, the map zk does not fix any parabolic fixed points of G.

Remark. Once Theorem 3.5.1 is proved, then by the discussion of §2.3, the
corresponding curve system does not contain any curve that bounds a twice
punctured disk enclosing a. That is, all geodesics in the curve system are non-
trivial. See also §3.6 for more detailed discussion.

Now suppose that ½zk�� is reduced by a curve system

Gk ¼ fgk1; . . . ; gkskg;ð3:5Þ
where all gki are mutually disjoint geodesics and all ~ggki are non-trivial disjoint
geodesics on ~SS. By Lemma 3.2 of [22], ½z2k �

� keeps each curve gki in Gk

invariant. Let gk be any element of Gk. Then ½z2k �
�ðgkÞ ¼ gk and ~ggk is non-

trivial. Let tk be the lift of the Dehn twist t~ggk along ~ggk so that ½tk�� ¼ tgk . Then

tk gives rise to a collection of disjoint maximal half-planes that is denoted by
Uk. For simplicity we write tk ¼ tgk .

Theorem 3.5.2. Let ~ggk be as above. A maximal element Dk of Uk can be
selected so that z2kðDkÞ fails to be a maximal element of Uk.
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§3.6. Proof of Theorem A. If k ¼ 0, then by Thurston’s theorem [19]
and the definition (3.1), f � tkc ¼ f is pseudo-Anosov for all positive integers m1

and m2. So we assume that k0 0. Suppose that ½zk�� ¼ f � tkc is not pseudo-
Anosov for some k and some large integers m1 and m2. Then by the Nielsen–
Thurston classification of surface homeomorphisms, ½zk�� is either reducible
or periodic. Since ½zk�� projects to a non-trivial multi-twist, ½zk�� cannot be
periodic. We conclude that ½zk�� is reducible. That is, there is a curve system
(3.5) (depending on k) such that

½zk��jGk ¼ Gk:

If there is a loop gk1, say, in Gk that bounds a twice punctured disk enclosing a,
then gk1 is the only one such loop in Gk. Thus ½zk��ðgk1Þ ¼ gk1. By Lemma 5.1
of [20], zk ¼ t�m2

2 tm1

1 tk would fix a parabolic fixed point of G, which contradicts
that zk fixes no parabolic fixed points of G according to Theorem 3.5.1.

If there is no gki in Gk such that gki bounds a twice punctured disk enclosing
a, then all ~ggki are non-trivial loops on ~SS. By Lemma 3.2 of [22] again, ½z2k �

�

keeps each loop gki invariant. That is, ð f � tkc Þ
2ðgkiÞ ¼ gki for i ¼ 1; . . . ; sk.

We claim that there is an element gk1, say, of Gk such that ~ggk1 and ~cc are
disjoint but gk1 and c intersect and they form a bigon near the puncture a.

Indeed, since ½z2k �
� keeps every gki A Gk invariant, the projection of ½z2k �

� must
keep ~ggki invariant. Note that as a is filled in, the map f 2 is isotopic to either the
identity on ~SS (if m1 ¼ m2) or the Dehn twist t

2ðm1�m2Þ
~aa (if m1 0m2), on ~SS, the map

½z2k �
� is isotopic to the non-trivial Dehn twist tk~cc or the multi-twist t

2ðm1�m2Þ
~aa � tk~cc .

It follows that tk~cc or t
2ðm1�m2Þ
~aa � tk~cc keeps every ~ggki invariant. This tells us that one

of the following conditions must be satisfied:
(1) m1 0m2 and ~ggki is disjoint from ~aa and ~cc,
(2) m1 0m2, and some curve, say ~ggk1 ¼ ~aa or ~cc,
(3) m1 ¼ m2 and ~ggki is disjoint from ~cc, or
(4) m1 ¼ m2 and some curve, say, ~ggk1 ¼ ~cc.
In any one of these cases, ~ggk1 is either disjoint from ~cc or ~ggk1 ¼ ~cc. If gk1 is

also disjoint from c, then the same argument of Lemma 3.3 of [22] will lead to
a contradiction. So we can find a geodesic gk1 such that gk1 and c intersect.
We remark that if (3) or (4) occurs, then t�m2

2 tm1

1 is an element of G. As a
consequence, for any half-plane D contained in D1 VD2, where D1, D2 are shown
in Figure 2, t�m2

2 tm1

1 ðDÞHD1 VD2 is also a half-plane.
For simplicity we write gk ¼ gk1. We conclude that ~ggk is disjoint from ~cc

but gk intersects c and they form a bigon near the puncture a. Since ½z2k �
�

fixes gk,

ð f � tkc Þ
2 � tk � ð f � tkc Þ

�2 ¼ tk:ð3:6Þ

Via the Bers isomorphism j� : modð ~SSÞ ! Moda
S, we then obtain the following

equality:

z2ktkz
�2
k ¼ tk:ð3:7Þ
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Let Dk A Uk be any maximal element. Then tk keeps Dk invariant, and no
points on Dk VS1 are fixed by tk except for the endpoints. Hence z2ktkz

�2
k

sends z2kðDkÞ to itself and does not fix any point in z2kðDkÞVS1. From (3.7), tk
sends z2kðDkÞ to itself and does not fix any point in z2kðDkÞVS1. This implies

that z2kðDkÞ is also a maximal element of Uk. This contradicts Theorem 3.5.2,
and hence the proof of Theorem A is complete. r

4. Proof of Theorem 3.5.1

Let x be the fixed point of a parabolic element T A G. Obviously, x can not
be an endpoint of any element of U1, U2, and Ut. Otherwise, T would share its
fixed point with a hyperbolic element of G, and this would also contradict that G
is discrete. We refer to Figure 3.

If x A ðV ;Y Þ, then since ~bb is simple, tkðb̂bÞV b̂b ¼ j. We see that

y ¼ tkðxÞ A ðP;VÞ and t�m2

2 tm1

1 tkðxÞ ¼ t�m2

2 tm1

1 ðyÞ A ðP;VÞ:

It follows that zkðxÞ ¼ t�m2

2 tm1

1 ðyÞ0 x. Similar computation also yields that
z2kðxÞ0 x.

If x A ðU ;ZÞ, and x is not covered by any maximal element of Ut, then
tkðxÞ ¼ x. Since t1 keeps D1 invariant, t1 keeps ðU ;ZÞ invariant as well. So
tm1

1 ðxÞ A ðU ;ZÞ. Since ~aa is simple, t�m2

2 sends ðU ;ZÞ to an interval in ðU ;P;VÞ
disjoint from ðU ;ZÞ. It follows that

zkðxÞ ¼ t�m2

2 tm1

1 tkðxÞ0 x:

Similarly we have z2kðxÞ0 x. If x A ðU ;ZÞ and x is covered by a maximal
element D 0 A Ut. Since a is disjoint from c, D 0 HH�D1. This means that
tkðxÞ A ðU ;ZÞ and tm1

1 tkðxÞ A ðU ;ZÞ. Since ~aa is a simple closed geodesic,

t�m2

2 ðH�D1ÞV ðH�D1Þ ¼ j:

It follows that zkðxÞ ¼ t�m2

2 tm1

1 tkðxÞ0 x and that z2kðxÞ0 x. Similar argument
yields that z2kðxÞ0 x if x A ðP;UÞU ðQ;Y Þ.

It remains to settle the case that x A ðP;VÞU ðQ;ZÞ. Suppose that x A ðP;VÞ
and that z2kðxÞ ¼ x. In this case, x stays away from the point Z (where we recall
that Z is the repelling endpoint of D1 with respect to t1). Let

D1 ID2 I � � �IDr C x; rb 1;

be elements of Ut covering x A ðP;VÞ. We see that D1 ¼ D. From Lemma 2.6,
r < y, and thus etðxÞ ¼ r. Observe that etðxÞ ¼ etðtkðxÞÞ.

Suppose that x A ðP;VÞ and stays away from a neighborhood Ud V ðP;VÞ
of P, where d is a small positive number, and Ud is a small neighborhood of the
point P in the interval ðP;VÞ. Let

D ¼ D1 ¼ D 0
1 ID 0

2 I � � �ID 0
r C tkðxÞ
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be the corresponding elements of Ut covering tkðxÞ. Then the ratio

0 <
diamðD 0

rÞ
diamðDrÞ

< Cð4:1Þ

for a constant C > 1, where diamðD 0
rÞ and diamðDrÞ denote the Euclidean

diameters of D 0
r and Dr.

For su‰ciently large m1, D 00
r ¼ tm1

1 ðD 0
rÞ shrinks to U (recall that U is the

attracting endpoint of D1 with respect to t1, see Figure 3). This means that the
Euclidean diameter diamðD 00

r Þ decreases to zero as m1 ! þy.
Also, we observe that t�m2

2 ðD 00
r Þ shrinks to V , which is the attracting

endpoint of D2 (with respect to t�1
2 ), and diam t�m2

2 ðD 00
r Þ decreases to zero as

m2 ! þy. Note that ðP;VÞ is far from Z and Y , by the discussion of §2.5,
we conclude that for a large integer m2, which does not depend on any point
x A ðP;VÞ �Ud, the Euclidean diameter of t�m2

2 ðD 00
r Þ ¼ t�m2

2 tm1

1 ðD 0
rÞ is smaller

than that of Dr. Suppose that zðxÞ ¼ x, we then have t�m2

2 ðD 00
r ÞHDr. Since

t�m2

2 ðD 00
r Þ A Ut, we conclude that

etðt�m2

2 tm1

1 tkðxÞÞ ¼ etðzkðxÞÞb etðxÞ þ 1:

It follows that zkðxÞ0 x. Similar argument yields that z2kðxÞ0 x. This is a
contradiction.

If x A Ud V ðP;VÞ, then usually, we do not have (4.1) (for instance, k could
be certain negative integer). But we observe, by using the same discussion of
§2.5, that t�m2

2 ðyÞ shrinks to V uniformly for any point y A S1 staying away from
a fixed neighborhood of Y . Since tm1

1 tkðxÞ shrinks to U , tm1

1 tkðxÞ stay away
from Y . We thus conclude that t�m2

2 tm1

1 tkðxÞ0 x for large integers m1 and
m2 that are independent of x A Ue V ðP;VÞ. By repeating the computation one
shows that z2kðxÞ0 x.

By taking the inverse of z2k and using the same argument as above, we can
settle the case that x A ðQ;ZÞ. In this case, x stays away from V , the repelling
endpoint of D2 (with respect to t2). This proves Theorem 3.5.1. r

5. Proof of Theorem 3.5.2

In this section, we handle the case that ½z2k �
� ¼ ð f � tkc Þ

2 is reduced by a
single geodesic gk with ~ggk being non-trivial on ~SS. The regions D, D1, D2 and the

geodesics ĉc, âa, b̂b are drawn in Figure 3. From §3.5 and §3.6, we know that
the projection ~ggk of gk is disjoint from ~cc (~ggk is disjoint from both ~aa and ~cc if
m1 0m2). Hence all boundary geodesics of elements of Uk are disjoint from ĉc.
Note that D is the component of H� fĉcg below ĉc. See Figure 3. By selecting
a subsequence if needed, there are two cases to consider.

Case 1. D is not included in any element of Uk. In this case, D contains
infinitely many maximal elements of Uk. Since c intersects gk, there is a maximal
element Dk A Uk such that

Dk VD0j; qDk V qD ¼ j; and DUDk ¼ H:

378 chaohui zhang



(Otherwise, we have Wk VWt0j and this tells us that tc commutes with tgk and
thus that c is disjoint from gk. This is a contradiction.) Write sk ¼ qDk HH
the boundary geodesic of Dk. Then sk is disjoint from ĉc ¼ qD and sk HD stays
away from the point Z. Since ĉcHDk, and since ~ggk is a simple curve, for any

integer k0 0, tkðskÞHD and tkðskÞV sk ¼ j. Therefore, tm1

1 tkðskÞ shrinks to
the point U . Thus t�m2

2 tm1

1 tkðskÞ shrinks to the point V . Similar calculations

show that ðt�m2

2 tm1

1 tkÞ2ðskÞ shrinks to the point V also. Here and below, we use
the same discussion of §2.5 and conclude that the integers m1 and m2 are fixed
and are independent of choices of k.

Since both ðt�m2

2 tm1

1 tkÞ2ðDkÞ and Dk contain the region H�D, we have

ðt�m2

2 tm1

1 tkÞ2ðDkÞVDk 0j:ð5:1Þ

To see that for su‰ciently large integers m1 and m2, t
�m2

2 tm1

1 tkðskÞ0 sk, we
denote by diamðskÞ the Euclidean diameter of sk.

If sk HD and diamðskÞ ! 0 as k ! þy or k ! �y, and the ratio

diamðtkðskÞÞ
diamðskÞ

is unbounded above (which occurs when sk shrinks to P or Q), then since P or Q
stays away from V , t�m2

2 tm1

1 tkðskÞ is disjoint from sk.
Otherwise, we have sk HD and there is a constant C > 1

diamðtkðskÞÞ
diamðskÞ

< Cð5:2Þ

for all integers k. It follows from (5.2) that for su‰ciently large integers m1 and
m2, diamðt�m2

2 tm1

1 tkðskÞÞ is smaller than diamðtkðskÞÞ=C. We thus obtain

diamðt�m2

2 tm1

1 tkðskÞÞ <
diamðtkðskÞÞ

C
< diamðskÞ:

In particular, we obtain t�m2

2 tm1

1 tkðskÞ0 sk. Similarly, we can show that
ðt�m2

2 tm1

1 tkÞ2ðskÞ0 sk. Together with (5.1), we conclude that the half plane
ðt�m2

2 tm1

1 tkÞ2ðDkÞ cannot be a maximal element of Uk.

Case 2. D is included in an element Dk of Uk. In this case, we con-
sider the inverse map z�2

k of z2k . Let D 0
k ¼ H�Dk. Note that both Dk and D 0

k

share the common boundary geodesic sk. The region D 0
k stays away from V .

Hence tm2

2 ðD 0
kÞ shrinks to the point Y uniformly, and thus t�m1

1 tm2

2 ðD 0
kÞ shrinks

to the point Z uniformly. This implies that diamðt�m1

1 tm2

2 ðD 0
kÞÞ and thus also

diamððt�m1

1 tm2

2 Þ2ðD 0
kÞÞ are small. Since both Dk and ðt�kt�m1

1 tm2

2 Þ2ðDkÞ contain
the region D,

Dk V ððt�kt�m1

1 tm2

2 Þ2ðDkÞÞ0j:ð5:3Þ
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We need to show that Dk 0 ðt�kt�m1

1 tm2

2 Þ2ðDkÞ. Suppose for the contrary,
we assume Dk ¼ ðt�kt�m1

1 tm2

2 Þ2ðDkÞ. By hypothesis, tkðD 0
kÞ ¼ D 0

k, we obtain

t�m2

2 tm1

1 ðD 0
kÞ ¼ t�kt�m1

1 tm2

2 ðD 0
kÞ:ð5:4Þ

By examining the actions of t�m2

2 tm1

1 and t�kt�m1

1 tm2

2 on D 0
k, we see that (5.4)

cannot hold. It follows that ðt�kt�m1

1 tm2

2 Þ2ðDkÞ0Dk.

This fact together with (5.3) tells us that ðt�kt�m1

1 tm2

2 Þ2ðDkÞ is not a maximal
element of Uk. Hence ½z�2

k �� cannot be reduced by the geodesic gk.
This completes the proof of Theorem 3.5.2. r

6. Some remarks

Theorem A has some interesting applications.

§6.1. Proof of Theorem B. (1) First we consider the case that j ¼ 1. We
may assume that M1 ¼ t~cc. By Theorem A, there is a large integer N such that
for any mbN, t�m

b � tma � tc are pseudo-Anosov. Since ~aa ¼ ~bb, all the mapping
classes t�m

b � tma � tc project to M1 as a is filled in. This proves (1).
(2) j ¼ 2. We set M2 ¼ tk1~aa � tk2~cc , where k1; k2 A Z� f0g. For a positive

integer s, we consider the following map zs:

zs ¼ t�s
b � tsþk1

a � tk2c :

When s is chosen so large that s; sþ k1 bN, we can apply Theorem A again to

conclude that zs A ModS is pseudo-Anosov. Since ~aa ¼ ~bb, all the mapping classes
zs project to M2 as a is filled in. This proves (2). r

§6.2. Generalizations. To proceed, we let N be as in Theorem A, let
m1;m2 bN, and set f ¼ t�m2

b � tm1
a . Theorem A can be extended to the fol-

lowing result:

Corollary. For any integers si and positive integers ri, the finite products

Y

i

ð f ri � tsic Þð6:1Þ

are pseudo-Anosov maps.

Proof. The argument of Theorem 3.5.1 and Theorem 3.5.2 is valid not
only for zk ¼ t�m2

2 tm1

1 tk, but also for any finite product

Y

i

ððt�m2

2 tm1

1 ÞritsiÞ

for any positive integers ri and any integers si. Thus the argument of Theorem
A (§3.6) can be carried over to the general case. r

380 chaohui zhang



§6.3. Examples. Let A ¼ fa1; . . . ; amg and B ¼ fb1; . . . ; blg be two fam-
ilies of disjoint simple closed geodesics on S so that fA;Bg fills S. It was shown
in Thurston [19] (see also [9], [14], [17, 18]) that any word consisting of positive
multi twists tA along elements of A and negative multi twists t�1

B along elements
of B represents a pseudo-Anosov mapping class. For an extensive account of the
group htA; tBi generated by positive multi twists tA and tB, we refer to Leininger
[12]. As a consequence of Theorem A (or Corollary 6.2), we are able to provide
some pseudo-Anosov maps with mixed multi twists in the case that A and B
contains no more than two curves. For any geodesic c on S, we recall that
~ccH ~SS is the geodesic on ~SS homotopic to c as a is filled in.

Corollary. Let A ¼ fa1; a2g and B ¼ fbg. Assume that fa1; bg fills S and
~aa1 ¼ ~bb. Then for any si; ri; qi A Zþ with ri, qi su‰ciently large, the finite products

Y

i

t
�qi
b � ðtria1 � t

�si
a2

Þð6:2Þ

are pseudo-Anosov maps.

Proof. By associativity, (6.2) are finite products by terms

ðt�qi
b � tria1Þ � t

�si
a2

:

Since ~aa1 ¼ ~bb, t�qi
b � tria1 projects to the Dehn twist tri�qi

~aa1
(if ri 0 qi), or the identity

(if ri ¼ qi). Hence it can be denoted by f . We see that (6.2) is a special form
of (6.1), and this particularly implies that (6.2) are pseudo-Anosov maps. r

References

[ 1 ] W. Abikoff, The real analytic theory of Teichmüller spaces, Lecture notes in mathematics

820, Spring-Verlag, 1980.

[ 2 ] L. V. Ahlfors and L. Bers, Riemann’s mapping theorem for variable metrics, Ann. of

Math. (2) 72 (1960), 385–404.

[ 3 ] A. Beardon, The geometry of Discrete groups, Springer-Verlag, NY Heidelberg Berlin,

1983.

[ 4 ] L. Bers, Fiber spaces over Teichmüller spaces, Acta Math. 130 (1973), 89–126.

[ 5 ] L. Bers, An extremal problem for quasiconformal mappings and a theorem by Thurston,

Acta Math. 141 (1978), 73–98.

[ 6 ] M. Bestvina and M. Handel, Train-tracks for surface homeomorphisms, Topology 34

(1995), 109–140.

[ 7 ] J. S. Birman, Braids, Links and Mapping class groups, Ann of math. studies 82, Princeton

University Press, 1974.

[ 8 ] S. Boyer, C. Gordon and X. Zhang, Dehn fillings of large hyperbolic 3-manifolds, J.

Di¤erential Geom. 58 (2001), 263–308.

[ 9 ] A. Fathi, F. Laudenbach and V. Poenaru, Travaux de Thurston sur les surfaces, Seminaire

Orsay, Asterisque 66–67, Soc. Math. de France, 1979.

[10] A. Fathi, Dehn twists and pseudo-Anosov di¤eomorphisms, Invent. Math. 87 (1987), 129–

152.

381dehn twists and pseudo-anosov maps



[11] I. Kra, On the Nielsen–Thurston–Bers type of some self-maps of Riemann surfaces, Acta

Math. 146 (1981), 231–270.

[12] C. J. Leininger, On groups generated by two positive multi-twists: Teichmüller curves and

Lehmer’s number, Geometry and topology 8 (2004), 1301–1359.

[13] D. D. Long and H. Morton, Hyperbolic 3-manifolds and surface homeomorphism, Topol-

ogy 25 (1986), 575–583.

[14] D. D. Long, Constructing pseudo-Anosov maps, In Knot theory and manifolds, Lecture

notes in math. 1144, 1985, 108–114.

[15] H. Masur and Y. Minsky, Geometry of the complex of curves I: Hyperbolicity, Invent.

Math. 138 (1999), 103–149.

[16] S. Nag, Non-geodesic discs embedded in Teichmüller spaces, Amer. J. Math. 104 (1982),

339–408.

[17] R. C. Penner, A construction of pseudo-Anosov homeomorphisms, Trans. Amer. Math. Soc.

310 (1988), 179–197.

[18] R. C. Penner, Probing mapping class group using arcs, Manuscript, 2005.

[19] W. P. Thurston, On the geometry and dynamics of di¤eomorphisms of surfaces, Bull. Amer.

Math. Soc. (N.S.) 19 (1988), 417–431.

[20] C. Zhang, Singularities of quadratic di¤erentials and extremal Teichmüller mappings defined

by Dehn twists, J. Aust. Math. Soc. 87 (2009), 275–288.

[21] C. Zhang, Pseudo-Anosov maps and fixed points of boundary homeomorphisms compatible

with a Fuchsian group, Osaka J. Math. 46 (2009), 783–798.

[22] C. Zhang, On products of Dehn twists and pseudo-Anosov maps on Riemann surfaces with

punctures, J. Aust. Math. Soc. 88 (2010), 413–428.

[23] C. Zhang, Pseudo-Anosov maps and pairs of filling simple closed geodesics on Riemann

surface, Manuscript, 2010.

[24] C. Zhang, Pseudo-Anosov maps with small dilatations of Riemann surfaces, Preprint, 2011.

[25] C. Zhang, Invariant Teichmüller disks under hyperbolic mapping classes, Hiroshima Math.

J. 42 (2012).

Chaohui Zhang

Department of Mathematical Sciences

Morehouse College

Atlanta, GA 30314

USA

E-mail: czhang@morehouse.edu

382 chaohui zhang


