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A CLASS OF UNIVALENT FUNCTIONS DEFINED
BY A DIFFERENTIAL INEQUALITY

MILUTIN OBRADOVIC AND SAMINATHAN PONNUSAMY*

Abstract

Let ./ be the class of analytic functions in the unit disk D with the normalization
f(0)=f'(0) —1=0. For 2> 0, denote by .#(2) the class of functions f €.« which

satisfy the condition
“(5ia) +r9(55)

We show that functions in .#(1) are univalent in D and we present one parameter
family of functions in .#(1) that are also starlike in D. In addition to certain inclusion
results, we also present characterization formula, necessary and sufficient coefficient
conditions for functions in .#(A), and a radius property of .Z(1).

<2, zeD.

=7y

1. Introduction and main results

Let # be the class of analytic functions in the unit disk D:={zeC:
|z] < 1}, mapping D into the complex plane C and .o/ be the class of functions
f(z2)=z+az>+ a3z +---in #. Let & denote the class of functions f in .o/
such that f is univalent in D. For 4 > 0, a function f € .« is said to belong to

the class #(4) if
2
f’@)(ﬁ) ~1|<4, zeD.

Denote by 2(4), the subclass of .7, consisting of functions f for which
z //‘

— | |<24, zeD.
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Set #(1):=% and 2(1):=2, see [4, 9. We have the strict inclusion 2 <
U < (see [1, 4, 10] for a proof). Many properties of the classes #(1) and
2(A) have been studied extensively in [5, 6, 7, 8, 9]. More generally

P U S for 0<Ai<]

and for a proof of this inclusion, we refer to [5]. Also, it is well-known that
there are only nine functions in .% having integral coefficients in the power series
expansions of f €. (see [3]). That is, if we set Sz ={f €% :a, €Z}, then

& z z z z
= Z .
S BT R A e e aES

Further, it is easy to see that the corresponding g € %z have the property that

2 "
/ z 2 .2 2 2f 2 2.0 9.2 A2
g(z)|——) —1€{0,—2z°,0,Fz", —z and z <—> €{0,2z°,0,F2z°,2z"},

(57g) 1<t ) @) <1 }

respectively. Consequently, we obtain the interesting fact that each function in
Sz belongs to % NZ2. Finally, we observe that

" 2
2f 2 / z 2. T2 22
zl— | +yg z<—> —1€{0,z°,0, Fz°,z°}.
(i) o) et }
In view of this observation, we introduce the following:

DrrmNiTION 1. For A >0, a function f € .o/ is said to belong to the class
M(A) if [My(z)| < A for zeD, where

" 2
" w0 =2(755) +r6(75) -
Also, denote the class .#(1) by ..

Now, we state our main results and the proofs of these will be given in
Section 3.

THEOREM 1 (Inclusion property). For 0 < A <1, we have the strict inclusion
M) SUNNPL) &S In particular, 4 S UNP =P < .

From the earlier discussion and Theorem 1, we easily see that
7S M EPCUSS

and it is worth recalling that the Koebe function belongs to ..

Example 1. Consider the function f defined by

S
fz) T2t T2
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where 0 < A < 1. Then

1 1—
21 -5z - (2/2)|2)? >T’1 >0

V4
/()
and so z/f(z) # 0 in D whenever 0 < A < 1. Further

z

/() ()2 —1=-z" and My(z) = 2.2
f(2) ‘

so that there exists a function f € % (1) such that f ¢ .#(A). Also, for each u
with |u| < 1/2, it is easy to see that the function f defined by

z
12 = 1+puz+123
belongs #\. .

TaeoreM 2 (Sufficiency coefficient condition). Let ¢(z) =1+ >, byz" be
a non-vanishing analytic function in D that satisfy the coefficient condition

) S 1)lb] <

n=2

Then the function f defined by f(z)=z/¢(z) is in M(A).

For example, according to (2) with 4 = 1, each function in ¥z belongs to .Z.

Let " denote the class of univalent functions in f € .% such that the range
f(D) is a starlike domain (with respect to the origin). Analytically, f e " if
and only if Re(zf'(z)/f(z)) > 0 in D.

It is easy to see that each ge 9 is starlike in D. Also, it has been
shown that for arbitrarily small values of A we have #(1) ¢ ¥*. Indeed,
Fournier and Ponnusamy [2, Theorem 3] obtained that every function f(z) =

z+ >, ay(f)z" € o satisfying
—|ax ()] + /2 = la ()

7@ (ffz))z - 2 ’

belongs to &*. Moreover, there exists a non-starlike function f € % such that

—la — |a 2 z
0 < eI+ Y2 - la(f) <supf'(z)(f(z))2—l

2 lz]<1
In particular, % ¢ &*. Moreover, Theorem 1 shows that .# < % and therefore,
it is natural to ask whether the class .# is included in *. This remains an open
question.

<

2| <1,

<1—la(f)l
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If f and ¢ are analytic functions on D with f(z) = >~ a,z" and g(z) =

> o bnz", then the convolution (Hadamard product) of f and g, denoted by
f *g, is an analytic function on D given by

(f*9)(2) = Z a,b,z", zeD.
n=0

Although % is not included in .#, in the following result, we show that the class
4 can be used to construct functions belonging to ..

THEOREM 3 (Multiplier theorem). Let f € % (A1) and g € U(12) have the form

_c 2, ... A : Ny R
f(z)—1+b12+b22 + and o 1+ciz+cz” +
and such that —— % —— #0 on D. Then the function H defined by
f(z) 4(2)
z
H(z) = -
& = @ Gl

is in the class M (1), where A= Ady. In particular, if f,ge U then H € M.

CoroLLARY 1 (Necessary coefficient condition). Let f € .4 of the form

Z P 2 .« e
f(Z)—l-l-blZ-l-sz + -
Then we have
> (n— )b < 1.
n=2

At this place it is appropriate to remind the reader of the fact that the
inequality > ,(n— 1)|b,|* < 1 follows merely from the condition f e.% for

. z . . .
the expansion m =1+4b1z+byz> +---. This result is known as the Prawitz
V4
theorem which is indeed an immediate consequence of Gronwall’s area theorem.
Thus, the necessary condition given in Corollary 1 is much stronger than this

result.

THEOREM 4 (Characterization theorem). FEvery f € .4 () has the represen-
tation

AR R (U AJI 2) \oa(1 /1) d,
0

/2
for some w:D — D with w(0) =w'(0) =0.
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Let # and ¢ be two subclasses of .. If for every f e % r 'f(rz) € 9 for
r < rg, and ry is the maximum value for which this holds, then we say that ry is
the %-radius in #. There are many results of this type in the theory of univalent
functions, see [8] and the references therein.

Because .# < %, it is natural to investigate the ./#-radius in %.

1
THEOREM 5 (Radii property). If fed and g(z) = f(rz), then ge M

for 0 <r <ry, where ro~0.62977 is the unique positive root of the equation
20 —2r* +3r2 — 1 = 0.

2. Preliminary lemmas

Let 2, denote the class of functions p in # such that p®(0) =0 for
k=0,1,2,...,n, where p(0) = p(0). We set

By ={we A :|wz)|<1,wh0)=0 for k=0,1,...,n}.

Lemma 1. Suppose that p e #,, 2> 0 and o is a complex number such that
Re(1/(1 —a)) > —n.  If p satisfies the condition
3) (1= 0)zp'(2) +ap(z)| <7, z€D
then
2zt

POl T Ry =) T

Proof. First, we rewrite (3) as
(1 —2)zp’(z) + ap(z) = Aw(z),
where w e 4,. Now, by integration, we get

A

1
p(z) = 7J 1=~V (17) dr.
1—a 0

Because |w(z)| < |z|""" for zeD by Schwarz’ lemma, we obtain that

3 |Z|n+1
lp(2)| < I1— <n+ 1 + Re(a/(1 —Oﬂ))>’ 2eb

and the desired conclusion follows. O

COROLLARY 2. Suppose that pe 2,, A >0 and o # 1 is a real number such
that n+1/(1 —a) > 0. Then

A1 —a)
a|(n(l1 —a)+1)

) (1= a)zp’(z) + ap(z)| < A= |p(2)] < T

for zeD.
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Suppose that 0 # o < 1. Then (4) becomes
1 A A
—— 1)z
(G- 1)aer+ne)|< 2

< —=|pi@)| < —————, zeD.
Now, if we allow o — —oo, then the last relation gives that

- Tn(l—a)+1)’

|=zp'(2) + p(2)| <0 = |p(z)| <0, zeD

so that p(z) = 0 is the only solution which satisfies the above implication. Now,
we state an improved version of it.

LemMmA 2. Suppose that p e P, (n > 1) satisfies the condition
(5) =2p'(5) + p(5)| <4 zeD

for some A >0. Then we have

n+l1
p(z) < A

and |zp'(z)| < Alz|"™" (1 +111>, zeD.

Proof. The condition (5) implies that
—zp'(z) + p(z) = Aw(2)
where we 4,. It follows easily that
1 1
p(z) = —iJ 2w(tz) dt and  —zp'(z) = dw(z) + /IJ 2w(tz) dt.
0 0
Because |w(z)| <|z|""" for zeD, by Schwarz lemma, the desired conclusion

follows from the last two formulas. O

We state the above lemmas in a general form in order to apply them for
functions with missing coefficients. However, for our application the case n =1
suffices. Setting » =1 in Lemma 2, we have

COROLLARY 3. Suppose that p is analytic in D, p(0)=p'(0)=0 and
satisfies the condition

(6) |=zp'(2) + p(2)| <4, zeD
for some 4 >0. Then we have
Ip(2)| < Az|* and |zp'(z)| < 24|z|*, zeD.

3. Proofs

Proof of Theorem 1. Set

2
z
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Then p is analytic in D, p(0) = p’(0) =0,

®) —zp’<z>=z2<%) and —2p'(2) + p(2) = My(2),

where M is defined by (1). Now, suppose that f e.#(4). Then, we obtain
that

|—zp’(z) + p(2)| <4, zeD.
By Corollary 3, it follows that
5 z "
z
(7%3)

2 \2
(7)1
and therefore, f e %(A)NP(1). Ol

<JzI* and |zp/(z)| = <2z]>, zeD

lp(2)| =

Proof of Theorem 2. Let f be given by f(z) =z/¢(z), where ¢(z) # 0 in
D. Then the power series representation of ¢ gives

z = "
f(Z)_1+;bnz.

By (7) and (8), it follows easily that

0

My(z) = (n—1)°b,z".

n=2

Thus, using the coefficient condition (2), we deduce that

M) < S (0= Dbl " < S0 — Dby <
n=2 n=2

and therefore, f e .#(1). ]

Proof of Theorem 3. Suppose that f e #(41) and g€ % (A,). By hypoth-
eses, ﬁ #0 for ze D, and f and g have the power series representation of
the form

z o0 = o0
— =1+ b,z" and ——=1+ ¢z,
/(2) ; 9(2) ,;

respectively. As f e (1), we have

“Z(.f@)/*ﬁ‘ 1‘ -
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Therefore, with z = re?” for re (0,1) and 0 < 6 < 2z, the last inequality gives
2

o0 1 2| oo
2 2.2n _ n 2
;(n—l) |ba|*r *EL ;(n— 1)b,z"| dO < A
Allowing r — 17, we obtain the inequality
> =17kl < A7
n=2
Similarly, as g € %(12), we have
(n—1)*|e,|* < 22.
n=2
Now, since
Z Lt 24 ...
f(z) * g(z) =14+ bici1z+ bycrz™ +
and
© © 12 , 1/2
(n—1) |bn||c,,|§<2(n—l )2 (b, |> ( (n—1) |c,1|2> < AJa,
n=2 n=2 n=2
by (2), we conclude that H € .4 (1), 2= A ls. O

Proof of Corollary 1. As in the proof of Theorems 2 and 3, we see that

o0
n—l
-2

n

and therefore, we easily have the desired necessary condition. O

Proof of Theorem 4. Let f e .#(1). By assumption,
My (z) = Aw(z)
for some we #,. Let ¢(z) =1+ b1z + bz +--- denote z/f(z). Then

o0

My(z) =Y (n—1)%b,z" = in(z)

n=2

which leads to

#(z)—1—biz= X:b,,z" = Az Liz(z) * w(z),

n=2
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where

Liz(Z) = Zoc:z—n

n=1

is the dilogarithm. By using the well-known representation

Liz(z) _ ZJI log(l/l‘) dl,

0 1 —1z
we obtain
"og(1
#(z) =1+ b1z 4+ Aw(z) * ZZJ og(1/1) dt
0 |
1 22
=1+bz+ )»J w(z) * log(1/1) dt
0 1—1tz
Yw(tz
=1 +b12+AJO 52 ) log(1/¢) dt.
Since by = —f"(0)/2, the desired representation follows. O

Proof of Theorem 5. Let f ed. Then, because f is univalent, f has the
form
zZ

) f(z)= m7

Since f € %, we have (see the proof of Theorem 3)

zeD.

(10) i(n —1)?b)* < 1.
2

n—=
1 .
We need to show that ;f(rz) e # for 0 < r <ry where ry 2 0.62977 is the root

of the equation r*(1 4 r2) = (1 —r?)® lying in the interval (0,1).
Using (9), for 0 <r <1, we can write

0

T =1+ Z(bnr")z".

According to Theorem 2, it suffices to show that

> (=1 bur" < 1

n=2

for 0 <r <.
Now, by the Cauchy-Schwarz inequality and (10),
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. . 12 ;. 1/2
S n=12balr < | > (n—1)%buf > (=1
n=2 n=2 n=2
” 1/2 4 N\
1+r%)
< n—1)2 = (T (
In particular, for 0 < r < ry, the last expression is less than or equal to 1. The
proof is complete. O
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