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HOPF HYPERSURFACES OF LOW TYPE

IN NON-FLAT COMPLEX SPACE FORMS

Ivko Dimitrić

Abstract

We classify Hopf hypersurfaces of non-flat complex space forms CPmð4Þ and

CHmð�4Þ, denoted jointly by CQmð4cÞ, that are of 2-type in the sense of B. Y. Chen,

via the embedding into a suitable (pseudo) Euclidean space of Hermitian matrices by

projection operators. This complements and extends earlier classifications by Martinez

and Ros (the minimal case) and Udagawa (the CMC case), who studied only hyper-

surfaces of CPm and assumed them to have constant mean curvature instead of being

Hopf. Moreover, we rectify some claims in Udagawa’s paper to give a complete

classification of constant-mean-curvature-hypersurfaces of 2-type. We also derive a

certain characterization of CMC Hopf hypersurfaces which are of 3-type and mass-

symmetric in a naturally-defined hyperquadric containing the image of CQmð4cÞ via

these embeddings. The classification of such hypersurfaces is done in CQ2ð4cÞ, under
an additional assumption in the hyperbolic case that the mean curvature is not equal

to G2=3. In the process we show that every standard example of class B in CQmð4cÞ
is mass-symmetric and we determine its Chen-type.

1. Introduction

The study of finite-type submanifolds of Euclidean and pseudo-Euclidean
spaces has been an area of flourishing research initiated by B. Y. Chen in the
1980s [9]. Many geometers contributed to the theory and quite a number of
important and interesting results coming from that study have been obtained on
sharp eigenvalue estimates and characterizations of certain submanifolds by
eigenvalue equalities [10]. A Riemannian n-manifold Mn isometrically immersed
into a Euclidean or pseudo-Euclidean space by x : Mn ! EN

ðKÞ is said to be of
k-type (more precisely of Chen k-type) in EN

ðKÞ if the position vector x can be
decomposed, up to a translation by a constant vector x0, into a sum of k
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nonconstant EN
ðKÞ-valued eigenfunctions of the Laplacian DM from di¤erent

eigenspaces, viz.

x ¼ x0 þ xt1 þ � � � þ xtk ; x0 ¼ const; Dxti ¼ lti xti ; i ¼ 1; . . . ; k;ð1Þ
where xti 0 const, lti A R are all di¤erent, and the Laplacian acts on a vector-
valued function componentwise. For a compact submanifold, the constant part
x0 is the center of mass and if x immerses Mn into a central hyperquadric of a
Euclidean or pseudo-Euclidean space the immersion is said to be mass-symmetric
in that hyperquadric if x0 coincides with the center of the said hyperquadric.
Moreover, decomposition (1) also makes sense for noncompact submanifolds,
but x0 may not be uniquely determined, namely when one of the eigenvalues
lti above is zero. Such submanifolds are said to be of null k-type, and are,
therefore, per definition mass-symmetric.

The study of finite-type submanifolds therefore treats an interesting ques-
tion: To what extent is the geometric structure of a submanifold determined
by a simple analytic information, that is, by the spectral resolution (1) of the
immersion into finitely many terms? By placing a complex projective or a
complex hyperbolic space into a suitable (pseudo) Euclidean space of Hermitian
matrices using the embedding F by projectors in the standard way (cf. [31], [28],
[29], [18], [15]), it is possible to study submanifolds, in particular hypersurfaces, of
a complex space form in terms of finite-type property, where the immersion
considered is the composite immersion with F. It is well-known that a 1-type
submanifold is minimal in an appropriate hyperquadric of the ambient (pseudo)
Euclidean space. 1-Type real hypersurfaces of a complex space form CQm were
previously studied in [23], [18], and the present author subsequently classified
1-type submanifolds of these spaces of any dimension (see [14], [15]). In par-
ticular, 1-type hypersurface in CPmð4Þ is a geodesic hypersphere of radius r ¼
arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mþ 1

p
, which has an interesting stability property [23], [15]. Type-2

(also called bi-order) hypersurfaces in the complex projective space were studied
by Martinez and Ros [23] (the minimal case) and Udagawa [36], who classified
them under the assumption that they have constant mean curvature. However,
Udagawa’s classification is incomplete and has some deficiencies which we rectify
here. First, it was claimed without proof in [36, p. 194] that there are no 2-type
hypersurfaces in CPm among homogeneous examples of class B. We find a
counterexample to this claim, producing two such hypersurfaces. Second, it was
claimed in the same paper (pp. 192–193) that there are no geodesic hyperspheres
(i.e. class-A1 hypersurfaces) in CPm which are mass-symmetric and of 2-type,
whereas we prove that a geodesic hypersphere of radius cot�1ð1=

ffiffiffiffi
m

p
Þ exactly has

these properties. Because of these erroneous claims, all three theorems of [36]
are deficient in one way or another.

Kähler submanifolds of CPmð4Þ of 2-type were successfully studied and
classified in works of Ros [29] and Udagawa [35], whereas Shen [30] produced a
classification of minimal surfaces (real dimension 2) in CPmð4Þ of 2-type. On the
other hand, there are only scant results so far on 3-type submanifolds of complex
space forms (see [33], [34]) and their further study is warranted. An overview of
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the results on low-type submanifolds of projective and hyperbolic spaces via the
immersion by projectors is presented in [16].

In this paper we further advance the study of hypersurfaces of non-flat
complex space forms (that is, of both complex projective and complex hyperbolic
space) which are of 2- or 3-type and produce some new classification results,
with the starting (weaker) assumption that the hypersurfaces possess some simple
compatibility property between the complex structure of the ambient space and
the second fundamental form. One of the most studied kinds of hypersurfaces in
complex space forms are the so-called Hopf hypersurfaces [3], [11], [25], defined
by the property that the (almost contact) structure vector U :¼ �Jx, where x
is the unit normal, is a principal curvature vector (i.e. proper for the shape
operator). Equivalently, they are defined by integral curves of the structure
vector field U being geodesics and in CPm they are realized as tubes about
complex submanifolds when the corresponding focal set has constant rank
[8]. The above-mentioned examples of 2-type hypersurfaces studied in [23] and
[36] are in fact certain homogeneous Hopf hypersurfaces. One of our results is
that a 2-type Hopf hypersurface indeed has constant mean curvature, the key
result towards their classification given in Theorems 1 and 2. Kähler submani-
folds of 3-type in complex projective spaces are studied in [33], [34], where some
examples are given, including compact irreducible Hermitian symmetric sub-
manifolds of degree 3. In this paper we also undertake a study of 3-type Hopf
hypersurfaces with constant mean curvature in non-Euclidean complex space
forms, fulfilling the promise made in [13], based on the study of spherical
hypersurfaces of constant mean curvature which are of 3-type via the second
standard immersion of the unit sphere (see also [17]). Along the way we obtain
a generalization of Nomizu-Smyth’s formula for the trace Laplacian of the shape
operator [26], and Simons’-type formula for the Laplacian of the squared norm
of the second fundamental form, which may be useful in other contexts. For
the background and additional clarification of the notation used in this article a
reader should consult [15]. Excellent references on the geometry of hypersurfaces
of complex space forms are [3], [4], [25], and a brief overview [5].

2. The basic background and relevant formulas

Let CQmð4cÞ denote m-dimensional non-flat model complex space form, that
is either the complex projective space CPmð4Þ or the complex hyperbolic space
CHmð�4Þ of constant holomorphic sectional curvature 4c ðc ¼G1Þ. By using
a particular (pseudo) Riemannian submersion one can construct CQm and its
embedding F into a certain (pseudo) Euclidean space of matrices. Consider first

Hermitian form Cc on Cmþ1 given by Ccðz;wÞ ¼ cz0w0 þ
Pm

j¼1 zjwj, z;w A Cmþ1

with the associated (pseudo) Riemannian metric gc ¼ Re Cc and the quadric
hypersurface N 2mþ1 :¼ fz A Cmþ1 jCcðz; zÞ ¼ cg. When c ¼ 1, N 2mþ1 is the or-

dinary hypersphere S2mþ1 of Cmþ1 ¼ R2mþ2 and when c ¼ �1, N 2mþ1 is the anti-
de Sitter space H 2mþ1

1 in Cmþ1
1 . The orbit space under the natural action of
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the circle group S1 on N 2mþ1 defines CQmð4cÞ, which is then the base space
of a (pseudo) Riemannian submersion with totally geodesic fibers. The standard
embedding F into the set of C-Hermitian matrices H ð1Þðmþ 1Þ is achieved by
identifying a point, that is a complex line (or a time-like complex line in the
hyperbolic case) with the projection operator onto it. Then one gets the follow-
ing matrix representation of F at a point p ¼ ½z�, where z ¼ ðzjÞ A N 2mþ1 HCmþ1

ð1Þ

Fð½z�Þ ¼

jz0j2 cz0z1 � � � cz0zm

z1z0 cjz1j2 � � � cz1zm

..

. ..
. . .

. ..
.

zmz0 czmz1 � � � cjzmj2

0
BBBB@

1
CCCCA:ð2Þ

The second fundamental form s of this embedding is parallel and the image
FðCQmÞ of the space form is contained in the hyperquadric of H ð1Þðmþ 1Þ
centered at I=ðmþ 1Þ and defined by the equation

hP� I=ðmþ 1Þ;P� I=ðmþ 1Þi ¼ cm

2ðmþ 1Þ ;

where I denotes the ðmþ 1Þ � ðmþ 1Þ identity matrix. For the fundamental
properties of the embedding F see [31], [18], [28], [15].

If now x : Mn ! CQmð4cÞ is an isometric immersion of a Riemannian
n-manifold as a real hypersurface of a complex space form (n ¼ 2m� 1) then
we have the associated composite immersion ~xx ¼ F � x, which realizes M as a

submanifold of the (pseudo) Euclidean space EN
ðKÞ :¼ H ð1Þðmþ 1Þ, equipped with

the usual trace metric hA;Bi ¼ c

2
trðABÞ. In this notation the subscripts and

superscripts in parenthesis are present only in relation to CHm, so that the
superscript 1 in H ð1Þðmþ 1Þ is optional and appears only in the hyperbolic
case, since the construction of the embedding is based on the form C in Cmþ1

1 of
index 1.

Let x be a local unit vector field normal to M in CQm, A the shape operator
of the immersion x, and let a ¼ ð1=nÞ tr A be the mean curvature of M in CQm,
so that the mean curvature vector H of the immersion equals H ¼ ax. Further,
let ‘, A, D, denote respectively the Levi-Civita connection, the shape oper-
ator, and the metric connection in the normal bundle, related to CQm and the
embedding F. Let the same letters without bar denote the respective objects for
a submanifold M and the immersion x, whereas we use the same symbols with
tilde to denote the corresponding objects related to the composite immersion
~xx :¼ F � x of M into the (pseudo) Euclidean space H ð1Þðmþ 1Þ. As usual, we
use s for the second fundamental form of CQm in EN

ðKÞ via F and h for

the second fundamental form of a submanifold M in CQm. An orthonormal
basis of the tangent space TpM at a general point will be denoted by feig,
i ¼ 1; 2; . . . ; n. In general, indices i, j will range from 1 to n and G will denote
the set of all (local) smooth sections of a bundle.
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We give first some important formulas which will be repeatedly used
throughout this paper. For a general submanifold M, local tangent fields
X ;Y A GðTMÞ and a local normal field x A GðT?MÞ, the formulas of Gauss
and Weingarten are

‘XY ¼ ‘XY þ hðX ;YÞ; ‘Xx ¼ �AxX þDXx:ð3Þ
In particular, for a hypersurface of a complex space form CQm with unit

normal vector x and the corresponding shape operator A, they become

‘XY ¼ ‘XY þ hAX ;Yix; ‘Xx ¼ �AXð4Þ
Let J be the Kähler almost complex structure of CQm, and U be the

distinguished tangent vector field U :¼ �Jx. Define an endomorphism S of the
tangent space and a normal bundle valued 1-form F by

SX ¼ ðJX ÞT ; FX ¼ ðJXÞN ¼ hX ;Uix;

i.e for X A GðTMÞ, JX ¼ SX þ FX is the decomposition of JX into tangential
and normal to submanifold parts. Then the following formulas are well known
[3], [25]:

SU ¼ 0; SX ¼ JX � hX ;Uix; S2X ¼ �X þ hX ;UiUð5Þ
‘XU ¼ SAX ; ð‘XSÞY ¼ hY ;UiAX � hAX ;YiU :ð6Þ

The curvature tensor of CQmð4cÞ is given by

RðX ;YÞZ ¼ c½hY ;ZiX � hX ;ZiY þ hJY ;ZiJXð7Þ
� hJX ;ZiJY � 2hJX ;YiJZ�;

and the equations of Codazzi and Gauss for a hypersurface of CQmð4cÞ are
respectively given by

ð‘XAÞY � ð‘YAÞX ¼ c½hX ;UiSY � hY ;UiSX � 2hSX ;YiU �;ð8Þ

RðX ;YÞZ ¼ c½hY ;ZiX � hX ;ZiY þ hSY ;ZiSXð9Þ
� hSX ;ZiSY � 2hSX ;YiSZ�

þ hAY ;ZiAX � hAX ;ZiAY :

The following formulas of A. Ros for the shape operator of F in the
direction of sðX ;YÞ are also well known, (see, for example, [28], [29] and [18])

hsðX ;YÞ; sðV ;WÞi ¼ c½2hX ;YihV ;Wiþ hX ;VihY ;Wið10Þ
þ hX ;WihY ;Viþ hJX ;VihJY ;Wi

þ hJX ;WihJY ;Vi�;

AsðX ;YÞV ¼ c½2hX ;YiV þ hX ;ViY þ hY ;ViXð11Þ

þ hJX ;ViJY þ hJY ;ViJX �:
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One also verifies

sðJX ; JYÞ ¼ sðX ;Y Þ; hsðX ;Y Þ; ~xxi ¼ �hX ;Yi; hsðX ;Y Þ; Ii ¼ 0:ð12Þ
The gradient of a smooth function f is a vector field ‘f :¼

P
iðei f Þei. The

Hessian of f is a symmetric tensor field defined by

Hessf ðX ;YÞ ¼ h‘X ð‘f Þ;Yi ¼ XYf � ð‘XY Þ f ;
and the Laplacian acting on smooth functions is defined as Df ¼ �tr Hessf . The
Laplace operator can be extended to act on a vector field V along ~xxðMÞ by

DV ¼
X
i

½~‘‘‘ei
eiV � ~‘‘ei

~‘‘eiV �:

The product formula for the Laplacian, which will be often used in the ensuing
computations, is

Dð fgÞ ¼ ðD f Þgþ f ðDgÞ � 2
X
i

ðei f ÞðeigÞ;ð13Þ

for smooth functions f ; g A CyðMÞ, and it can then be extended to hold for the
scalar product of vector valued functions, and thus also for product of matrices,
in a natural way. We shall use the notation fk :¼ tr Ak, and in particular
f :¼ f1 ¼ tr A. For an endomorphism B of the tangent space of M we define
trð‘BÞ :¼

Pn
i¼1ð‘eiBÞei. We shall assume all manifolds to be smooth and con-

nected, but not necessarily compact.

3. Iterated Laplacians of a real hypersurface

Recall that

D~xx ¼ �n ~HH ¼ � f x�
Xn
i¼1

sðei; eiÞ;ð14Þ

where here, and in the following, we understand the Laplacian D of M to be
applied to vector fields along M (viewed as EN

ðKÞ-valued functions, i.e. matrices)
componentwise.

By the product formula above we have

D2~xx :¼ DðD~xxÞ ¼ �ðD f Þx� f ðDxÞ þ 2sð‘f ; xÞ � 2Að‘f Þ �
X
i

Dðsðei; eiÞÞ:ð15Þ

Further,

Dx ¼
X
i

½~‘‘‘ei
eix� ~‘‘ei

~‘‘eix�

¼
X
i

½�Að‘ei eiÞ þ sð‘ei ei; xÞ þ ‘eiðAeiÞ þ sðei;AeiÞ

þ Asðei ;xÞei �Deiðsðei; xÞÞ�:
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Using (11), the parallelism of s, and the fact that trð‘AÞ ¼ ‘ðtr AÞ ¼ ‘f (by
virtue of the Codazzi equation), we obtain

Dx ¼ ‘f þ ½ f2 þ cðn� 1Þ�x� f sðx; xÞ þ 2
X
i

sðei;AeiÞ:ð16Þ

One further computesX
i

Dðsðei; eiÞÞ ¼ �4cJAU þ 2cðnþ 3Þ f xþ 2cðnþ 2Þ
X
i

sðei; eiÞð17Þ

þ 2
X
i

sðAei;AeiÞ � 2sðx;‘f Þ � 2ðcþ f2Þsðx; xÞ:

Combining formulas (15)–(17) we finally obtain

D2~xx ¼ �½Df þ f ð f2 þ cð3nþ 5ÞÞ � 4chAU ;Ui�xþ 4cSAUð18Þ

� f‘f � 2Að‘f Þ þ ð2cþ 2f2 þ f 2Þsðx; xÞ þ 4sð‘f ; xÞ

� 2cðnþ 2Þ
X
i

sðei; eiÞ � 2f
X
i

sðei;AeiÞ � 2
X
i

sðAei;AeiÞ:

Compare this with formula (2.15) of [36], formula (2.9) of [18], and formula (2.8)
of [13].

Let us now find D3~xx. The computation is long but straightforward, so we
just outline the main steps. First we shall compute the trace-Laplacian of the
shape operator defined as the endomorphism DA :¼

P
i½‘‘ei

eiA� ‘eið‘eiAÞ�.
This computation is modeled on the computation of Nomizu and Smyth [26] in
the case of constant-mean-curvature-hypersurfaces of a real space form. How-
ever, here we do not assume the mean curvature to be constant and we are
dealing with complex space forms. Let KðX ;YÞ ¼ ‘‘XYA� ‘X ð‘YAÞ. Then

KðX ;YÞ ¼ KðY ;XÞ þ ½A;RðX ;YÞ�;ð19Þ

where RðX ;YÞ ¼ ‘X‘Y � ‘Y‘X � ‘½X ;Y � is the curvature operator of the hyper-
surface and the bracketed expression on the right hand side denotes the
commutator of the endomorphisms involved. Clearly, DA ¼

P
i Kðei; eiÞ. We

computeX
i

KðX ; eiÞei ¼
X
i

½ð‘‘X eiAÞei � ð‘X ð‘eiAÞÞei�ð20Þ

¼
X
i; j

o
j
i ðXÞ½ð‘ejAÞei þ ð‘eiAÞej � �

X
i

‘X ðð‘eiAÞeiÞ

¼ �‘X ð‘f Þ;

since the connection 1-forms o
j
i are antisymmetric and the bracketed expression

is symmetric in i, j. Since all the quantities involved are tensorial, to facilitate
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further computations let us assume that ‘ei ej ¼ 0 for all i; j ¼ 1; . . . ; n and
moreover ‘eiX ¼ 0 at a point where the computations are being carried out. By
the Codazzi equation we haveX

i

Kðei;XÞei ¼ �
X
i

‘eiðð‘XAÞeiÞ

¼ �
X
i

‘ei ½ð‘eiAÞX þ cðhX ;UiSei � hei;UiSX � 2hSX ; eiiUÞ�

¼
X
i

½Kðei; eiÞX þ 2c‘eiðhSX ; eiiUÞ

� c‘eiðhX ;UiSei � hei;UiSX Þ�:

Using (5) and (6) we getX
i

‘eiðhSX ; eiiUÞ ¼
X
i

ðhð‘eiSÞX ; eiiU þ hSX ; eii‘eiUÞ

¼ f hX ;UiU � hAX ;UiU þ SASX ;

and in a similar fashionX
i

‘eiðhX ;UiSei � hei;UiSX Þ ¼
X
i

½hX ;‘eiUiSei þ hX ;Uið‘eiSÞei�

�
X
i

½hei;‘eiUiSX þ hei;Uið‘eiSÞX �

¼ hAX ;UiU � f hX ;UiU � SASX :

Combining these steps we getX
i

Kðei;X Þei ¼ ðDAÞX þ 3cSASX � 3chAX � fX ;UiU :ð21Þ

From (19) and (21) it follows

ðDAÞX ¼ �3cSASX þ 3chAX � fX ;UiU

þ
X
i

KðX ; eiÞei þ
X
i

½A;Rðei;XÞ�ei:

By the Gauss equation (9) we haveX
i

½A;Rðei;XÞ�ei ¼
X
i

AðRðei;X ÞeiÞ �
X
i

Rðei;XÞðAeiÞ

¼ cfX þ ð f2 � cnÞAX � fA2X þ 3cAS2X � 3cSASX :

From (5) and the above we finally obtain the following extension of the Nomizu-
Smyth formula [26] to hypersurfaces of non-Euclidean complex space forms:
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ðDAÞX ¼ 3c½hAU � fU ;XiU þ hU ;XiAU � � 6cSASXð22Þ

þ cfX þ ½ f2 � cðnþ 3Þ�AX � fA2X � ‘X ð‘f Þ:

As in [26], we have Dðtr A2Þ ¼ 2 tr½ðDAÞA� � 2
P

i trð‘eiAÞ
2, and thus we obtain

the following Simons’-type formula for a hypersurface of CQmð4cÞ:

1

2
Dðtr A2Þ ¼ 6chAU ;AUi� 3cf hAU ;Ui� 6c trðSAÞ2 þ cf 2ð23Þ

þ ½ f2 � cðnþ 3Þ� f2 � ff3 � k‘Ak2 �
X
i

Hessf ðAei; eiÞ;

where k‘Ak2 ¼
P

i; j hð‘ejAÞei; ð‘ejAÞeii. A similar, but rather long, calculation
using (22) yields

DðJAUÞ ¼ ½trð‘UA
2Þ�U � fSA2U þ 2ðcþ f2ÞSAU � 2

X
i

Jð‘eiAÞðSAeiÞð24Þ

� J‘Uð‘f Þ � JASð‘f Þ þ h‘f ;AUiU

� ½ f hA2U ;Ui� 2ðcþ f2ÞhAU ;Uiþ 2cf �x

þ 2sðA2U ;UÞ � f sðx; JAUÞ � 2
X
i

sðei; J‘eiðAUÞÞ:

Note that by the Codazzi equation and formulas (5), (6) we have

‘eiðAUÞ ¼ ASAei þ ð‘UAÞei � cSei;ð25Þ

and also sðx;SX Þ ¼ sðU ;XÞ � hX ;Uisðx; xÞ. Additional, somewhat involved,
computations yield the following formulas:

Dðsðx; xÞÞ ¼ 4cJAU þ 2ðcþ f2Þsðx; xÞ þ 2sð‘f ; xÞð26Þ

þ 2c
X
i

sðei; eiÞ � 2
X
i

sðAei;AeiÞ;

X
i

Dðsðei;AeiÞÞ ¼ �2c
X
i

Jð‘eiAÞðSeiÞ þ 2cfJAU � 4cJA2U þ 8c‘fð27Þ

þ 2ðcf 2 þ 2cf2 þ n� 1Þx� 4sðx; trð‘A2ÞÞ � 2f3sðx; xÞ

þ 2sðx;Að‘f ÞÞ þ
X
i

½sðei; ðDAÞeiÞ þ 2sðAei;A2eiÞ�

þ 2c
X
i

½ f sðei; eiÞ þ sðei;AeiÞ � sðei; JASeiÞ�;

and using X
i; j

Asðð‘ej
AÞei ;AeiÞej ¼ c trð‘A2Þ þ c‘f2 � c

X
j

Jð‘ejA
2ÞðSejÞ;
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also X
i

DðsðAei;AeiÞÞ ¼ �2
X
i; j

sðð‘ejAÞei; ð‘ejAÞeiÞ þ 2
X
i

sðAei; ðDAÞeiÞð28Þ

þ 2
X
i

½cf2sðei; eiÞ þ csðei;A2eiÞ þ sðAei;A3eiÞ�

� 2c
X
i

sðei; JA2SeiÞ � 4sðx; trð‘A3ÞÞ þ 2sðx;A2ð‘f ÞÞ

� 2f4sðx; xÞ þ 4c trð‘A2Þ þ 4c‘f2 þ 2cð ff2 þ 2f3Þx

þ 2cfJA2U � 4cJA3U � 4c
X
i

Jð‘eiA
2ÞðSeiÞ:

By a repeated use of the Codazzi equation we may deduce that

trð‘AÞ ¼ ‘ðtr AÞ ¼ ‘f ;ð29Þ

trð‘A2Þ ¼ 1

2
‘f2 þ Að‘f Þ � 3cSAU ;ð30Þ

trð‘A3Þ ¼ 1

3
‘f3 þ

1

2
Að‘f2Þ þ A2ð‘f Þ � 3cSA2U � 3cASAU ;ð31Þ

and in general, by induction,

trð‘AkÞ ¼
Xk
r¼1

1

r
Ak�rð‘frÞ � 3c

Xk�1

r¼1

Ar�1SAk�rU :

Additionally, by using the Codazzi equation again one computes

X
i

ð‘eiAÞðSeiÞ ¼ �cðn� 1ÞU ;ð32Þ

and for a symmetric endomorphism B one gets from (12)

X
i

sðei; JBeiÞ ¼ 0:ð33Þ

Although we can compute Dðsð‘f ; xÞÞ in a similar fashion and obtain a formula
for D3~xx in general, we list this formula only in the special case when the mean
curvature is (locally) constant. Thus assuming f ¼ const, from (18) and (22)–
(33) we obtain

D3~xx ¼ ðD3~xxÞT þ ðD3~xxÞN ;
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where the component tangent to CQm equals

ðD3 ~xxÞT ¼ 8c
X
i

J½ð‘eiA
2ÞðSeiÞ � ð‘eiAÞðSAeiÞ� � 2fAð‘f2Þ � 4c‘f2ð34Þ

þ 12ch‘f2;UiU þ 8cSA3U þ 8ð2cf2 þ nþ 7ÞSAU

þ ½8chA3U ;Uiþ 8ð2cf2 þ nþ 4ÞhAU ;Ui� f ðDf2Þ � 8cf3

� f ð f 2
2 þ 4cðnþ 4Þ f2 þ 4cf 2 þ 7n2 þ 30nþ 19Þ�x;

and the normal component is

ðD3~xxÞN ¼ 4
X
i; j

sðð‘ejAÞei; ð‘ejAÞeiÞ þ 6f sðx;‘f2Þ þ 12sðx;Að‘f2ÞÞð35Þ

þ 8

3
sðx;‘f3Þ � 16csðx;ASAUÞ � 32cf sðAU ;UÞ

� 32csðA2U ;UÞ � 12csðAU ;AUÞ þ 16cf
X
i

sðei;SASeiÞ

þ 16c
X
i

sðei;SASAeiÞ þ 4c
X
i

sðei;SA2SeiÞ

þ f28chA2U ;Uiþ 28cf hAU ;Uiþ 2ðDf2Þ þ f 2½3f2 þ cð3nþ 13Þ�

þ 4f 22 þ 4cðnþ 4Þ f2 þ 4ff3 þ 4f4 þ 4nþ 20gsðx; xÞ

� 4ðcf 2 þ n2 þ 4nþ 5Þ
X
i

sðei; eiÞ

� 4f ½ f2 þ cðnþ 3Þ�
X
i

sðei;AeiÞ

� 4ðcþ 2f2Þ
X
i

sðAei;AeiÞ � 4
X
i

sðA2ei;A
2eiÞ:

Compare with formula (2.17) of [13] and a related expression in [17].

4. Hopf hypersurfaces of 2-type have constant principal curvatures

In this section we study hypersurfaces of complex space forms of Chen-type
2 and classify such hypersurfaces that are also assumed to be Hopf hypersurfaces,
i.e. for which the structure vector field U :¼ �Jx is principal. We denote by
D? the 1-dimensional distribution generated by U and by D the holomorphic
distribution which is the orthogonal complement of D? in TM at each point.
By way of notation, Vm will denote the eigenspace of the shape operator A for
an eigenvalue (principal curvature) m and sðDÞ, the spectrum of AjD, the set of
all eigenvalues of A corresponding to eigenvectors belonging to D at a given
point.
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Let Mn HCQm, n ¼ 2m� 1, be a 2-type hypersurface in H ð1Þðmþ 1Þ, i.e.
~xx ¼ ~xx0 þ ~xxu þ ~xxv where ~xx0 ¼ const, D~xxu ¼ lu~xxu and D~xxv ¼ lv~xxv, according to (1).
Then

D2 ~xx� ðlu þ lvÞD~xxþ lulv~xx ¼ lulv~xx0:ð36Þ

Let L be the vector field in H ð1Þðmþ 1Þ along Mn, represented by the left hand
side of the equation (36) and let X be an arbitrary tangential vector field of
Mn. Then

0 ¼ h~‘‘XL; ~xxi ¼ XhL; ~xxi� hL;Xi

¼ X �2cþ f 2 þ 2cnðnþ 2Þ � ðlu þ lvÞnþ
c

2
lulv

� �

� 4chSAU ;Xiþ h f‘f þ 2Að‘f Þ;Xi

¼ h2f‘f ;Xi� 4chSAU ;Xiþ h f‘f þ 2Að‘f Þ;Xi:

Therefore

2Að‘f Þ þ 3f‘f � 4cSAU ¼ 0:ð37Þ

Similarly, by considering the sðx; xÞ-component, in combination with (37) we may
obtain

‘f2 þ Að‘f Þ � 1

2
f‘f � f ð‘UAÞU � 2ð‘UAÞðAUÞð38Þ

þ f h‘f ;UiU � 2h‘f ;UiAU � hAU ;Ui‘f ¼ 0;

and the other components are even more complicated. Although it is possible
to characterize 2-type hypersurfaces of CQm by a set of equations involving the
structure vector field U , the gradients of f and f2, Df , the shape operator, and
various compositions of S and A, the equations involved are very complicated to
enable the classification of such hypersurfaces without any extra conditions. At
this point it seems beneficial to make some additional assumptions on a hyper-
surface in order to make the situation more tractable. The most facile assump-
tion, which simplifies many terms, is that f :¼ tr A ¼ const, immediately leading,
by way of (37), to the conclusion that M is a Hopf hypersurface, since SAU ¼ 0
is equivalent to AU ¼ KU for some function K. Moreover, it is known that in
this case K is (locally) constant [22], [25]. Using this, one can show that the
hypersurface is homogeneous and has at most 5 distinct principal curvatures, all
of which are constant. Using the complete list of such hypersurfaces available in
[32], [24], [20], [3], [4], one obtains a classification of constant-mean-curvature
(CMC) hypersurfaces whose Chen-type is 2. This has been already attempted by
Udagawa [36] for hypersurfaces of CPmð4Þ, and for hypersurfaces of CHmð�4Þ
see below. Udagawa’s classification in CPm, however, is incomplete (see below).
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On the other hand, instead of assuming the mean curvature to be constant, it
seems more challenging to make a weaker assumption that M is a 2-type Hopf
hypersurface. In that case we have

AU ¼ KU ; K ¼ const; andð39Þ

Að‘f Þ ¼ � 3f

2
‘f :

So we do not get f ¼ const immediately, although that will eventually turn out to
be the case.

Let G be an open set defined by G ¼ fp A M j f ðpÞ � ð‘f ÞðpÞ0 0g. The
Hopf property implies hU ;‘f i ¼ Uf ¼ 0 [25, p. 253] and thus ‘f A D ¼ ðRUÞ?.
In addition, we have that Sð‘f Þ is also an eigenvector of A, see [4], [22]. Then,
since the integral curves of U for a Hopf hypersurface are geodesics, (38) reduces
to

‘f2 ¼ ð2f þ KÞ‘f :ð40Þ

Instead of showing more general formula (38), for our purposes it su‰ces to
prove (40). By using (3) and parallelism of s we have

0 ¼ h~‘‘XL; sðx; xÞið41Þ

¼ XhL; sðx; xÞiþ hL;Asðx;xÞXi� hL;DX ðsðx; xÞÞi

¼ XhL; sðx; xÞiþ 2chL;X þ hX ;UiUiþ 2hL; sðAX ; xÞi:

Using AU ¼ KU and Uf ¼ 0 we obtain

hD2~xx; sðx; xÞi ¼ 4c½ f2 � Kf � K2 � cnðnþ 3Þ�;
hD2~xx;X þ hX ;UiUi ¼ �h f‘f þ 2Að‘f Þ;Xi;

hD2 ~xx; sðAX ; xÞi ¼ 4chAð‘f Þ;Xi:

The metric products of D~xx and ~xx with these quantities are either zero or give
constants which disappear after di¤erentiation. Thus putting these together in
(41) we obtain

4ch‘f2 � K‘f ;Xi� 2ch f‘f þ 2Að‘f Þ;Xiþ 8chAð‘f Þ;Xi ¼ 0;

so that (40) follows from this and (39).
We now show that f ¼ const. On G let e1 :¼ ‘f =j‘f j be the unit vector of

‘f . Then

0 ¼ h~‘‘‘f L; sðe1; e1Þi

¼ ð‘f ÞhL; sðe1; e1Þiþ hL;Asðe1; e1Þ‘f i� hL;D‘f sðe1; e1Þi

¼ ð‘f ÞhL; sðe1; e1Þiþ 4chL;‘f i� 2hL; sð‘‘f e1; e1Þiþ 3f j‘f jhL; sðx; e1Þi:
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If AX ¼ mX for X A D then, by the results of Maeda [22] (for the projective
case) and Berndt [4] (for the hyperbolic case), also AðSX Þ ¼ m�ðSX Þ, where m� is
uniquely determined by the condition

ð2m� KÞð2m� � KÞ ¼ K2 þ 4c; i:e: m� ¼ Kmþ 2c

2m� K
; and ðm�Þ� ¼ m:ð42Þ

Since hU ;‘f i ¼ 0, then e1, Se1 A D. When X ¼ ‘f , we have m ¼ �3f =2 and

m� ¼ 3Kf � 4c

2ð3f þ KÞ . We may assume that 3f þ K0 0, for otherwise we may work

on an open subset of G where f 0�K=3 and invoke continuity of f . From here
we compute using (11)

hL; sðe1; e1Þi ¼ �cð5f 2 þ 4f m� þ 4m�2Þ þ const;

hL;‘f i ¼ 2f j‘f j2; hL; sð‘‘f e1; e1Þi ¼ 0; hL; sðx; e1Þi ¼ 4cj‘f j:
Substituting in the above equality we get

20f j‘f j2 � ð‘f Þð5f 2 þ 4f m� þ 4m�2Þ ¼ 0:

Since

ð‘f Þðm�Þ ¼ 3ðK2 þ 4cÞ
2ð3f þ KÞ2

j‘f j2;

we see that f ¼ tr A satisfies on G a polynomial equation of degree 4 with
constant coe‰cients, viz.

135f 4 þ 108Kf 3 þ 18K2f 2 � 2Kð5K2 þ 12cÞ f þ 16cK2 þ 48 ¼ 0:

Consequently, f is (locally) constant since f is continuous and M is assumed
connected. From (40) we also get f2 ¼ const.

Since f ¼ const, (18) reduces to

D2~xx ¼ ½4cK� f ð f2 þ cð3nþ 5ÞÞ�xþ ð2cþ 2f2 þ f 2Þsðx; xÞð43Þ

� 2cðnþ 2Þ
X
i

sðei; eiÞ � 2f
X
i

sðAei; eiÞ � 2
X
i

sðAei;AeiÞ:

Di¤erentiating (36) with respect to an arbitrary tangent field X A GðTMÞ we
have

~‘‘X ðD2~xxÞ � p~‘‘X ðD~xxÞ þ qX ¼ 0;ð44Þ

where p :¼ lu þ lv and q :¼ lulv. Conversely, if (44) holds then ~xx satisfies the
polynomial equation (36) in the Laplacian of the form PðDÞð~xx� ~xx0Þ ¼ 0, with
PðtÞ ¼ t2 � ptþ q. According to a result of Chen and Petrovic [12] if such
polynomial has simple real roots the submanifold is of 2-type (if not already of
1-type). Let Vm HD be an eigenspace of an eigenvalue m A sðDÞ at each point
and let X A Vm be a unit vector. Taking the metric product of (44) with X and
observing that hD~xx;Xi ¼ hD2~xx;Xi ¼ 0 for any tangent vector X , we have
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0 ¼ h~‘‘X ðD2~xxÞ;Xi� ph~‘‘X ðD~xxÞ;Xiþ q

¼ XhD2~xx;Xi� hD2~xx;‘XX þ sðX ;X Þiþ phD~xx;‘XX þ sðX ;XÞiþ q

¼ �mhD2~xx; xi� hD2 ~xx; sðX ;XÞiþ pmhD~xx; xiþ phD~xx; sðX ;XÞiþ q:

Using (10) and the above-mentioned results of Maeda and Berndt that AX ¼ mX
implies AðSX Þ ¼ m�ðSX Þ where m� is given by (42) we get from here

0 ¼ qþ ½ f ð f2 þ 3cðnþ 3ÞÞ � pf � 4cK�mþ 2cf 2 � 2pcðnþ 2Þð45Þ

þ 4ðnþ 1Þðnþ 3Þ þ 4cm2 þ 4cf m� þ 4cm�2:

Substituting the value of m� from (42) and clearing of denominators we get a
fourth degree polynomial equation in m with constant coe‰cients (since f , f2, and
K are all constant). We conclude that AjD has at most four eigenvalues, i.e. the
hypersurface has at most five distinct principal curvatures, all of them constant.

Hopf hypersurfaces of CPmð4Þ and CHmð�4Þ for mb 2 with constant
principal curvatures are homogeneous and they are known. By a result of
Takagi [32] (see also [19], [20]) there are six types or six classes of Hopf hyper-
surfaces with constant principal curvatures in CPmð4Þ, given as (possibly open
portions of ) the model hypersurfaces in the following list (the so-called Takagi’s
list):

(A1) A geodesic hypersphere of radius r A 0;
p

2

� �
;

(A2) A tube of any radius r A 0;
p

2

� �
around a canonically embedded (totally

geodesic) CPk for some k A f1; . . . ;m� 2g;

(B) A tube of any radius r A 0;
p

4

� �
around a canonically embedded complex

quadric Qm�1 ¼ SOðmþ 1Þ=SOð2Þ � SOðm� 1Þ;

(C) A tube of radius r A 0;
p

4

� �
around the Segre embedding of CP1 � CPk

in CPm;m ¼ 2k þ 1;

(D) A tube of radius r A 0;
p

4

� �
of dimension 17 in CP9 around the Plücker

embedding of the complex Grassmannian of 2-planes G2ðC5Þ;

(E) A tube of radius r A 0;
p

4

� �
of dimension 29 in CP15 around the canonical

embedding of the Hermitian symmetric space SOð10Þ=Uð5Þ.
We call these the standard examples or the model hypersurfaces in CPm.

To avoid confusion with the notion of Chen-type, these hypersurfaces will be
referred to as being of class A (with subclasses A1, A2), B, C, D, E, rather than
being of type A, B, C, D, E, as is customary in the literature. For the example

B we note that a tube of radius r A 0;
p

4

� �
around Qm�1 in CPm can be regarded

also as the tube of radius
p

4
� r around the canonically embedded (totally
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geodesic) RPm in CPm, which is the other focal submanifold of that hypersurface
[5], [8].

These model hypersurfaces have two, three, or five principal curvatures given
by

K ¼ 2 cotð2rÞ; and mi ¼ cot rþ ði � 1Þ p
4

� �
; i ¼ 1; 2; 3; 4;

where r is the radius of the tube involved and K the principal curvature of U .
The table of principal curvatures and their multiplicities for these hypersurfaces
is compiled by Takagi [32] and reads as follows (see also [3], [25]):

It is known that the almost complex structure J leaves eigenspaces Vm1 and
Vm3 invariant and interchanges eigenspaces Vm2 and Vm4 .

In the complex hyperbolic space the number of principal curvatures is two
or three. The list (the so-called Montiel’s list after [24], completed by Berndt
[3], [4], see also [25]) of Hopf hypersurfaces with constant principal curvatures in
CHmð�4Þ consists of (open portions of ) the following:

(A0) A horosphere in CHm;
(A 0

1) A geodesic hypersphere of any radius r A Rþ;
(A 00

1 ) A tube of any radius r A Rþ over a totally geodesic complex hyperbolic
hyperplane CHm�1;

(A2) A tube of any radius r A Rþ about the canonically embedded CHk in
CHm for k ¼ 1; . . . ;m� 2;

(B) A tube of any radius r A Rþ about the canonically embedded (totally
geodesic, totally real) RHm in CHm.

We note that a canonically embedded RHm HCHm is of 1-type in
H 1ðmþ 1Þ, [15]. In a recent work Berndt and Dı́az-Ramos [6], [7] classified
hypersurfaces of CHm with three constant principal curvatures, without assuming
them to be Hopf.

Table 1. Principal curvatures of the standard examples in CPm and their

multiplicities

2 cotð2rÞ cot r cot rþ p

4

� �
cot rþ p

2

� �
cot rþ 3p

4

� �

A1 1 2ðm� 1Þ — — —

A2 1 2ðm� k � 1Þ — 2k —

B 1 — m� 1 — m� 1

C 1 m� 3 2 m� 3 2

D 1 4 4 4 4

E 1 8 6 8 6
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The table of principal curvatures K, m, n and their multiplicities mK, mm, mn is
as follows [3], [4], [25]:

It is known that the eigenspaces Vm and Vn are interchanged by the action
of J for a class-B hypersurface and they are J-invariant (holomorphic) for any
of the class-A hypersurfaces. A hypersurface of class A2 has three principal
curvatures and so does a hypersurface of class B, except in one case, namely
when the radius of the tube is r ¼ 1

2 lnð2þ
ffiffiffi
3

p
Þ and then m ¼ K ¼

ffiffiffi
3

p
.

In both settings, K is the principal curvature corresponding to U :¼ �Jx.
These classifications enable us to prove our results for 2-type Hopf hypersurfaces.
In the subsequent investigation of 2-type Hopf hypersurfaces of CQmð4cÞ we may
assume we are dealing with Hopf hypersurfaces with constant principal curvatures
and therefore with one from the Takagi’s list in the projective space or one from
the Montiel’s list in the hyperbolic space.

5. The classification of 2-type Hopf hypersurfaces of CQmð4cÞ

We begin by analyzing various components of equation (44). Let X A
GðTMÞ. Then using the Gauss and Weingarten formulas (3) and the fact that s
is parallel, we get from (14)

~‘‘X ðD~xxÞ ¼ 2cðnþ 2ÞX þ fAX � 2chX ;UiU � f sðX ; xÞ � 2sðAX ; xÞð46Þ
and from (43)

~‘‘X ðD2~xxÞ ¼ ½2cf 2 þ 4ðnþ 1Þðnþ 3Þ�X � ½4cK� f ð f2 þ 3cðnþ 3ÞÞ�AX

þ 4cA2X � 2c½2f2 þ f 2 þ 2cðnþ 3Þ�hX ;UiU � 4cfJASX

� 4cJA2SX þ ½4cK� f ð f2 þ cð3nþ 5ÞÞ�sðX ; xÞ

� 2½2f2 þ f 2 þ 2cðnþ 3Þ�sðAX ; xÞ � 4f sðA2X ; xÞ

� 4sðA3X ; xÞ � 2f
X
i

sðð‘XAÞei; eiÞ � 4
X
i

sðð‘XAÞei;AeiÞ:

Table 2. Principal curvatures of the standard examples in CHm and

their multiplicities

K m n mK mm mn

A0 2 — 1 1 — 2m� 2

A 0
1 2 cothð2rÞ coth r — 1 2ðm� 1Þ —

A 00
1 2 cothð2rÞ — tanh r 1 — 2ðm� 1Þ

A2 2 cothð2rÞ coth r tanh r 1 2ðm� k � 1Þ 2k

B 2 tanhð2rÞ coth r tanh r 1 m� 1 m� 1
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Therefore, separating the part of equation (44) that is tangent to CQm we get

0 ¼ �2c½2f2 þ f 2 þ 2cðnþ 3Þ � p�hX ;UiU � 4cfJASXð47Þ

� 4cJA2SX þ ½4ðnþ 1Þðnþ 3Þ þ 2cf 2 � 2pcðnþ 2Þ þ q�X

� ½4cK� f ð f2 þ 3cðnþ 3Þ � pÞ�AX þ 4cA2X

and the part normal to CQm yields

½4cK� f ð f2 þ cð3nþ 5Þ � pÞ�sðX ; xÞ � 4sðA3X ; xÞð48Þ

� 4f sðA2X ; xÞ � 2½2f2 þ f 2 þ 2cðnþ 3Þ � p�sðAX ; xÞ

� 2f
X
i

sðð‘XAÞei; eiÞ � 4
X
i

sðð‘XAÞei;AeiÞ ¼ 0:

These expressions are linear in X . Further separation of parts relative to the
splitting DlRU lRx of the tangent space of CQm yields the following

Lemma 1. Let Mn be a Hopf hypersurface (not necessarily compact) of
CQmð4cÞ ðmb 2; n ¼ 2m� 1Þ. If M is of 2-type via ~xx satisfying 2-type condition
(44) then M has at most five distinct principal curvatures, all of which are constant,
and the following relations hold:

(E1) ½2cðnþ 1Þ þ Kf �p ¼ qþ Kf ½ f2 þ 3cðnþ 3Þ� � 4cf2 þ 4nðnþ 3Þ;
(E2)

½2cðnþ 2Þ þ mf �p ¼ qþ 2cf 2 þ 4cf m� þ 4cm�2 þ 4cm2

þ ½ f ð f2 þ 3cðnþ 3ÞÞ � 4cK�mþ 4ðnþ 1Þðnþ 3Þ;

for any principal curvature m A sðDÞ;
(E3)

ð f þ 2mÞp ¼ �4cKþ 4mð f mþ m2 þ f m� þ m�2Þ

þ 2m½2f2 þ f 2 þ 2cðnþ 3Þ � 2f K� 2K2� þ f ½ f2 þ cð3nþ 5Þ�;

for any m A sðDÞ;
(E4)

f hð‘XAÞY ;Ziþ f hð‘XAÞðSY Þ;SZi

þ hð‘XA
2ÞY ;Ziþ hð‘XA

2ÞðSY Þ;SZi ¼ 0;

for every X ;Y ;Z A GðDÞ.
Conversely, if (E1)–(E4) hold for a Hopf hypersurface with constant principal
curvatures, where p and q are constants and m A sðDÞ is an arbitrary principal
curvature on D, then the formula (44) holds and the submanifold is of typea 2
if the corresponding monic polynomial PðtÞ ¼ t2 � ptþ q has two distinct real
roots.
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Proof. From the above discussion it follows that M has constant principal
curvatures. (E1) follows from (47) when X ¼ U . (E2) is the formula (45), and
it follows from (47) when X A Vm HD is chosen to be a principal direction of
a principal curvature m A sðDÞ. Note that (47) is linear in X , so it su‰ces to
consider X to be one of the principal directions.

(E3) and (E4) follow from the normal part (48). Recall that the normal
space of CQm in H ð1Þðmþ 1Þ is spanned by ~xx and the values of s on various
pairs of tangent vectors to CQm, namely sðx; xÞ, sðx;X Þ, sðX ;YÞ for X ;Y A
GðDÞ, see e.g. [15]. Note that by (12) sðx;UÞ ¼ 0, sðU ;UÞ ¼ sðx; xÞ and
sðU ;XÞ ¼ sðx; JXÞ for X A D. By (12) and the constancy of f and f2, from
(48) we conclude that the equation (44) has no ~xx-component.

Let L denote the left-hand side of (48). Then AL ¼ 0. Conversely, if
AL ¼ 0, for some L A T?CQm then L ¼ kI is a multiple of the identity, but
since L is a linear combination of terms of the form sðV ;WÞ then by (12)
L ¼ 0. Consider first ALx ¼ 0. The condition hALx; xi ¼ 0 gives no infor-
mation since by (10) hL; sðx; xÞi ¼ 0 is trivially satisfied and the same holds
for hALx;Ui ¼ 0. Now take Y A D and consider hALx;Yi ¼ hL; sðx;YÞi ¼ 0.
Using

AsðX ;xÞx ¼ cðX � hX ;UiUÞ;
X
i

Asðð‘XAÞei ; eiÞx ¼ 2cKJSAX � 2cJASAX ;

and
X
i

Asðð‘XAÞei ;AeiÞx ¼ cK2JSAX � cJA2SAX ;

from (48) it follows

4hSA2SAX ;Yiþ 4f hSASAX ;Yi� 4hA3X ;Yi� 4f hA2X ;Yið49Þ

� 2½2f2 þ f 2 þ 2cðnþ 3Þ � p� 2f K� 2K2�hAX ;Yi

þ ½4cKþ fp� f ð f2 þ cð3nþ 5ÞÞ�hX ;Yi ¼ 0:

Since ADHD, SD ¼ D, and the expression is linear in X ;Y A D we can drop
Y and take X A Vm HD to get (E3). Considering ALU ¼ 0 gives no additional
information beyond (E3) by virtue of hALU ;Yi ¼ hALx; JYi, returning it to
the case above. Next we exploit the condition ALY ¼ 0 for Y A D. By (11) we
have X

i

Asðð‘XAÞei ; eiÞY ¼ 2cð‘XAÞY � 2cJð‘XAÞðSY Þ

X
i

Asðð‘XAÞei ;AeiÞY ¼ cð‘XA
2ÞY � cJð‘XA

2ÞðSYÞ:

In particular, when X ¼ U by the Codazzi equation and formula (6) we haveX
i

Asðð‘UAÞei ; eiÞY ¼ 4SY þ 2c½KSAY þ KASY � ASAY þ ðSAÞ2SY �
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and a similar, somewhat longer, expression is obtained for
P

i Asðð‘UAÞei ;AeiÞY .
Then taking Y A Vm and using 2mm� ¼ 2cþ Kðmþ m�Þ, by way of (42), we see that
ALY ¼ 0 reduces to a trivial identity when X ¼ U . Thus consider as the last
condition to check hALY ;Zi ¼ 0. Choosing Z ¼ x or Z ¼ U gives back (E3)
and when X ;Y ;Z A D from hL; sðY ;ZÞi ¼ 0 we get (E4). Conversely, since we
considered all possible components, the conditions (E1)–(E4) are equivalent to
(47) and (48) by linearity and thus we get (44), from which it follows that a
hypersurface is of typea 2, provided that the corresponding polynomial has two
distinct real roots.

Note that by a result of Niebergall and Ryan [25, p. 264] any of the class-A
hypersurfaces in CQm from either list is characterized by

ð‘XAÞY ¼ �c½hSX ;YiU þ hU ;YiSX �;
so that the condition (E4) is trivially satisfied for those hypersurfaces. Further,
by eliminating q from (E1) and (E2) we get

½2cþ f ðm� KÞ�p ¼ 4cðm2 þ m�2Þ þ 4cf m� � 4cKmþ 4ðnþ 3Þð50Þ

þ 4cf2 þ 2cf 2 þ f ðm� KÞ½ f2 þ 3cðnþ 3Þ�;

and if p can be uniquely determined from this condition (regardless of the choice
of m and consistent with (E3)) then q is uniquely determined from (E1).

We now examine which of the Hopf hypersurfaces with constant principal
curvatures are of 2-type. This has been already considered by Udagawa for
hypersurfaces of CPm [36]. Although our argument is di¤erent from Udagawa’s
and relies on the analysis of the conditions (E1)–(E4), rather than on the matrix
representation of the immersion in H ð1Þðmþ 1Þ, it partly overlaps Udagawa’s
investigation and reaches the same classification for 2-type CMC real hypersur-
faces in CPm of class A. However, Udagawa’s paper contains errors regard-
ing mass-symmetric hypersurfaces and in particular hypersurfaces of class B, as
a result of which the three theorems in that work contain inaccuracies and
incomplete classifications. Moreover, our more detailed analysis clearly exhibits
the manner of 2-type decompositions involved. Also, the benefit of our uniform
approach is that it produces results for hypersurfaces of CHm at the same time,
the case which is not treated in earlier papers, and the same technique will be
used to study 3-type submanifolds.

First we note that a horosphere in CHm is not of any finite type since, as
shown in [18], it satisfies D2~xx ¼ const0 0 and therefore cannot satisfy equation
(1), for otherwise equation (44) would hold for some constants p and q, which
would force p and q, and thus also D2~xx, to be zero or p~‘‘X ðD~xxÞ to be a multiple
of X , contradicting (46). For hypersurfaces of class A1 (geodesic spheres, equi-
distant hypersurfaces) we have

Lemma 2. (i) A geodesic hypersphere in CPmð4Þ of any radius r A ð0; p=2Þ,
r0 cot�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=ð2mþ 1Þ

p
is of 2-type in Hðmþ 1Þ. A geodesic hypersphere in
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CHmð�4Þ of arbitrary radius r > 0 is of 2-type in H 1ðmþ 1Þ via ~xx and the same
holds true for a tube of an arbitrary radius r > 0 about a totally geodesic complex
hyperbolic hyperplane CHm�1ð�4ÞHCHmð�4Þ. These statements are also valid
for any open portion of the respective submanifolds.

(ii) The only complete mass-symmetric hypersurfaces of class A1 are geodesic
hyperspheres of radius r ¼ cot�1

ffiffiffiffiffiffiffiffiffi
1=m

p
in CPmð4Þ.

Proof. (i) For a geodesic sphere (class A1 in CPm and A 0
1 in CHm) define

cotcðrÞ ¼
cot r; when c ¼ 1 ðprojective caseÞ
coth r; when c ¼ �1 ðhyperbolic caseÞ

�

and let m ¼ cotcðrÞ be the principal curvature of multiplicity 2ðm� 1Þ ¼ n� 1 and
K ¼ 2 cotcð2rÞ the principal curvature (of U) of multiplicity 1, whereas m ¼ tanh r,
K ¼ 2 cothð2rÞ for a tube about a complex hyperbolic hyperplane CHm�1ð�4Þ of
class A 00

1 . Then

m� ¼ m; K ¼ m� c

m
; f ¼ nm� c

m
; f2 ¼ nm2 þ 1

m2
� 2c:ð51Þ

From (50) we get

½ðnþ 2Þc� m�2�p ¼ cð3nþ 2Þðnþ 2Þm2 þ ð3n2 þ 6nþ 4Þ � ð2nþ 1Þc
m2

� 1

m4
:ð52Þ

We may assume that ðnþ 2Þc0 1=m2, certainly true when c ¼ �1, and when

c ¼ 1 the equality would lead to m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=ðnþ 2Þ

p
i.e. to r ¼ cot�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=ð2mþ 1Þ

p
.

However, the geodesic hypersphere of this radius in CPmð4Þ is of 1-type (see e.g.
[23], [15]). Thus dividing (52) by ðnþ 2Þc� m�2 we get

p ¼ ð3nþ 2Þm2 þ 3cðnþ 1Þ þ 1

m2
¼ ðm2 þ cÞ 3nþ 2þ c

m2

� �
:ð53Þ

Then from (E1) we find

q ¼ 2ðnþ 1Þ nm4 þ cð2nþ 1Þm2 þ c

m2
þ ðnþ 2Þ

� �
:ð54Þ

Solving (E3) for p gives the same value as in (53), so the conditions ðE1Þ–ðE3Þ are
consistent and satisfied by the above values of p and q, the condition (E4) being
trivially satisfied. According to Lemma 1, the equation (44) then holds, hence
also (36). Moreover, the polynomial PðlÞ ¼ l2 � plþ q has two distinct real

roots lu ¼ 2ðnþ 1Þðm2 þ cÞ and lv ¼
1

m2
ðm2 þ cÞðnm2 þ cÞ, which are the two

eigenvalues of the Laplacian from the 2-type decomposition of ~xx.
(ii) Let D be the holomorphic distribution in TM as before and choose

an orthonormal basis feig of the tangent space so that en ¼ U and ei A D for
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i ¼ 1; 2; . . . ; n� 1. To see which hypersurfaces of class A1 are mass-symmetric
first we find from (14), (18), and (43)

D~xx ¼ � nm� c

m

� �
x� sðx; xÞ �

X
ei AD

sðei; eiÞ; and

D2 ~xx ¼ � n2m3 þ cð3n2 þ 2n� 4Þm� 2n� 1

m
� c

m3

� �
x

þ ðn2 � 2Þm2 � 2cn� 1

m2

� �
sðx; xÞ � 2ðnþ 1Þðm2 þ cÞ

X
ei AD

sðei; eiÞ

and then compute, using lu � lv ¼ ð1=m2Þðm2 þ cÞ½ðnþ 2Þm2 � c�, that

~xxu ¼
1

luðlu � lvÞ
ðD2 ~xx� lvD~xxÞð55Þ

¼ m� 1

4mðm2 þ cÞ2
�4cmxþ 2m2sðx; xÞ � m2 þ c

m� 1

X
ei AD

sðei; eiÞ
( )

~xxv ¼
1

lvðlv � luÞ
ðD2~xx� luD~xxÞ ¼ � m

ðm2 þ cÞ2
½ðm2 � cÞxþ msðx; xÞ�:ð56Þ

From Lemma 1 of [15] we have

~xx ¼ I

mþ 1
� c

2ðmþ 1Þ sðx; xÞ �
c

4ðmþ 1Þ
X
ei AD

sðei; eiÞ:ð57Þ

Now the center of mass can be found as ~xx0 ¼ ~xx� ~xxu � ~xxv to yield

~xx0 ¼
I

mþ 1
þ mm2 � c

mðm2 þ cÞ2
mxþ 1

2
sðx; xÞ þ ðm2 þ cÞ ~xx� I

mþ 1

� �� �
ð58Þ

We observe that the same formula applies also for the center of mass of a 1-type
hypersphere in CPð4Þ for an appropriate value of m. Note that by our definition
of mass-symmetry, any null 2-type hypersurface is per force mass-symmetric,
since the constant part ~xx0 can be manipulated and changed to be equal to
I=ðmþ 1Þ, and the existing constant ~xx0 moved to be a part of the 0-eigenfunction.
However, in our case, for A1 hypersurface both lu and lv as given above are
nonzero, because (in the hyperbolic case) m ¼ coth r > 1. Since the x-component
of the right hand side of (58) is the only part tangent to CQm and m ¼ cotc r0 0,
a class-A1 hypersurface is mass-symmetric, i.e. ~xx0 ¼ I=ðmþ 1Þ if and only if
mm2 ¼ c. This is possible only when c ¼ 1 and m ¼ cot r ¼

ffiffiffiffiffiffiffiffiffi
1=m

p
. Thus a

geodesic hypersphere in CPmð4Þ of radius r ¼ cot�1
ffiffiffiffiffiffiffiffiffi
1=m

p
is the only complete

mass-symmetric hypersurface of class A1. We observe that this hypersphere with
the given radius does satisfy the equation (3.14) of [36], but it is completely
overlooked in that paper.
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Lemma 3. (i) There are no 2-type hypersurfaces in CHmð�4Þ of class A2,
i.e. no 2-type tubes about canonically embedded CHk HCHm, 1a kam� 2. A
hypersurface of class A2 in CPmð4Þ is of 2-type if and only if it is an open portion

of either ðaÞ the tube of radius r ¼ cot�1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k þ 1

m� k

r
or ðbÞ the tube of radius r ¼

cot�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k þ 1

2ðm� kÞ þ 1

s
, about a canonically embedded, totally geodesic CPkð4ÞH

CPmð4Þ, for any k ¼ 1; 2; . . . ;m� 2.
(ii) The only complete mass-symmetric 2-type hypersurfaces of class A2 are

those in the first series of tubes ðaÞ above.

Proof. (i) Let m1 ¼ cot r, m3 ¼ cot rþ p

2

� �
¼ � 1

m1
for model hypersurface of

class A2 in CPm and m1 ¼ m ¼ coth r, m3 ¼ n ¼ tanh r ¼ 1

m1
for model hypersur-

face of class A2 in CHm. Then m1, m3 have respective multiplicities 2l and 2k for
some positive integers k, l with l ¼ m� k � 1 i.e. n ¼ 2l þ 2k þ 1. Moreover,

m�
1 ¼ m1; m�

3 ¼ m3; m1m3 ¼ �c; K ¼ m1 �
c

m1
¼ m1 þ m3ð59Þ

f ¼ Lm1 þ Km3; f 2 ¼ L2m2
1 þ K 2m2

3 � 2cKL; f2 ¼ Lm2
1 þ Km2

3 � 2c;ð60Þ
where K :¼ 2k þ 1 and L :¼ 2l þ 1. Our goal is to examine when the equations
(E1)–(E3) are consistent and when constants p and q can be found to satisfy them
(Once again, the condition (E4) is satisfied by every class-A2 hypersurface). That
comes down to the pair of equations consisting of (E3) and (50), having the same
solution for p for either value of m A fm1; m3g. Consider the equation (50) in
which m ¼ m1, multiplied by ½2cþ f ðm3 � KÞ� ¼ ð2c� f m1Þ and the same equation
with m ¼ m3 multiplied by ð2c� f m3Þ. Subtract the two multiplied equations to
eliminate p. We get

f ð f2 þ f 2Þ þ 2Kf ð f þ KÞ � cðnþ 3Þ f � 4cK ¼ 0:ð61Þ
This is a necessary and su‰cient condition for p to have the same value from
(50), regardless of the choice of m. On the other hand subtracting the two
equations obtained from (50) for m ¼ m1; m2, gives

pf ¼ ff2 þ cð3nþ 13Þ f þ 4cK:ð62Þ
Similarly, from the two equations contained in (E3) for m ¼ m1; m3 by subtracting
we get

p ¼ 2f2 þ f 2 þ 2Kð f þ KÞ þ 2cðnþ 5Þ;ð63Þ
and by eliminating p from these two equations we get exactly the same condition
(61) as before. Moreover, assuming (61), we check that (62) and (63) are con-
sistent, so there is only one condition, namely (61), to be satisfied in order to
make (E1)–(E3) consistent, regardless of the choice of m, and enable us to solve
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for p and q. Replacing the values from (59) and (60) into (61), using K ¼ m1 þ m3
we get

0 ¼ LðLþ 1ÞðLþ 2Þm3
1 þ KðK þ 1ÞðK þ 2Þm3

3

� cm1ð3L2K þ 3L2 þ 6LK þ 8Lþ 2K þ 4Þ

� cm3ð3LK 2 þ 3K 2 þ 6LK þ 8K þ 2Lþ 4Þ;

or

½ðLþ 1Þm2
1 � cðK þ 1Þ�ð64Þ

� ½LðLþ 2Þm4
1 � 2cðLK þ K þ Lþ 2Þm2

1 þ KðK þ 2Þ� ¼ 0;

which has the following three solutions

ðaÞ m2
1 ¼ ðK þ 1Þc

Lþ 1
ðbÞ m2

1 ¼ Kc

Lþ 2
ðcÞ m2

1 ¼ ðK þ 2Þc
L

:

Clearly, when c ¼ �1 none of them is possible, so there are no 2-type hypersur-
faces of CHmð�4Þ among A2-hypersurfaces. When c ¼ 1 the last two possibil-
ities generate the same set of examples. From (63) we find

p ¼ ðL2 þ 4Lþ 2Þm2
1 þ ðK 2 þ 4K þ 2Þm2

3 � 2LK

and we can also compute q from (E1) in terms of m1, m3. Then using these we
find the two eigenvalues of the Laplacian from the 2-type decomposition to be

lu ¼ ðLþ 1ÞðLþ 2Þm2
1 þ ðK þ 1ÞðK þ 2Þm2

3 � ðLþ K þ 2LKÞ;ð65Þ

lv ¼ Lm2
1 þ Km2

3 þ Lþ K ; m1 ¼ cot r; m3 ¼ �tan r:

In the case ðaÞ, we get lu ¼ 2ðnþ 3Þ, lv ¼ 2ðnþ 1Þ � ðl � kÞ2

ðl þ 1Þðk þ 1Þ ¼4ðmþ 1ÞðLK þmÞ
ðLþ 1ÞðK þ 1Þ , lu > lv, so the hypersurface is of 2-type. Since m2

1 ¼

cot2 r ¼ K þ 1

Lþ 1
, from Takagi’s list it follows that the hypersurface is an open

portion of the tube of radius r ¼ cot�1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
K þ 1

Lþ 1

r
¼ cot�1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k þ 1

m� k

r
about a canoni-

cally embedded CPkð4ÞHCPmð4Þ, for any k ¼ 1; . . . ;m� 2; see also [8], [25].
For case ðbÞ, (65) yields

lu ¼
4ðk þ 1Þðnþ 3Þ

2k þ 1
¼ 4ðmþ 1ÞK þ 1

K
; lv ¼

4ðl þ 1Þðnþ 3Þ
2l þ 3

¼ 4ðmþ 1ÞLþ 1

Lþ 2
;

lu > lv. Since m2
1 ¼ cot2 r ¼ K

Lþ 2
, we identify such hypersurface as an open

portion of the tube of radius r ¼ cot�1

ffiffiffiffiffiffiffiffiffiffiffiffi
K

Lþ 2

r
¼ cot�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k þ 1

2ðm� kÞ þ 1

s
about a

canonically embedded CPkð4ÞHCPmð4Þ, for any k ¼ 1; . . . ;m� 2.
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(ii) For an A2-hypersurface we have from (65)

lu � lv ¼ ðL2 þ 2Lþ 2Þm2
1 þ ðK 2 þ 2K þ 2Þm2

3 � 2ðLþ K þ LKÞ:ð66Þ
Note that from Tables 1 and 2 and the accompanying discussion, in addition to
principal curvature K ¼ 2 cotcð2rÞ an A2-hypersurface has also two more principal
curvatures m1 ¼ cotc r and m3 ¼ �c tanc r, with corresponding principal subspaces
V1 :¼ Vm1 and V3 :¼ Vm3 , being J-invariant and D ¼ V1 lV3. Then from (14)
and (43) for a basis of principal directions feig in D we get

D~xx ¼ �ðLm1 þ Km3Þx� sðx; xÞ �
X
ei AV1

sðei; eiÞ �
X
ej AV3

sðej; ejÞ;

D2~xx ¼ �½L2m3
1 þ K 2m3

3 þ ðL2 þ 4mL� 4Þm1 þ ðK 2 þ 4mK � 4Þm3�x

þ ½ðL2 � 2Þm2
1 þ ðK 2 � 2Þm2

3 � 2LK �sðx; xÞ

� 2ðLþ 1Þðm2
1 þ 1Þ

X
ei AV1

sðei; eiÞ � 2ðK þ 1Þðm2
3 þ 1Þ

X
ej AV3

sðej; ejÞ:

Then ~xxu and ~xxv can be computed as in (55)–(56). Since the hypersurface of
CQm is mass-symmetric via ~xx we have ~xx0 ¼ ~xx� ð~xxu þ ~xxvÞ ¼ I=ðmþ 1Þ. Because
I and ~xx are normal to ~xxðCQmÞ, a necessary condition for mass-symmetry in
H ð1Þðmþ 1Þ is that the x-component of ~xxu þ ~xxv be zero. The x-component of ~xxu
equals

�4

luðlu � lvÞ
½ðmL� 1Þm1 þ ðmK � 1Þm3�

and the x-component of ~xxv is

1

lvðlv � luÞ
fLðL2 þ 2Lþ 2Þm3

1 � ½8mLþ LKð3Lþ 2Þ þ 2K � 4�m1

þ KðK 2 þ 2K þ 2Þm3
3 � ½8mK þ LKð3K þ 2Þ þ 2L� 4�m3g:

Observing the corresponding values of lu, lv in each of the cases we see that
the x-component of ~xxu þ ~xxv for hypersurfaces in ðbÞ is never zero, whereas
for hypersurfaces of case ðaÞ this component is identically equal to zero. An
additional computation verifies that for any hypersurface of case ðaÞ other com-
ponents sðx; xÞ,

P
ei AV

sðei; eiÞ on both sides of mass-symmetric 2-type decom-
position are matched.

The two families of tubes referred to in Lemma 3 have also another
representation. Let

M2kþ1;2lþ1ðrÞ :¼ S2kþ1ðcos rÞ � S2lþ1ðsin rÞ; 0 < r < p=2;

be the family of generalized Cli¤ord tori in an odd-dimensional sphere Snþ2 H
Cmþ1, n ¼ 2m� 1. By choosing the two spheres (with the indicated radii) in
the above product to lie in complex subspaces we get the fibration S1 !
M2kþ1;2lþ1ðrÞ ! MC

k; lðrÞ :¼ pðM2kþ1;2lþ1ðrÞÞ compatible with the Hopf fibration
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p : Snþ2 ! CPmð4Þ, which submerses M2kþ1;2lþ1ðrÞ onto MC
k; lðrÞ [21]. Cecil and

Ryan have shown [8] that MC
k; lðrÞ is a tube of radius r about totally geodesic

CPkð4Þ with principal curvatures cot r, �tan r, 2 cotð2rÞ of respective multi-
plicities 2l, 2k, and 1. Accordingly, the family of hypersurfaces corresponding to
the case ðaÞ is given as open portions of

MC
k; lðrÞ ¼ p SK

ffiffiffiffiffiffiffiffiffiffiffiffiffi
K þ 1

nþ 3

r !
� SL

ffiffiffiffiffiffiffiffiffiffiffiffi
Lþ 1

nþ 3

r ! !
; cot2 r ¼ K þ 1

Lþ 1
;

and the family of hypersurfaces corresponding to the case ðbÞ is

MC
k; lðrÞ ¼ p SK

ffiffiffiffiffiffiffiffiffiffiffi
K

nþ 3

r !
� SL

ffiffiffiffiffiffiffiffiffiffiffiffi
Lþ 2

nþ 3

r ! !
; cot2 r ¼ K

Lþ 2
;

where for both families nþ 3 ¼ 2ðmþ 1Þ and K ¼ 2k þ 1 and L ¼ 2l þ 1 are odd
positive integers with K þ L ¼ 2m. It is in exactly this form that they appear in
Udagawa’s paper. The family of hypersurfaces corresponding to the case ðcÞ is
the same family as in ðbÞ, with the roles of K and L interchanged and the factors
reversed. Hypersurfaces of case ðcÞ can be also described as tubes over CPkð4Þ

of radius r ¼ cot�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k þ 3

2ðm� kÞ � 1

s
, for k ¼ 1; 2; . . . ;m� 2, but are not listed as

a separate case since they constitute the same family as the one under case ðbÞ.
Namely, the tube about CPkð4Þ of this radius r is the same as the tube over the

other focal variety CPlð4Þ of radius
p

2
� r ¼ cot�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l þ 1

2ðm� lÞ þ 1

s
, which appears

within family ðbÞ.

Remark. Note that according to a result of Barbosa et al. [1], tubes over

CPkð4Þ of radius r satisfying cot�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k þ 3

2ðm� kÞ � 1

s
a ra cot�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k þ 1

2ðm� kÞ þ 1

s

are stable with respect to normal variations preserving the enclosed volume.

Hence the 2-type tubes over CPkð4Þ of radii cot�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k þ 1

2ðm� kÞ þ 1

s
and

cot�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k þ 3

2ðm� kÞ � 1

s
are distinguished by being maximal, respectively minimal,

stable tubes over CPk, for each k ¼ 1; 2; . . . ;m� 2, i.e. the values of radii in cases
ðbÞ and ðcÞ are precisely the endpoints of the stability interval for r.

Lemma 4. There are no 2-type hypersurfaces in CHmð�4Þ among hyper-
surfaces of class B. A class-B hypersurface of CPmð4Þ is of Chen 2-type if and
only if it is an open portion of either the tube of radius r1 ¼ cot�1ð

ffiffiffiffi
m

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffi
mþ 1

p
Þ

or the tube of radius r2 ¼ cot�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m2 � 1

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m2 � 2

pp
, r1 < r2, about a complex

quadric Qm�1 HCPmð4Þ. In both instances, these tubes are also mass-symmetric

in the hypersphere SN�1
I=ðmþ1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m

2ðmþ 1Þ

r !
of EN ¼ Hðmþ 1Þ that contains them.
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Proof. Let m2 ¼ cot rþ p

4

� �
and m4 ¼ cot rþ 3p

4

� �
, K ¼ 2 cotð2rÞ for the

standard examples B through E in CPmð4Þ and m2 ¼ coth r, m4 ¼ tanh r, K ¼
2 tanhð2rÞ for an example of class B in CHmð�4Þ. For all of these hypersurfaces
we have

m2m4 ¼ �c; m2 þ m4 ¼ � 4c

K
; m�

2 ¼ m4; m�
4 ¼ m2:ð67Þ

Setting m ¼ m2; m4 in (50) produces two equations, from which by eliminating p
we get

2 K2 þ cðm� 3Þ � 16

K2

� �
f þ 2 Kþ 4c

K

� �
f 2 � f ð f 2 þ f2Þ � 4cK ¼ 0:ð68Þ

The same condition is obtained from (E3) by setting m ¼ m2; m4 and eliminating p
and is also a necessary condition for the values of p obtained from (50) and (E3)
to be equal for any hypersurface of class B. For class-B hypersurface in either
setting the common multiplicity of m2, m4 is m� 1 and we have

f ¼ K� 4cðm� 1Þ
K

; f2 ¼ K2 þ 16ðm� 1Þ
K2

þ 2cðm� 1Þ:ð69Þ

From (68) and (69) we get

K6 � 4cðm� 1ÞK4 � 8ðm2 þ 2m� 1ÞK2 þ 32cmðm2 � 1Þ ¼ 0:ð70Þ

Thus, for hypersurfaces of class B, (70) represents a necessary and su‰cient
condition for p to have the same value from (50) and (E3), regardless of the
choice of m ¼ m2; m4, and also for p and q to be uniquely determined from
the conditions (E1)–(E3) in Lemma 1. One needs to check also condition (E4)
by computing the connection coe‰cients of the hypersurface considered or by
invoking the h-parallelism of the shape operator for hypersurfaces of class B, [20],
[25]. We shall work instead with condition (44), which is a necessary and
su‰cient condition for typea 2, provided that the roots of the corresponding
quadratic equation are real and distinct, and obtain expressions for D~xx and D2~xx
that will enable us to find the explicit 2-type decomposition of ~xx for certain
hypersurfaces of class B. Let M be such hypersurface in either CPmð4Þ or
CHmð�4Þ. With m2, m4 as above, for the corresponding eigenspaces V :¼ Vm2
and Vm4 we have Vm4 ¼ JV and D ¼ V lSV . In the case of tube of radius
r ¼ 1

2 lnð2þ
ffiffiffi
3

p
Þ in CHmð�4Þ which has only two constant principal curvatures

(since K ¼ m2Þ, we consider Vm2 to consists of eigenvectors of m2 belonging to
D only, thus not including U . Note that sðU ;UÞ ¼ sðx; xÞ and sðJei; JeiÞ ¼
sðei; eiÞ by (12).

The fact that J interchanges Vm2 and Vm4 for every hypersurface of class B is
crucial here and will enable us to find suitable expressions for D~xx, D2 ~xx and later
D3~xx. Let feig ¼ fej;Sejg be a J-basis of the holomorphic distribution D (where
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ej A V , j ¼ 1; 2; . . . ;m� 1), which is the basis of principal directions of AjD with
Aej ¼ mjej and AðSejÞ ¼ m�

j Sej, where mj, m
�
j satisfy relation (42), or equivalently

2cþ Kðmj þ m�
j Þ ¼ 2mjm

�
j ¼ �2c:ð71Þ

Then we haveX
ei AD

sðei;AeiÞ ¼
X
ei AD

misðei; eiÞ ¼
X
ej AV

½mjsðej; ejÞ þ m�
j sðSej ;SejÞ�ð72Þ

¼
X
ej AV

ðmj þ m�
j Þsðej; ejÞ ¼ � 2c

K

X
ei AD

sðei; eiÞ; and

X
ei AD

sðAei;AeiÞ ¼
X
ei AD

m2
i sðei; eiÞ ¼

X
ej AV

ðm2
j þ m�

j
2Þsðej; ejÞð73Þ

¼ 8

K2
þ c

� �X
ei AD

sðei; eiÞ:

Then using (67) and (69), formulas (14) and (18) become respectively

D~xx ¼ 2cðn� 1Þ
K

� K
� �

x� sðx; xÞ �
X
ei AD

sðei; eiÞ;ð74Þ

D2~xx ¼ 16cðn� 1Þ2

K3
þ 8nðn� 1Þ

K
� 2cðnþ 1ÞK� K3

" #
xð75Þ

þ 4ðn� 1Þðnþ 3Þ
K2

� 4c� K2

� �
sðx; xÞ � 2ðnþ 1Þ 4

K2
þ c

� �X
ei AD

sðei; eiÞ:

For X A GðTMÞ we get the following using (3) and (11):

~‘‘Xx ¼ �AX þ sðX ; xÞ; ~‘‘X ðsðx; xÞÞ ¼ �2cX � 2chX ;UiU � 2sðAX ; xÞ;ð76Þ

~‘‘X

X
ei AD

sðei; eiÞ
 !

¼ �2cðnþ 1ÞX þ 4chX ;UiU þ 4sðAX ; xÞ:ð77Þ

Therefore, di¤erentiating D~xx and D2~xx with respect to X we substitute in (44)
using (72)–(77) to get

16cðn� 1Þ2

K3
þ 2ðn� 1Þð4n� cpÞ

K
þ ½p� 2cðnþ 1Þ�K� K3

( )
½�AX þ sðX ; xÞ�ð78Þ

þ 8cðn2 þ 2nþ 5Þ
K2

þ 4ðn2 þ 2nþ 3Þ þ 2cK2 þ q� 2cðnþ 2Þp
� �

X

þ 2 pþ K2 � 4cn� 4ðn2 þ 6nþ 1Þ
K2

� �
½chX ;UiU þ sðAX ; xÞ� ¼ 0:
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Equate with zero the normal to CQm component of (78), which is a linear
combination of sðX ; xÞ and sðAX ; xÞ, and take respectively X A Vm2 and X A Vm4
to get two equations, from which by subtracting and solving for p we get

p ¼ 4ðn2 þ 6nþ 1Þ
K2

þ 4cn� K2:ð79Þ

Thus the last line of equation (78) drops out and the coe‰cient of sðX ; xÞ on the
top line would have to be zero. With the value of p from (79), equating that
coe‰cient with 0 yields

K6 � 2cðn� 1ÞK4 � 2ðn2 þ 6nþ 1ÞK2 þ 4cðn� 1Þðnþ 1Þðnþ 3Þ ¼ 0:ð80Þ
Under this condition the AX -component is also zero and then the X -component
in the middle line of (78) must be zero, which gives the following value of q:

q ¼ 2cðnþ 3Þ 4ðn2 þ 4n� 1Þ
K2

þ 2cðn� 1Þ � K2

� �
:ð81Þ

Thus under the condition (80) it is possible to satisfy equation (78), that is the
equation (44), for the values of p and q as in (79) and (81). This means that
a class-B hypersurface satisfying (80) is of 2-type. The equation (80) is, not
surprisingly, the compatibility condition (70), which we now see is also a su‰cient
condition for a hypersurface of class B to be of 2-type. Moreover, that condition
is equivalent to the equation

½K2 � 2cðnþ 1Þ�½K4 þ 4cK2 � 2ðn� 1Þðnþ 3Þ� ¼ 0;ð82Þ
which has three roots K2 ¼ 2cðnþ 1Þ and K2 ¼ �2cG c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðn2 þ 2n� 1Þ

p
. When

c ¼ �1, none of them is possible since 0 < K2 < 4. For c ¼ 1 (the case of a
hypersurface of class B in CPmð4Þ) we have the following two possibilities:

ðaÞ K2 ¼ 2ðnþ 1Þ and ðbÞ K2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðn2 þ 2n� 1Þ

q
� 2:

In case ðaÞ we find p ¼ lu þ lv, q ¼ lulv from (79) and (81) and the two eigen-
values lu < lv to be

p ¼ 4nðnþ 3Þ
nþ 1

; q ¼ 4ðn� 1Þðnþ 3Þ2

nþ 1
ð83Þ

lu ¼
2ðn� 1Þðnþ 3Þ

nþ 1
¼ 4ðm� 1=mÞ; lv ¼ 2ðnþ 3Þ ¼ 4ðmþ 1Þ:ð84Þ

The corresponding hypersurface is a tube of radius r about the complex quadric

Qm�1, where cot r� tan r ¼ K, i.e. cot r ¼ Kþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 þ 4

p

2
¼

ffiffiffiffi
m

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffi
mþ 1

p
.

In case ðbÞ we find

p ¼ 1

ðn� 1Þðnþ 3Þ ½2ð2n
3 þ 7n2 þ 8n� 1Þ þ ðn2 þ 10nþ 5Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðn2 þ 2n� 1Þ

q
�;ð85Þ

q ¼ 2

n� 1
½2ðn3 þ 4n2 þ 5n� 2Þ þ ðn2 þ 6nþ 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðn2 þ 2n� 1Þ

q
�;ð86Þ
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lu ¼
2

nþ 3
½2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðn2 þ 2n� 1Þ

q
þ ðnþ 1Þ2�;ð87Þ

lv ¼
nþ 3

n� 1
½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðn2 þ 2n� 1Þ

q
þ 2n�:

The corresponding hypersurface is a tube about Qm�1 of radius r, with cot r ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m2 � 1

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m2 � 2

pp
. These two tubes are therefore of 2-type in Hðmþ 1Þ.

Moreover, they are also mass-symmetric in the hypersphere containing FðCPmÞ,
which means that the center of mass is ~xx0 ¼ I=ðmþ 1Þ ¼ 2I=ðnþ 3Þ. Indeed by
a Lemma of [15] we have the expression

I ¼ ðmþ 1Þ~xxþ c

2
sðx; xÞ þ c

4

X
ei AD

sðei; eiÞ:ð88Þ

Then it is a straightforward verification using (74), (75), (79), (81) and (88) that
any class-B hypersurface satisfying condition (80) is of 2-type since it satisfies the
equation

D2~xx� pD~xxþ q ~xx� I

mþ 1

� �
¼ 0;ð89Þ

and it is, obviously, not of 1-type. Specifically, for the two tubes about Qm�1

discussed above, (89) holds for the indicated values of p and q from (83),
respectively (85)–(86). The corresponding vector-eigenfunctions ~xxu and ~xxv of lu
and lv in 2-type decomposition of ~xx can be found from

~xxu ¼
1

lu � lv
D~xx� lv ~xx� I

mþ 1

� �� �
; ~xxv ¼

1

lv � lu
D~xx� lu ~xx� I

mþ 1

� �� �
:ð90Þ

For example, for the tube of radius r1 ¼ cot�1ð
ffiffiffiffi
m

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffi
mþ 1

p
Þ we get

~xxu ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðnþ 1Þ

p
2ðnþ 3Þ x� nþ 1

4ðnþ 3Þ sðx; xÞ; and

~xxv ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðnþ 1Þ

p
2ðnþ 3Þ xþ n� 3

4ðnþ 3Þ sðx; xÞ �
1

2ðnþ 3Þ
X
ei AD

sðei; eiÞ:

It can be also directly verified, using (16), (26) and (17), that ~xxu, ~xxv are indeed
eigenfunctions of D for the indicated eigenvalues. Incidental to this finding, we
obtain two simple eigenvalue estimates for the first two non-zero eigenvalues l1, l2
for the hypersurface for which ðaÞ holds: l1 a 4ðm� 1=mÞ and l2 a 4ðmþ 1Þ.

Lemma 5. There are no 2-type hypersurfaces in CPmð4Þ among any of the
standard examples of class C, D, or E.

Proof. This was shown in [36]. For the sake of completeness we include a
di¤erent proof here using our approach. In addition to principal curvatures m2,
m4 and formulas (67)–(68), we have also principal curvatures m1, m3, for which the
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relations (59) hold (c ¼ 1 throughout). If we substitute m ¼ m1, m ¼ m3 in (E3)
and subtract the two resulting equations we get

p ¼ 2f2 þ f 2 þ 2Kf þ 2K2 þ 2ðnþ 5Þ:ð91Þ
The same manipulation with m ¼ m2; m4 yields

p ¼ 2f2 þ f 2 � 2 Kþ 4

K

� �
f þ 2ðnþ 5Þ þ 32

K2
� 2K2:ð92Þ

On the other hand, substituting m ¼ m1; m3 into (50) and subtracting we get

fp ¼ ff2 þ ð3nþ 13Þ f þ 4K;ð93Þ
and the same procedure using m ¼ m2; m4 leads to

fp ¼ ff2 þ ð3nþ 5Þ f � 4K:ð94Þ
Combining (93) and (94) we get f ¼ �K and subtracting (91) and (92) leads to

ðKþ 2=KÞ f þ K2 � 8=K2 ¼ 0, which is incompatible with f ¼ �K.

Now we can formulate our main classification results for 2-type Hopf hyper-
surfaces of CQm. In the complex projective space we have

Theorem 1. Let M 2m�1 be a Hopf hypersurface of CPmð4Þ, ðmb 2Þ. Then
M 2m�1 is of 2-type in Hðmþ 1Þ via F if and only if it is an open portion of one of
the following

(i) A geodesic hypersphere of any radius r A 0;
p

2

� �
, except for r ¼

cot�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2mþ 1

r
;

(ii) The tube of radius r ¼ cot�1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k þ 1

m� k

r
about a canonically embedded

totally geodesic CPkð4ÞHCPmð4Þ, for any k ¼ 1; . . . ;m� 2;

(iii) The tube of radius r ¼ cot�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k þ 1

2ðm� kÞ þ 1

s
about a canonically embedded

CPkð4ÞHCPmð4Þ, for any k ¼ 1; . . . ;m� 2.
(iv) The tube of radius r ¼ cot�1ð

ffiffiffiffi
m

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffi
mþ 1

p
Þ about a complex quadric

Qm�1 HCPmð4Þ.
(v) The tube of radius r ¼ cot�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m2 � 1

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m2 � 2

pp
about a complex

quadric Qm�1 HCPmð4Þ.

Proof. As shown before, a 2-type Hopf hypersurface must have constant
principal curvatures and therefore must be one from the Takagi’s list in CPmð4Þ.
The rest follows from Lemmas 1–5.

As commented before, the same classification holds when M is assumed to
have constant mean curvature (CMC) instead of being Hopf. In that regard
Theorems 1 and 2 in [36] are deficient and incomplete, since Udagawa’s list
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contains examples (i)–(iii) only. The list of items (i)–(v) is the correct and
complete classification of CMC hypersurfaces of 2-type in CPmð4Þ. Likewise, a
previous announcement of our theorem in [16] is incomplete, since it was
anticipated based on Udagawa’s classification.

In the same manner, since being a Hopf hypersurface and having constant
mean curvature imply each other for hypersurfaces of 2-type, Lemmas 1–5 yield

Theorem 2. Let M 2m�1 be a real hypersurface of CHmð�4Þ, ðmb 2Þ for
which we assume that it is a Hopf hypersurface or has constant mean curvature.
Then M 2m�1 is of 2-type in H 1ðmþ 1Þ via F if and only if it is (an open portion
of ) either a geodesic hypersphere of arbitrary radius r > 0 or a tube of arbitrary
radius r > 0 about a canonically embedded totally geodesic complex hyperbolic
hyperplane CHm�1ð�4Þ.

Regarding mass-symmetric hypersurfaces, from the analysis above we have

Corollary 1. A complete Hopf (or CMC) hypersurface of CPmð4Þ is of
2-type and mass-symmetric in the hypersphere of Hðmþ 1Þ containing FðCPmÞ if
and only if it is one of the hypersurfaces (tubes) in (ii), (iv) and (v) or the geodesic
hypersphere of radius cot�1ð1=

ffiffiffiffi
m

p
Þ. There exists no 2-type mass-symmetric (in

particular, no null 2-type) hypersurface of CHmð�4Þ.

This rectifies the claim made in Theorem 2 of [36].

6. CMC Hopf hypersurfaces of 3-type

It is not di‰cult to see that the hypersurfaces of class A2 are, generally
speaking, of 3-type (except for those two families of tubes in CPm given in
Theorem 1 (ii), (iii), which are or 2-type). Consider p A MHCQmð4cÞ where
p ¼ ½z� is represented by a column vector

z A p�1ðpÞHN 2mþ1 HCmþ1
ð1Þ ¼ Ckþ1

ð1Þ lC lþ1.

Let z ¼ ðziÞ ¼ ðz0; . . . ; zkÞT and w ¼ ðwaÞ ¼ ðzkþ1; . . . ; zmÞT and consider in Ckþ1
ð1Þ

the quadric N 2kþ1ðr1Þ (the sphere or anti-de Sitter space of radius r1) and in

C lþ1 the sphere S2lþ1ðr2Þ so that r21 þ cr22 ¼ 1. In the projective case we have
c ¼ 1 and we set r1 ¼ cos r, r2 ¼ sin r, whereas in the hyperbolic case c ¼ �1,
r1 ¼ cosh r, r2 ¼ sinh r. The corresponding class-A2 hypersurfaces which are
the tubes of radius r about totally geodesic CQkð4cÞ are obtained as the Hopf
projections, defining the submersion: pðS2kþ1ðcos rÞ � S2lþ1ðsin rÞÞ in CPmð4Þ
and pðH 2kþ1

1 ðcosh rÞ � S2lþ1ðsinh rÞÞ in CHmð�4Þ, k þ l ¼ m� 1. According to

(2), the coordinate representation of ~xxðpÞ in H ð1Þðmþ 1Þ has the matrix block
form

~xx ¼
aij bib

caj dab

� �
; 0a i; ja k; k þ 1a a; bam;
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where, for example, dab ¼ cwwT , bib ¼ czwT , and aij ¼ ðGzizjÞ is formed by the
signed products, plus in the first column minus otherwise in CHm-case, all plus
in CPm-case. Then using the fact that p is a (pseudo) Riemannian submer-
sion with totally geodesic fibers [2], one can compute the iterated Laplacians of
pðN 2kþ1ðr1Þ � S2lþ1ðr2ÞÞ as follows, see [23], [36], [18]:

D~xx ¼

2cðK þ 1Þ
r21

aij � 4cIkþ1
cK

r21
þ L

r22

� �
bib

cK

r21
þ L

r22

� �
caj

2ðLþ 1Þ
r22

dab � 4cIlþ1

0
BBB@

1
CCCA;

and in general for an integer sb 1

D s ~xx ¼

2 scsðK þ 1Þ s

r2s1
aij �

2 sþ1csðK þ 1Þ s�1

r
2ðs�1Þ
1

Ikþ1
cK

r21
þ L

r22

� �s
bib

cK

r21
þ L

r22

� �s
caj

2 sðLþ 1Þ s

r2s2
dab �

2 sþ1cðLþ 1Þ s�1

r
2ðs�1Þ
2

Ilþ1

0
BBBB@

1
CCCCA:

Then one checks that the following equation is satisfied

D3 ~xxþ pD2~xxþ qD~xxþ rð~xx� ~xx0Þ ¼ 0ð95Þ
for

p ¼ � cð3K þ 2Þ
r21

þ 3Lþ 2

r22

� �
; r ¼ � 4cðK þ 1ÞðLþ 1Þ

r21r
2
2

cK

r21
þ L

r22

� �
;

q ¼ 2
KðK þ 1Þ

r41
þ LðLþ 1Þ

r42
þ cð4KLþ 3K þ 3Lþ 2Þ

r21r
2
2

� �
;

and

~xx0 ¼

2r21
K þ 1

Ikþ1 O

O
2cr22
Lþ 1

Ilþ1

0
BB@

1
CCA; k þ l ¼ m� 1:ð96Þ

This means that any A2-hypersurface is of 3-type if the polynomial l3 þ pl2 þ
qlþ r has simple real roots (and the hypersurface is not already of lower type).
Those roots are found to be

lu ¼
cK

r21
þ L

r22
; lv ¼

2cðK þ 1Þ
r21

; lw ¼ 2ðLþ 1Þ
r22

:

When c ¼ 1, the equality of any two among these three roots leads to 2-type
examples (ii) and (iii) in Theorem 1. If we look for mass-symmetric examples of

class A2 then ~xx0 ¼ I=ðmþ 1Þ, which gives cot2 r ¼ K þ 1

Lþ 1
, thus again leading to

234 ivko dimitrić



the example (ii), which is of 2-type. So there are no mass-symmetric 3-type
examples among A2-hypersurfaces in CPm. On the other hand, when c ¼ �1 no
equality between the roots lu, lv, lw is possible and we know from Lemma 3 that
no example of class A2 in CHmð�4Þ is of 2-type, they are all, therefore, of
3-type. Since the constant part ~xx0 in 3-type decomposition has the form given in
(96) and cannot clearly equal I=ðmþ 1Þ, the only way such hypersurface can be
mass-symmetric, according to our definition, is that the hypersurface is of null
3-type, i.e. the eigenvalue lu ¼ 0, in which case ~xx0 can be changed to equal
I=ðmþ 1Þ. This gives the condition coth2 r ¼ K=L, i.e. the radius of the tube

about CHkð�4Þ is r ¼ coth�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k þ 1

2l þ 1

r
, 1a l < kam� 2, k þ l ¼ m� 1. In

that case we get a mass-symmetric null 3-type hypersurface in CHmð�4Þ:

pðHK
1 ðcosh rÞ � SLðsinh rÞÞ ¼ p H 2kþ1

1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k þ 1

2ðk � lÞ

s !
� S2lþ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l þ 1

2ðk � lÞ

s ! !
:

Additional examples of mass-symmetric 3-type hypersurfaces have to be searched
for among classes B, C, D, and E. We derive next certain necessary conditions
for hypersurface with tr A ¼ const to be mass-symmetric and of 3-type.

Let Mn be a CMC Hopf hypersurface of CQmð4cÞ, ðn ¼ 2m� 1Þ which is
of 3-type via ~xx and mass-symmetric in the hyperquadric centered at I=ðmþ 1Þ

containing FðCQmÞ and defined by P� I

mþ 1
;P� I

mþ 1

� �
¼ cm

2ðmþ 1Þ . Then

D3~xxþ pD2~xxþ qD~xxþ rð~xx� I=ðmþ 1ÞÞ ¼ 0;ð97Þ

where p, q, r are the (signed) elementary symmetric functions of the eigenvalues
lu, lv, lw associated with a 3-type decomposition of ~xx. We will consider various
components of this equation to derive a set of necessary conditions for a Hopf
hypersurface with constant tr A to be mass-symmetric and of 3-type. Those will
include the conditions tr Ak ¼ const, 1a ka 4. Recall that the normal space
T?
P CQm in H ð1Þðmþ 1Þ is spanned by the position vector P and vectors of the

form sðZ;WÞ, Z;W A TPCQ
m [15]. Using (12) and (23) we get from (14), (18),

and (34) respectively

hD~xx; ~xxi ¼ n; hD2~xx; ~xxi ¼ f 2 þ 2cðn2 þ 2n� 1Þ;ð98Þ

hD3~xx; ~xxi ¼ f 2½ f2 þ 5cðn� 1Þ� � 8cK2 þ 4nðnþ 2Þ2 � 20ð99Þ

þ 16cKf � 16cf trðSASÞ � 4c trðSA2SÞ þ 8c trðSAÞ2:

Further, choosing a J-basis fei;Seig of D and using (42) in the form mim
�
i ¼

cþ K
2
ðmi þ m�

i Þ, we compute

trðSASÞ ¼ K� f ; trðSA2SÞ ¼ K2 � f2; trðSAÞ2 ¼ K2 � Kf � ðn� 1Þc:
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Substituting in (99) we obtain hD3 ~xx; ~xxi as a sum of several terms, one of which
is ð f 2 þ 4cÞ f2 and the others are constants depending only on K, f , c, n. There-
fore taking the metric product of (97) with ~xx and using the above information,
we see that if f 2 þ 4c0 0 (this condition is always satisfied in the projective case)
it follows that f2 ¼ tr A2 is constant. Thus we will subsequently assume that
f 2 0 4 in the hyperbolic case to ensure the constancy of f2.

Next, we look at the x-component of (97). From (5) we compute

X
i

hJ½ð‘eiAÞ
2ðSeiÞ � ð‘eiAÞðSAeiÞ�; xi ¼ K2f � Kf2;

so that the x-component of D3~xx equals

hD3~xx; xi ¼ 8cðK2f � Kf2Þ þ 8cK3 þ 8ð2cf2 þ nþ 4ÞKð100Þ

� 8cf3 � f ½ f 2
2 þ 4cðnþ 4Þ f2 þ 4cf 2 þ 7n2 þ 30nþ 19�:

We also have that hD~xx; xi ¼ � f and hD2~xx; xi ¼ 4cK� f ½ f2 þ cð3nþ 5Þ� are
constant. Thus taking the metric product of (97) with x we get f3 ¼ const.
In finding the sðx; xÞ-component of (97) note that

hsðx; xÞ; sðx; xÞi ¼ 4c;
X
i

hsðei;SASeiÞ; sðx; xÞi ¼ �2cð f � KÞ;

X
i

hsðei;SA2SeiÞ; sðx; xÞi ¼ �2cð f2 � K2Þ;

X
i

hsðei; ðSAÞ2eiÞ; sðx; xÞi ¼ �2ðn� 1Þ � 2cKð f � KÞ;

and X
i; j

hsðð‘ejAÞei; ð‘ejAÞeiÞ; sðx; xÞi

¼ 2ck‘Ak2 þ 2c
X
j

hð‘ejAÞU ; ð‘ejAÞUi

¼ 2ck‘Ak2 � 2cK2 trðAS2AÞ þ 4cK trðASASAÞ � 2c trðASAÞ2

¼ 2c½ f2 � cðnþ 3Þ� f2 � 2cff3 þ 14ðn� 1Þc

þ 2f 2 þ 6Kf þ cK2f2 � ðn� 1ÞK2 � cK3f ;

by way of (23) and (71). Now, when the inner product of (97) with sðx; xÞ is
taken we get a sum of several terms equal to zero. The only term in this sum
containing f4 is 8cf4 and the other terms depend only on K, f , f2, f3, p, q, r, c,
n, and are thus constant. It follows, therefore, that f4 ¼ const. We note that
sðU ; xÞ ¼ 0 by (12) and considering sðX ; xÞ-component of (97) for X A GðDÞ we
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compute using the Codazzi equation that trðð‘XAÞ � ½A;S�Þ ¼ 0. For the part of
(97) normal to CQmð4cÞ it remains to consider sðX ;Y Þ-component for X A GðDÞ
and Y A GðTMÞ. We compute

hsðx; xÞ; sðX ;YÞi ¼ 2chX ;Yiþ 2chX ;UihY ;Ui;

X
i

hsðAkei;A
leiÞ; sðX ;Y Þi

¼ 2c½trðAkþlÞhX ;Yiþ hAkþlX ;Yi� hSAkþlSX ;Yi�;

with k, l integersb 0, and A0 ¼ I . Further,

X
i

hsðei;SASeiÞ; sðX ;YÞi ¼ 2cðK� f ÞhX ;Yi� 2chAX ;Yiþ 2chSASX ;Yi;

X
i

hsðei;SA2SeiÞ; sðX ;YÞi

¼ 2cðK2 � f2ÞhX ;Yi� 2chA2X ;Yiþ 2chSA2SX ;Yi;X
i

hsðAei;SASeiÞ; sðX ;Y Þi ¼
X
i

hsðei;SASAeiÞ; sðX ;YÞi

¼ 2c½K2 � Kf � ðn� 1Þc�hX ;Yi

þ 2ch½ðSAÞ2 þ ðASÞ2�X ;Yi;X
i; j

hsðð‘ejAÞei; ð‘ejAÞeiÞ; sðX ;Y Þi

¼ 2ck‘Ak2hX ;Yiþ 2chBX ;Yiþ 2chBðSX Þ;SYi;

where B :¼
P

jð‘ejAÞ
2 is a well-defined endomorphism of TM, independent of the

choice of the basis feig. Next, we compute

hD~xx; sðX ;YÞi ¼ �2cðnþ 2ÞhX ;Yi;

hD2 ~xx; sðX ;YÞi ¼ �4chASX ;ASYi� 4cf hASX ;SYi� 4chAX ;AYi

� 4cf hAX ;Yi� ½4ðnþ 1Þðnþ 3Þ þ 2cf 2�hX ;Yi;

hD3~xx; sðX ;Y Þi ¼ 8chBX ;Yiþ 8chBSX ;SYiþ 32h½ðSAÞ2 þ ðASÞ2�X ;Yi

þ 8f ðcf2 þ nþ 7ÞhSASX ;Yiþ 16ð1þ cf2ÞhSA2SX ;Yi

þ 8chSA4SX ;Yi� 8chA4X ;Yi� 16ð1þ cf2ÞhA2X ;Yi

� 8f ðcf2 þ nþ 7ÞhAX ;Yiþ ½8K2 þ 16Kf � 8f2 � 2cf 2f2

� 2ð5nþ 19Þ f 2 � 8cðn3 þ 6n2 þ 10nþ 7Þ�hX ;Yi:
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Thus taking the inner product of (97) with sðX ;Y Þ and dropping Y we get

BX � SBSX ¼ A4X � SA4SX þ aðA2X � SA2SX Þð101Þ

þ bðAX � SASXÞ � 4c½ðSAÞ2 þ ðASÞ2�X þ dX ;

where X A GðDÞ, a ¼ ðp=2Þ þ 2ðcþ f2Þ, b ¼ ðpf =2Þ þ cf ðcf2 þ nþ 7Þ, and

d ¼ n3 þ 6n2 þ 10nþ 7þ c

4
ð5nþ 19Þ f 2 þ 1

4
f 2f2 þ cf2 � 2cKf � cK2

þ p

4
½2cðnþ 1Þðnþ 3Þ þ f 2� þ q

4
ðnþ 2Þ þ cr

8
:

There remains the part of (97) tangent to M to be considered. Relation (97) has
no U-component and for X A D we have by the Codazzi equationX

i

hJ½ð‘eiA
2ÞðSeiÞ � ð‘eiAÞðSAeiÞ�;Xi ¼ trðð‘SXAÞ � ½S;A�Þ:

The right-hand side of this is also the result of the metric product of the left-
hand side of (97) with X and therefore must be equal to zero, which is the same
piece of information contained in the sðX ; xÞ-component. Hence we have the
following

Lemma 6. Let Mn HCQmð4cÞ be a Hopf hypersurface ðn ¼ 2m� 1Þ with
constant mean curvature (in the hyperbolic case we assume, additionally, that
ðtr AÞ2 0 4). If Mn is mass-symmetric and of 3-type in H ð1Þðmþ 1Þ then we have

(i) tr Ak ¼ const, for k ¼ 1; 2; 3; 4;
(ii) trðð‘XAÞ � ½A;S�Þ ¼ 0, for every X A GðDÞ;
(iii)

BX � SBSX ¼ A4X � SA4SX þ aðA2X � SA2SX Þ

þ bðAX � SASX Þ � 4c½ðSAÞ2 þ ðASÞ2�X þ dX ;

where B :¼
P

jð‘ejAÞ
2, X A GðDÞ, c ¼G1, and a, b, d are constants.

Essentially, the conditions (i)–(iii) are also su‰cient conditions for such M to
be mass-symmetric and of typea 3 since we obtained these conditions by con-
sidering all of the components of equation (97), provided that the constants a, b,
c, d and tr Ak are such to enable p, q, r to be real and the polynomial equation
t3 þ pt2 þ qtþ r ¼ 0 to have simple roots [12]. Note that the condition (ii) is
automatically satisfied when M is a Hopf hypersurface whose induced Hopf
foliation is a Riemannian foliation [3, p. 64] since then U is a Killing vector field
and AS ¼ SA. See also [27], characterizing class-A hypersurfaces by the con-
dition AS ¼ SA.
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Corollary 2. Let M be a CMC Hopf hypersurface of CQm satisfying
ðtr AÞ2 0�4c and having at most four distinct principal curvatures at each point.
If M is mass-symmetric and of 3-type via ~xx then M has constant principal
curvatures.

We show next that every hypersurface of class B is mass-symmetric in the
corresponding hyperquadric and, apart from those two tubes in Lemma 4, of
3-type. Using the information from Lemma 4, we get respectively from (16),
(26), (17) and (67) the following

Dx ¼ ½ f2 þ cðn� 1Þ�xþ ð2K� f Þsðx; xÞ � 4c

K

X
ei AD

sðei; eiÞ;ð102Þ

Dðsðx; xÞÞ ¼ 4cKxþ 2
8ðn� 1Þ

K2
þ cðnþ 1Þ

� �
sðx; xÞ � 16

K2

X
ei AD

sðei; eiÞ;ð103Þ

X
ei AD

Dðsðei; eiÞÞ ¼ 2
16

K2
þ cðnþ 3Þ

� �X
ei AD

sðei; eiÞð104Þ

� 2
16ðn� 1Þ

K2
þ cðn� 1Þ

� �
sðx; xÞ

þ 2c ðn� 1ÞK� 2cðn� 1Þðnþ 3Þ
K

� �
x:

The third iterated Laplacian D3~xx for a hypersurface of class B can be
computed from (34)–(35) but that would require finding the connection coef-
ficients of the hypersurface. It seems easier to find D3 ~xx directly by applying the
Laplacian to (75) and using (102)–(104). We get

D3~xx ¼
"
128cðn� 1Þ3

K5
þ 128ðn� 1Þðn2 þ 1Þ

K3
þ 8cðn� 1Þð3n2 þ 2nþ 3Þ

K
ð105Þ

� 16nK� 4cðnþ 1ÞK3 � K5

#
x

þ
"
32ðn� 1Þðnþ 3Þð3nþ 1Þ

K4
þ 8cðn� 1Þð3n2 þ 14nþ 3Þ

K2

þ 8ðn2 � 4nþ 1Þ � 2cð3nþ 1ÞK2 � K4

#
sðx; xÞ

� 128ðnþ 1Þ2

K4
þ 48cðnþ 1Þ2

K2
þ 4ðn� 1Þðnþ 3Þ� 4cK2

" #X
ei AD

sðei; eiÞ:

Then using (74), (75), and (105) we have
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Lemma 7. Every class-B Hopf hypersurface with constant principal curvatures
in CHmð�4Þ is mass-symmetric and of 3-type via ~xx. The same is true for hyper-
surfaces of class B in CPmð4Þ, with the exception of those two tubes about Qm�1

referred to in Lemma 4, which are mass-symmetric and of 2-type.

Proof. These hypersurfaces are not of 1-type and the only 2-type examples
are given in Lemma 4. We show that they satisfy the 3-type equation (97) and
that the polynomial PðtÞ ¼ t3 þ pt2 þ qtþ r has three distinct real roots except
for one value of K, so that for other values of K the result of [12] proves it then to
be mass-symmetric and of typea 3. Moreover, they will be exactly of 3-type
if PðtÞ is the minimal polynomial of the immersion ~xx� ~xx0, i.e. the hypersurface
does not satisfy a lower-degree polynomial in the Laplacian. Indeed, using the
Gauss elimination with

p ¼ � 1

K2
ðK2 þ 4cÞ½K2 þ 2cð3nþ 1Þ�;

q ¼ 4

K4
ðK2 þ 4cÞ½cðnþ 1ÞK4 þ ð3n2 þ 6n� 1ÞK2 þ 8cðn2 � 1Þ�; and

r ¼ � 4ðn� 1Þðnþ 3Þ
K4

ðK2 þ 4cÞ2½K2 þ 2cðnþ 1Þ�

we can verify that (97) holds by equating all components with zero. Note that
the normal space to CQm in H ð1Þðmþ 1Þ at a point P A Mn is spanned by vectors
of the form ~xx, sðX ;YÞ; sðX ; xÞ; sðx; xÞ, for X ;Y A D. Moreover, the roots of the
cubic equation t3 þ pt2 þ qtþ r ¼ 0 are real and they are found to be

lu ¼
2cðn� 1ÞðK2 þ 4cÞ

K2
;

lv; lw ¼
ðK2 þ 4cÞ½K2 þ 4cðnþ 1Þ�G

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðK2 þ 4cÞ½K6 � 12cK4 þ 64cðnþ 1Þ2�

q
2K2

:

Note that K2 þ 4c0 0 for a class-B hypersurface. Equality of any two roots is
possible only when c ¼ 1 and lu ¼ lw (with minus sign at the radical), where

K2 ¼ 2ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m2 � 1

p
� 1Þ, identifying it as the 2-type example of Theorem 1 (v).

For the example given in Theorem 1 (iv) we have K2 ¼ 4m and

PðtÞ ¼ t2 � 4ðmþ 1Þð2m� 1Þ
m

tþ 16
ðm� 1Þðmþ 1Þ2

m

" #
½t� 8ðmþ 1Þ�;

where the quadratic trinomial in the first pair of brackets is the minimal poly-
nomial of that 2-type hypersurface according to (83), (84).

Now we are in a position to prove our classification result for 3-dimensional
Hopf hypersurfaces of CQ2ð4cÞ:
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Theorem 3. Let M 3 be a Hopf hypersurface of CP2ð4Þ with constant mean
curvature. Then M 3 is mass-symmetric and of 3-type in Hð3Þ if and only if M 3 is
a class-B hypersurface, that is, an open portion of a tube of any radius r A ð0; p=4Þ

about the complex quadric Q1 (equivalently the tube of radius
p

4
� r about a canon-

ically embedded RP2), except when cot r ¼
ffiffiffi
2

p
þ

ffiffiffi
3

p
and cot r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6

p
þ

ffiffiffi
7

pp
.

Proof. According to Corollary 2 such hypersurface has constant principal
curvatures and thus it is one from the Takagi’s list in CP2. Earlier analysis
shows that it cannot be a hypersurface of class A2, which is of 2-type when mass-
symmetric nor any of geodesic spheres, which are of 1- and 2-type. Standard
examples of class C, D, and E need not be considered because of dimension
restriction. Then Lemma 7 proves that class-B examples are in fact the only
ones, excluding the two 2-type tubes referred to in Lemma 4.

Theorem 4. Let M 3 be a Hopf hypersurface of CH 2ð�4Þ with constant
mean curvature and ðtr AÞ2 0 4. Then M 3 is mass-symmetric and of 3-type in
H 1ð3Þ if and only if M 3 is a class-B hypersurface, that is, an open portion of a
tube of any radius r > 0 about a canonically embedded, totally real, totally geodesic
RH 2 HCH 2ð4Þ.

Proof. We know by Corollary 1 that the principal curvatures are constant
and therefore examples are to be found among the standard ones from the
Montiel’s list. Every example of class B is mass-symmetric and of 3-type by
Lemma 7. Moreover, by (67), (69), with c ¼ �1, m ¼ 2, we see that tr A0 2
for these hypersurfaces. A class-A0 hypersurface in CHm (a horosphere) is not
of finite type since it satisfies D2~xx ¼ const0 0 [18]. Class-A1 hypersurfaces
(geodesic spheres and tubes about the complex hyperbolic hyperplane) are of
2-type. Class-A2 hypersurfaces i.e. tubes about totally geodesic CHkð�4Þ, 1a
kam� 2, are of 3-type as shown before and among them there are some mass-
symmetric ones. But because m ¼ 2 here, these examples are not possible.
Note that an A2-hypersurface degenerates into an A1-hypersurface when l ¼ 0
or k ¼ 0. r

The case of 3-type hypersurfaces of CH 2ð�4Þ with ðtr AÞ2 ¼ 4 is also
interesting, but a di¤erent analysis is needed to study them. Because of this
property, they are akin to the so-called Bryant surfaces in RH 3, see [17]. Also
it would be interesting to determine the Chen-type of the standard examples of
class C, D and E in CPmð4Þ and, generally, study CMC Hopf hypersurfaces of
3-type in CQmð4cÞ when mb 3. The techniques developed here can be modified
to study curvature-adapted hypersurfaces of low type in quaternionic space forms
and partly also in octonion planes, the topic that will be treated in our subsequent
papers.
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[16] I. Dimitrić, Low-type submanifolds of projective spaces and Grassmannians, Contemporary

geometry and related topics, The eighth international workshop on di¤erential geometry

and its applications (D. Andrica and S. Moroianu, eds.), Cluj University Press, Cluj, 2008,

113–140.
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