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ON THE CANONICAL BUNDLE FORMULA FOR

ABELIAN FIBER SPACES IN POSITIVE CHARACTERISTIC

Masaya Yasuda

Abstract

Let X be a non-singular projective ðnþ 1Þ-fold defined over an algebraically closed

field k of characteristic pb 0, and B be a non-singular complete curve defined over

k. A surjective morphism f : X ! B is said to be an n-abelian fiber space if almost all

fibers are n-dimensional abelian varieties. We examine the canonical bundle formula

for n-abelian fiber spaces.

Introduction

Let k be an algebraically closed field of characteristic pb 0. Let X be a
non-singular projective ðnþ 1Þ-fold defined over k, and B be a non-singular
complete curve defined over k. A surjective morphism f : X ! B is said to be
an n-abelian fiber space if f�OX ¼ OB and almost all fibers are n-dimensional
abelian varieties. Let b be a point of B. We set Fb ¼ f �1ðbÞ. A fiber Fb is
said to be a multiple fiber of f with multiplicities m if mb 2 and Fb ¼ mP
with P ¼

Pr
i¼1 niEi such that ðn1; . . . ; nrÞ ¼ 1, where Ei’s are prime divisors on

X . Sometimes we simply call Fb ¼ mP a multiple fiber of f or a multiple
fiber. In this paper, we study the structure of n-abelian fiber spaces in positive
characteristic.

In Section 1, we mainly study the structure of 2-abelian fiber spaces under
certain conditions and examine the canonical bundle formula. We can similarly
treat the higher dimensional case. We define the notion of tame fibers and wild
fibers in the case of n-abelian fiber spaces like in the case of elliptic fibra-
tions. Let f : X ! B be an n-abelian fiber space with ðK 2

X �Hn�1Þ ¼ 0, where
H is a hyperplane section on X . Since B is a non-singular curve, we have
Rif�OX ¼ Li lTi, where Li is a locally free sheaf and Ti is a torsion sheaf
ði ¼ 1; 2; . . . ; nÞ. We call a multiple fiber Fb ¼ mP a wild fiber if one of the
following equivalent conditions is satisfied.

1. b A Supp Tn,
2. dim H 0ðmP;omPÞb 2.
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If a multiple fiber is not a wild fiber, it is called a tame fiber. The main purpose
of this paper is to give a canonical bundle formula for n-abelian fiber spaces.
The following is one of the main theorems of this paper.

Theorem 0.1. Let f : X ! B be an n-abelian fiber space with ðK 2
X �Hn�1Þ

¼ 0, where H is a hyperplane section on X. Let Rif�OX ¼ Li lTi, where Li is a
locally free sheaf and Ti is a torsion sheaf ði ¼ 1; 2; . . . ; nÞ. Let lðTiÞ be the length
of Ti. Then we have

oX G f �ðL�1
n noBÞnOX

Xr
i¼1

aiPi

 !
;

where
1. miPi ¼ Fbi are the multiple fibers of f
2. 0a ai ami � 1
3. ai ¼ mi � ni if Fbi is a tame fiber, where ni ¼ minfn A Z>0 j dim H 0ðonPiÞ

> 0g
4. wðOX Þ ¼

Pn
i¼1ð�1Þ iðdeg Li þ lðTiÞÞ.

We call ni a jumping value of the multiple fiber miPi. We note that
the condition that ðK 2

X �Hn�1Þ ¼ 0, in a sense, corresponds to the minimality
of elliptic fibration and this condition is equivalent to the condition that KX is
f -nef. In Section 2, we investigate special phenomena in positive characteristic.
Let f : X ! B be an n-abelian fiber spaces. By [1], we see that deg f�oX=B b 0
if charðkÞ ¼ 0. In this paper, we give an example of 2-abelian fiber space
f : X ! B with deg f�oX=B < 0 in positive characteristic. Next we consider a
2-abelian fiber space f : X ! B with Kodaira dimension kðX Þ ¼ 1. For such an
abelian fiber space f , there exists a positive integer m such that the multi-
canonical system jmKX j gives a unique structure of abelian fiber space. We
consider the problem: ‘‘Find the smallest integer M such that the multicanonical
system jmKX j gives the structure of abelian fiber space for any 2-abelian fiber
space and any integer mbM.’’ In this paper, we give an example which shows
the following theorem does not hold in positive characteristic.

Theorem 0.2 (see [1]). Assume charðkÞ ¼ 0. Let f : X ! B be a 2-abelian
fiber space with kðXÞ ¼ 1 such that KX is f -nef and the jumping values for
all multiple fibers are equal to 1. Then the multicanonical system jmKX j gives
the structure of abelian fiber space if mb 14. Also 14 is the best possible
bound.
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Saito and Shunsuke Takagi for giving me some comments.
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Notation

Throughout this paper, we fix an algebraically closed field k of characteristic
pb 0. Let X be a non-singular projective ðnþ 1Þ-fold defined over k, and B be
a non-singular complete curve defined over k. A surjective morphism f : X ! B
is said to be an n-abelian fiber space if f�OX ¼ OB and almost all fibers are n-
dimensional abelian varieties. Let b be a point of B. We set Fb ¼ f �1ðbÞ. A
fiber Fb is said to be a multiple fiber of f with multiplicities m if mb 2 and
Fb ¼ mP with P ¼

Pr
i¼1 niEi such that ðn1; . . . ; nrÞ ¼ 1, where Ei’s are prime

divisors on X . Sometimes we simply call Fb ¼ mP a multiple fiber of f or a
multiple fiber.

For a non-singular complete algebraic variety X defined over k, we use the
following notation.

OX : the structure sheaf on X :
oX : a canonical sheaf of X :

HiðX ;FÞ : the i-th cohomology group of a coherent sheaf F on X :
hiðX ;FÞ : the dimension of i-th cohomology group of a coherent F on X :

wðFÞ : the Euler characteristic of a coherent sheaf F on X :
KX : a canonical divisor of X :

FjmKX j : the rational mapping associated with the multicanonical system
jmKX j:

kðXÞ : the Kodaira dimension of X :
gðCÞ : the genus of a non-singular curve C:

PicðXÞ : the Picard group of X :
NSðXÞ : the Néron-Severi group of X :

½a� : the largest integer which does not exceed a real number a:

For Cartier divisors D, D 0 on X , we denote by D@D 0 the linear equiv-
alence. For a group G and elements s1; . . . ; st of G, we denote by hs1; . . . ; sti
the subgroup generated by s1; . . . ; st. Sometimes, a Cartier divisor and the
associated invertible sheaf will be identified.

1. A canonical bundle formula for abelian fiber spaces

In this section, we mainly consider 2-abelian fiber spaces. We can easily
generalize almost all results in this section to n-abelian fiber spaces with arbitrary
n.

The following two theorems are well known (cf [4]).

Theorem 1.1. If f : X ! Y is a proper morphism of locally noetherian
schemes and F a coherent sheaf of OX -modules on X for all pb 0, the direct
image sheaves Rpf�ðFÞ are coherent sheaves of OY -modules.
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For any morphism f : X ! Y and y A Y , we denote by Xy the fiber of
f over y, and for F a quasi-coherent on X , we denote by Fy the sheaf
FnOY

kðyÞ on Xy.

Theorem 1.2. Let f : X ! Y is a proper morphism of locally noetherian
schemes and F a coherent sheaf of OX -module on X , flat on Y. Assume Y is
reduced and connected. Then for all p the following are equivalent:

1. y 7! dimkðyÞ H
pðXy;FyÞ is a constant function,

2. Rpf�ðFÞ is a locally free sheaf on Y , and for all y A Y , the natural map:

Rpf�ðFÞnOY
kðyÞ ! HpðXy;FyÞ:

is an isomorphism.
If these conditions are satisfied,

Rp�1f�ðFÞnOY
kðyÞ ! Hp�1ðXy;FyÞ:

is an isomorphism for any y A Y .

Let f : X ! B be an n-abelian fiber space. Note that f is flat because B
is a non-singular curve, and all the fibers of f are connected by Zariski’s con-
nected theorem. By the definition of f , there exists a finite number of points
b1; . . . ; br A B such that, for every point b A Bnfb1; . . . ; brg, the fiber Fb is an
n-dimensional abelian variety, and Fbi is a non-multiple singular fiber or Fbi ¼
miPi is a multiple fiber. By above two theorems, we see that Rnf�OX is a co-
herent OB-module such that ðRnf�OX Þn kðbÞGHnðFb;OFb

Þ for all b A B. Since
dim HnðFb;OFb

Þ ¼ 1 for all b A Bnfb1; . . . ; brg, Rnf�OX is invertible over the open
set Bnfb1; . . . ; brg. On the other hand, since B is a non-singular curve, we have
Rif�OX ¼ Li lTi for i ¼ 1; 2; . . . ; n, where Li is a locally free sheaf of finite rank
and Ti is a torsion part. Putting these observations together, we see that Ln is
an invertible sheaf and the support of Tn is contained in the set fb1; . . . ; brg.
Since the fibers of f over b A Bnfb1; . . . ; brg are n-dimensional abelian varieties,
we get that Rif�OX n kðbÞGHiðFb;OFb

Þ over b A Bnfb1; . . . ; brg for i ¼ 1; 2; . . . ;

n� 1 by Theorem 1.2. On the other hand, we have dim HiðFb;OFb
Þ ¼ n

i

� �
for all b A Bnfb1; . . . ; brg and i ¼ 1; 2; . . . ; n� 1. Therefore we see that Li is a

locally free sheaf of rank
n

i

� �
for i ¼ 1; 2; . . . ; n� 1.

Now we define the notion of tame fibers and wild fibers.

Definition. Let f : X ! B be an n-abelian fiber space and let Rif�OX ¼
Li lTi, where Li is a locally free sheaf and Ti is a torsion part. Let b be a
point of B. The fiber Fb of f is said to be a wild fiber if b A Supp Tn. If a
multiple fiber is not a wild fiber, it is called a tame fiber.

Remark. Let f : X ! B be an n-abelian fiber space and let b be a point of
B. By the Serra duality and Theorem 1.2, the fiber Fb is a wild fiber if and only
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if dim HnðFb;OFb
Þ ¼ dim H 0ðFb;oFb

Þb 2. Aerdts showed that in characteristic
0, Rif�OX is a locally free sheaf for any i. Therefore, a wild fiber appears only in
positive characteristic.

To give a canonical bundle formula for 2-abelian fiber space, we need the
following two lemmas (due to [2]).

Lemma 1.3. Let f : X ! B be a 2-abelian fiber space and let H be a
hyperplane section on X. Let b be a point of B and let D be a connected
component of the fiber Fb. Then ðD2 �HÞa 0. Also ðD2 �HÞ ¼ 0 if and only if
there exists a A Q such that D ¼ aFb.

Proof. We can write Fb ¼
Ps

i¼1 niEi, where Ei’s are integral surfaces. We
see that ðEi � Fb �HÞ ¼ 0 and ðEi � Ej �HÞb 0 if i0 j. We denote by ei (resp. h)
the class of Ei (resp. H) in NSðX ÞnZ Q. Let M be a Q-vector subspace of
NSðXÞnZ Q which is generated by ei’s. Then, using the intersection form on
NSðXÞ, we have a symmetric bilinear form

M �M C ðx; yÞ 7! ðx � y � hÞ A Q

which satisfies ðei � ej � hÞb 0 if i0 j. Replacing each ei with niei, we may
assume that ðei � z � hÞ ¼ 0 where z ¼

Ps
i¼1 ei. It su‰ces to prove ðx � x � hÞa 0

for x ¼
P

ciei ðci A Q) and to prove ðx � x � hÞ ¼ 0 if and only if ci ¼ cj whenever
ðei � ej � hÞ > 0. Then

ðx � x � hÞ ¼
X
i

c2i ðei � ej � hÞ þ 2
X
i< j

cicjðei � ej � hÞ

a
X
i

c2i ðei � ei � hÞ þ
X
i< j

ðc2i þ c2j Þðei � ej � hÞ

¼
X
i; j

c2i ðei � ej � hÞ ¼
X
i

c2i ðei � z � hÞ ¼ 0:

Using this inequality, we see that ðx � x � hÞ ¼ 0 if and only if ci ¼ cj whenever
ðei � ej � hÞ > 0. r

Lemma 1.4. Let f : X ! B be a 2-abelian fiber space and let H be a
hyperplane section on X. Let Fb ¼ mP be a multiple fiber of f , where P ¼P t

i¼1 niEi such that Ei’s are integral surfaces and ðn1; . . . ; ntÞ ¼ 1, and let D be a
divisor on P such that ðD � Ei �HÞ ¼ 0 for every i ¼ 1; . . . ; t. Then H 0ðP;OPðDÞÞ
0 0 if and only if OPðDÞGOP and H 0ðP;OPÞ ¼ k.

Proof. It su‰ces to show that every nonzero section s A H 0ðP;OPðDÞÞ
generates OPðDÞ, that is, it defines an isomorphism of OP onto OPðDÞ. This
would show also that H 0ðP;OPÞ is a field. Since H 0ðP;OPÞ=k is a finite exten-
sion and k is algebraically closed, we see that H 0ðP;OPÞG k.
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Let si ¼ sjEi
A H 0ðEi;OPðDÞnOEi

Þ. Since ðDjEi
�HjEi

Þ ¼ ðD � Ei �HÞ ¼ 0,
we have that either si is identically zero on Ei, or si does not vanish anywhere
on Ei (in which case si generates OPðDÞnOEi

). If si is identically zero on a
component Ei, then sj is also identically zero for every j, for P is connected.
Therefore, if si does not vanish anywhere on Ei, then s does not vanish anywhere
on P, so that s generates OPðDÞ.

Now assume that si is identically zero on Ei for every i. We shall show that
this assumption leads to a contradiction. Let ki be the order of vanishing of
s along Ei. This means that s A Ker½H 0ðP;OPðDÞÞ ! H 0ðkiEi;OPðDÞnOkiEi

Þ�
and if ki < ni, then s B Ker½H 0ðP;OPðDÞÞ ! H 0ððki þ 1ÞEi;OPðDÞnOðkiþ1ÞEi

Þ�.
We put D1 ¼

P t
i¼1 kiEi. Restricting to H, we get ðD2

1 �HÞ ¼ 0 by the proof
of [2, Theorem 7.8]. By Lemma 1.3, there exists c A Q such that D1 ¼ cP
ð0 < ca 1Þ.

Since ðn1; . . . ; ntÞ ¼ 1, there exist a1; . . . ; at A Z such that
P t

i¼1 aini ¼ 1.
Then

c ¼ a1k1

a1n1
¼ � � � ¼ atkt

atnt
¼
P

i aikiP
i aini

¼
X
i

aiki A Z:

Therefore c ¼ 1 and so D1 ¼ P. A contradiction. r

Definition. Let f : X ! B be an n-abelian fiber space and let mP be
a multiple fiber of f . The positive integer minfn A Z>0 j dim H 0ðonPÞ > 0g is
called a jumping value of the multiple fiber mP.

In the following, we give a canonical bundle formula for 2-abelian fiber
space.

Theorem 1.5. Let f : X ! B be a 2-abelian fiber space with ðK 2
X �HÞ ¼ 0,

where H is a hyperplane section on X. Let R1f�OX ¼ ElS and R2f�OX ¼
LlT , where E ðresp. LÞ is a locally free sheaf and S ðresp. TÞ is a torsion
part. Let lðSÞ ðresp. lðTÞÞ is the length of S ðresp. TÞ. Then we have

oX G f �ðL�1 noBÞnOX

Xr
i¼1

aiPi

 !
;

where
1. miPi ¼ Fbi are the multiple fibers of f
2. 0a ai ami � 1
3. ai ¼ mi � ni if Fbi is a tame fiber, where ni is a jumping value of the

multiple fiber miPi

4. wðOX Þ þ deg E þ lðSÞ ¼ deg Lþ lðTÞ.
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Proof. If z1; . . . ; zs are s general points of B, we have an exact sequence

0 ! oX ! oX nOX

Xs
i¼1

Fzi

 !
! 0

s

i¼1

ðoX nOX ðFziÞnOFzi
Þ ! 0

Since Fz1 ; . . . ;Fzs are abelian surfaces, we get oX nOX ðFziÞnOFzi
GoFzi

GOFzi

for any i. We get an exact sequence

0 ! H 0ðoX Þ ! H 0 oX nOX

Xs
i¼1

Fzi

 ! !
! 0

s

i¼1

H 0ðOFzi
Þ ! H 1ðoX Þ:

From this exact sequence we get the inequality

dim H 0 oX nOX

Xs
i¼1

Fzi

 ! !
b dim H 0ðoX Þ þ

Xs
i¼1

dim H 0ðOFzi
Þ � dim H 1ðoX Þ

¼ dim H 0ðoX Þ þ s� dim H 1ðoX Þ:

Therefore the complete linear system jKX þ
Ps

i¼1 Fzi j is nonempty if s >
dim H 1ðoX Þ � dim H 0ðoX Þ. Then let D A jKX þ

Ps
i¼1 Fzi j. Now assume that

there exists an irreducible component EHD such that EQFz for any point
z A B. Since ðE � Fz �HÞ > 0, we get ðD � Fz �HÞ > 0. Since D@KX þ

Ps
i¼1 Fzi ,

we see that

ðD � Fz �HÞ ¼ KX þ
Xs
i¼1

Fzi � Fz �H
 !

¼ ðKX � Fz �HÞ

¼ ðKX þ Fz � Fz �HÞ ¼ ðKX þ FzjFz
�HjFz

Þ ¼ ðKFz
�HjFz

Þ > 0:

Now we assume that Fz is an abelian surface. Then, we have ðKFz
�HjFz

Þ ¼ 0,
which is a contradiction. Therefore all the components of D are contained in
fibers of f , and KX has also the same property. Put

KX @
Xs
j¼1

cjFzj þD ðcj A Z; sb 0Þ;

with Db 0, where D is contained in a finite union of fibers of f , but does not
contain any fiber of f . Let D1; . . . ;Dt be the connected components of the
divisor D such that SuppðDiÞV SuppðDjÞ ¼ j if i0 j. Say Di is contained in the
fiber Fzi for some point zi A B for each i. By Lemma 1.3, we get ðD2

i �HÞa 0
for each i. By hypothesis, ðK 2

X �HÞ ¼ ðD2 �HÞ ¼
P t

i¼1ðD2
i �HÞ ¼ 0. Therefore

ðD2
i �HÞ ¼ 0 for each i. By Lemma 1.3, there exists di A Q such that Di ¼ diFzi

for each i. Therefore we can write

oX G f �ðMÞnOX

Xr
i¼1

aiPi

 !
ð0a ai ami � 1; ai A ZÞ;ð1Þ

where M is an invertible sheaf on B.
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By the proof of [2, Theorem 7.15], we get

f�OX

Xr
i¼1

aiPi

 !
GOB if 0a ai ami � 1:ð2Þ

From (1), (2) and the projection formula, we get f�ðoX ÞGM.
Now the duality theorem for a map says that

MG f�ðoX ÞGHomOB
ðR2f�OX ;oBÞGHomOB

ðL;oBÞGL�1 noB;

because R2f�OX ¼ LlT and the dual of the torsion part is zero. Therefore
formula (1) becomes

oX G f �ðL�1 noBÞnOX

Xr
i¼1

aiPi

 !
ð0a ai ami � 1Þ:

Next we consider the value of ai. For simplicity, we set b ¼ b1, a ¼ a1,
n0 ¼ n1 and Fb ¼ mP. Then we can write oX G f �ðMÞnOX ðaPÞn
OX ð

Pr
i¼2 aiPiÞ, where M is an invertible sheaf on B. We set on ¼ onP G

oX nOX ðnPÞnOnP. To prove that a ¼ m� n0 if a multiple fiber mP is a
tame fiber, we need the following lemma (cf [5]).

Lemma 1.6. Let P and on be as above. Then,
1. If on is not trivial, then dim H 0ðonÞ ¼ dim H 0ðon�1Þ.
2. If on is trivial, then dim H 0ðonÞ ¼ dim H 0ðon�1Þ þ 1.

Proof. The exact sequence

0 ! on�1 ! on ! onjP ! 0

induces an exact sequence

0 ! H 0ðon�1Þ ! H 0ðonÞ !
g
H 0ðonjPÞ;

where g is a restriction map.
If on is trivial, onjP is trivial, we get H 0ðonjPÞG k by Lemma 1.4. There-

fore g is surjective and dim H 0ðonÞ ¼ dim H 0ðon�1Þ þ 1. If on and onjP are
not trivial, we get H 0ðonjPÞ ¼ 0 by Lemma 1.4. Therefore dim H 0ðon�1Þ ¼
dim H 0ðonÞ. If on is not trivial and onjP is trivial, we get H 0ðonjPÞG k by
Lemma 1.4. Assume that there exists ~ss A H 0ðonÞ such that gð~ssÞ ¼ s for some
nonzero section s A H 0ðonjPÞ. Since s doesn’t vanish on P, ~ss doesn’t vanish on
nP. It follows that on is trivial. This is a contradiction. This implies that g
is not surjective. Therefore dim H 0ðonÞ ¼ dim H 0ðon�1Þ. r

By Lemma 1.6, dim H 0ðonPÞ is a non-decreasing function of n. Since
dim H 0ðomPÞ ¼ dim H 0ðoFb

Þ ¼ dim H 2ðOFb
Þ ¼ dimðR2f�OX n kðbÞÞ > 0, we have

1a n0 am. If n ¼ m� a, on is trivial. Thus, we see n0 ¼ m� a if mP is a
tame fiber.
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Finally, we will show wðOX Þ þ deg E þ lðSÞ ¼ deg Lþ lðTÞ. Let z1; . . . ; zs
be general points of B. Consider the exact sequence

0 ! OX ! OX

Xs
i¼1

Fzi

 !
! 0

s

i¼1

ðOX ðFziÞnOFzi
Þ ! 0:

Since Fzi ’s are abelian surfaces, we get wðOX ðFziÞnOFzi
Þ ¼ 0 by the Riemann-

Roch theorem for surface. Therefore we have wðOX Þ ¼ wðOX ð
Ps

i¼1 FziÞÞ.
Now consider the spectral sequence

E
pq
2 ¼ Hp B;Rqf�OX

Xs
i¼1

Fzi

 ! !
) Hpþq X ;OX

Xs
i¼1

Fzi

 ! !
:

By the projection formula, we have Rqf�OX ð
Ps

i¼1 FziÞGRqf�OX nOBð
Ps

i¼1 ziÞ.
Because of the ampleness of OBð

Ps
i¼1 ziÞ for any su‰cient large s, we have

that HpðB;Rqf�OX nOBð
Ps

i¼1 ziÞÞ ¼ 0 for any p > 0. By using this vanishing
and the degenerating spetctral sequence, we get H 0ðB;Rif�OX ð

Ps
i¼1 FziÞÞG

HiðX ;OX ð
Ps

i¼1 FziÞÞ for any ib 0 and any su‰cient large s. By the Riemann-
Roch theorem for curve and the ampleness of OBð

Ps
i¼1 ziÞ for any su‰cient large

s, we get

h0 OX

Xs
i¼1

Fzi

 ! !
¼ h0 OB

Xs
i¼1

zi

 ! !

¼ deg OB

Xs
i¼1

zi

 ! !
� gðBÞ þ 1

¼ s� gðBÞ þ 1;

h1 OX

Xs
i¼1

Fzi

 ! !
¼ h0 B;R1f�OX nOB

Xs
i¼1

zi

 ! !

¼ h0 B;EnOB

Xs
i¼1

zi

 ! !
þ lðSÞ

¼ degðEÞ þ 2ðs� gðBÞ þ 1Þ þ lðSÞ;

h2 OX

Xs
i¼1

Fzi

 ! !
¼ h0 B;R2f�OX nOB

Xs
i¼1

zi

 ! !

¼ degðLÞ þ s� gðBÞ þ 1þ lðTÞ;

h3 OX

Xs
i¼1

Fzi

 ! !
¼ h0 R3f�OX nOB

Xs
i¼1

zi

 ! !
¼ 0;
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for any su‰cient large s. By putting these observations together, for any
su‰cient large s, we get

wðOX Þ ¼ w OX

Xs
i¼1

Fzi

 ! !

¼
X3
j¼0

ð�1Þ jh j OX

Xs
i¼1

Fzi

 ! !

¼ �deg E � lðSÞ þ deg Lþ lðTÞ:

Therefore we conclude wðOX Þ þ deg E þ lðSÞ ¼ deg Lþ lðTÞ. r

Theorem 1.7. Let f : X ! B be a 2-abelian fiber space as in Theorem 1.5.
Then we have wðOX Þ ¼ 0.

Proof. By Theorem 1.5, there exists m A Z>0 such that onm
X G f �ðMÞ for

some invertible sheaf M on B. Let z1; . . . ; zs be general points of B. Consider
the exact sequence

0 ! onm
X ! onm

X nOX

Xs
i¼1

Fzi

 !
! 0

s

i¼1

onm
X nOX ðFziÞnOFzi

! 0:

By the Riemann-Roch theorem for surface, we get wðonm
X nOX ðFziÞnOFzi

Þ ¼ 0.
Therefore wðonm

X Þ ¼ wðonm
X nOX ð

Ps
i¼1 FziÞÞ ¼ wð f �ðMnOBð

Ps
i¼1 ziÞÞÞ.

Consider the spectral sequence

E
pq
2 ¼ Hp B;Rqf� f

� MnOB

Xs
i¼1

zi

 ! ! !

) Hpþq X ; f � MnOB

Xs
i¼1

zi

 ! ! !
:

By the projection formula, we get Rqf� f
�ðMnOBð

Ps
i¼1 ziÞÞGRqf�OX n

ðMnOBð
Ps

i¼1 ziÞÞ. By the ampleness of OBð
Ps

i¼1 ziÞ for any su‰cient large
s, we have HpðB;Rqf�OX nMnOBð

Ps
i¼1 ziÞÞ ¼ 0 for any p > 0 and any suf-

ficient large s. By using this vanishing and the degenerating spectral sequence,
we get HiðX ; f �ðMnOBð

Ps
i¼1 ziÞÞÞGH 0ðB;Rif�OX n ðMnOBð

Ps
i¼1 ziÞÞÞ for

any i > 0 and any su‰cient large s. By computating the cohomology like in
the proof of Theorem 1.5, we get

wðonm
X Þ ¼ w onm

X nOX

Xs
i¼1

Fzi

 ! !
¼ �deg E � lðSÞ þ deg Lþ lðTÞ ¼ wðOX Þ:
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By the Riemann-Roch theorem,

wðonm
X Þ ¼ 1

12
mðm� 1Þð2m� 1ÞðK 3

X Þ þ ð1� 2mÞwðOX Þ ¼ ð1� 2mÞwðOX Þ:

Combining these two equalities, we have wðOX Þ ¼ 0 because m A Z>0. r

Definition. Let f : X ! B be an n-abelian fiber space and let D be a
divisor on X . We say that D is f -nef if for any irreducible curve C on X such
that f ðCÞ is a point, we have ðD � CÞb 0.

Remark. By the proof of Theorem 1.5, if all Pi are irreducible, we see that
ðK 2

X �HÞ ¼ 0. We see that the condition that ðK 2
X �HÞ ¼ 0 is equivalent to the

condition that KX is f -nef. In the case of n-abelian fiber space f : X ! B,
we can similarly give the canonical bundle formula under the condition that
ðK 2

X �Hn�1Þ ¼ 0, where H is a hyperplane section on X . The condition that

ðK 2
X �Hn�1Þ ¼ 0, in a sense, corresponds to the minimality of elliptic fibration.

We also see that the conditon that ðK 2
X �Hn�1Þ ¼ 0 is equivalent to the condition

that KX is f -nef. But Theorem 1.5 is not true for n-abelian fiber spaces. In the
following, we give a canonical bundle formula for n-abelian fiber spaces.

Theorem 1.8. Let f : X ! B be an n-abelian fiber space with ðK 2
X �Hn�1Þ

¼ 0, where H is a hyperplane section on X. Let Rif�OX ¼ Li lTi, where Li is a
locally free sheaf and Ti is a torsion sheaf ði ¼ 1; 2; . . . ; nÞ. Let lðTiÞ be the length
of Ti. Then we have

oX G f �ðL�1
n noBÞnOX

Xr
i¼1

aiPi

 !
;

where
1. miPi ¼ Fbi are the multiple fibers of f
2. 0a ai ami � 1
3. ai ¼ mi � ni if Fbi is a tame fiber, where ni is a jumping value of the

multiple fiber miPi

4. wðOX Þ ¼
Pn

i¼1ð�1Þ iðdeg Li þ lðTiÞÞ.

Now we give here easy examples.

Example. (1) Assume charðkÞ ¼ p > 0. Let E be an ordinary elliptic
curve, and a A E a point of order p. Then the group G ¼ hsiGZ=pZ acts
on E by

s : E C x 7! xþ a A E:

The group G also acts on the projective line P1 by

s : t 7! tþ 1;
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where t is a coordinate of an a‰ne line A1 in P1. Therefore the group G acts on
P1 � E � E. We have a 2-abelian fiber space

f : X ¼ P1 � E � E=hsi ! P1=hsiGP1

with a wild fiber pFy over the point at infinity of P1. The canonical bundle
formula is

KX G f �OP1ð�1Þ þ ðp� 2ÞFy:

(2) ([6, Section 16]) Assume charðkÞ ¼ 0. Let Er be an elliptic curve
with period ð1; rÞ, where r ¼ expð2pi=3Þ. Let g denote the automorphism of
Er � Er � Er defined by gðz1; z2; z3Þ ¼ ðrz1; rz2; rz3Þ. Let V be a non-singular
model of Er � Er � Er=hgi, obtained by the canonical resolution of singularities.
The projection p : Er � Er � Er ! Er � Er � Er=hgi to the first factor induces a
2-abelian fiber space f : V ! P1. K. Ueno showed that KV GOV . This gives
an example of 2-abelian fiber space such that the jumping value of this fibration
is not equal to one (for details, see [6]).

(3) ([6, Section 16]) Assume charðkÞ ¼ 0. Let A be an abelian variety of
dimension three and let i : A ! A denote the standard involution on A. The
quotient space W ¼ A=hii has 26 singular points, which corresponds to the 26

fixed points of the involution i on A. Let V be a non-singular model of W ,
obtained by the canonical resolution of singularities. Then K. Ueno showed that
kðVÞ ¼ 0. More precisely,

mKV G
X26
i¼1

3m

2
� 1

� �
Ei;

where Ei GP2 appears in the canonical resolution of singularities of W . He also
showed that wðOV Þ ¼ 4. Thus from Theorem 1.8, we conclude that KV is not
f -nef.

(4) Assume that 0 < charðkÞ ¼ p1 1 ðmod 6Þ. Let C be the non-singular
complete model of the curve defined by the equation

t2 ¼ xp � x:

The genus of C is given by gðCÞ ¼ 1
2 ðp� 1Þ. Let E and E 0 be ordinary elliptic

curves, a A E a point of order p and a 0 A E 0 a point of order 6. The group
hsiGZ=pZ and htiGZ=6Z act on C, E and E 0 by

s : ðx; tÞ 7! ðxþ 1; tÞ t : ðx; tÞ 7! ðox;�otÞ on C

s : z 7! zþ a t : z 7! z on E

s : z 0 7! z 0 t : z 0 7! z 0 þ a 0 on E 0;

where o is a primitive cube root of unity. Since C � E ! C � E=hsi is an étale
morphism, we have an ellpitic fibration

f0 : X0 ¼ C � E=hsi ! C=hsiGP1
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with a canonical bundle formula which is given by

KX0
¼ ðp� 3ÞEy;

where pEy is a multiple fiber over the point at infinity of P1. We set X ¼
X0 � E 0=hti and f : X ! P1=htiGP1. The canonical divisor of X has the
form KX ¼ f �OP1ðlÞ þ 5F0 þ bFy for l A Z and 1a ba 6p, where 6F0 ¼ f �1ð0Þ
and 6pFy ¼ f �1ðyÞ. Since X0 � E 0 ! X is an étale morphism, we have a
canonical bundle formula

KX ¼ f �OP1ð�1Þ þ 5F0 þ ð2p� 3ÞFy:

2. Special phenomena in positive characteristic

In this section, we investigate special phenomena in positive characteristic.

Theorem 2.1 (Fujita). f : M ! C be a Kähler fiber space over a curve C.
Then f�oM=C is locally free and numerically semipositive.

Let f : X ! B be a 2-abelian fiber space as in Theorem 1.5. By Theorem
2.1, we get degðL�1Þ ¼ degðR2f�OX Þ4 ¼ deg f�oX=B b 0 if charðkÞ ¼ 0, where 4

denotes the dual. If charðkÞ > 0, we have an example such that degðL�1Þ < 0.

Example. Assume that charðkÞ ¼ pb 5. Let C be a non-singular complete
model of the curve defined by the equation

t2 ¼ x6p � 1:

Then the group G ¼ hsiGZ=2Z acts on C by

s : C C ðx; tÞ 7! ðx;�tÞ A C:

The canonical morphism

p0 : C ! C=hsiGP1

has degree 2. Since ð2; pÞ ¼ 1, p0 is a finite separable morphism of curves. We
see that p0 is ramified only at 6 points. By the Riemann-Hurwitz Theorem,

2gðCÞ � 2 ¼ 2 � ð2gðP1Þ � 2Þ þ 6:

Therefore the genus of C is 2. Let E be an ordinary elliptic curve, and a A E
a point of order 2. The group G also acts on E by

s : E C z 7! zþ a A E:

Then we have an elliptic fibration

f0 : X0 ¼ C � E=G ! C=GGP1:

A canonical bundle formula is given by

KX0
¼ f �

0 OP1ð�2Þ þ E1 þ � � � þ E6;
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where 2Ei ði ¼ 1; . . . ; 6Þ are fibers of some points of P1. Let E 0 be a super-
singular elliptic curve. Since ap ¼ Spec k½e�=ðepÞHE 0, the group ap acts on
E 0. The group ap also acts on C and E by

C C ðx; tÞ 7! ðxþ e; tÞ A C;

E C z 7! z A E:

Then we have a 2-abelian fiber space

f : X ¼ X0 � E 0=ap ! P1=ap GP1:

A canonical bundle formula is given by

KX ¼ f �OP1ð�3Þ þ F1 þ � � � þ F6 þ Fy

with a wild fiber pFy over the point at infinity of P1, and Fi ði ¼ 1; . . . ; 6Þ are
Ei � E 0. Therefore, if we write R2f�OX ¼ LlT as in Theorem 1.5, we get
degðL�1Þ ¼ �1 < 0.

Let f : X ! B be a 2-abelian fiber space as in Theorem 1.5. By Theorem
1.5, we have KX ¼ f �ðKB � LÞ þ

Pr
i¼1 aiPi ð0a ai ami � 1Þ. For m A Z,

jmKX j ¼ f � mðKB � LÞ þ
Xr
i¼1

mai

mi

� �
Pi

( )�����
�����þ
Xr
i¼1

mai �mi

mai

mi

� �� �
Pi;

where
Pr

i¼1 mai �mi

mai

mi

� �� �
Pi is the fixed part of jmKX j. We see that kðXÞ ¼

kðmKX Þ ¼ k mðKB � LÞ þ
Pr

i¼1

mai

mi

� �
Pi

� �
. Therefore, we have

kðXÞ ¼ �y , 2gðBÞ � 2þ deg L�1 þ
Pr

i¼1

ai

mi

< 0

kðXÞ ¼ 0 , 2gðBÞ � 2þ deg L�1 þ
Pr

i¼1

ai

mi

¼ 0

kðXÞ ¼ 1 , 2gðBÞ � 2þ deg L�1 þ
Pr

i¼1

ai

mi

> 0:

8>>>>><
>>>>>:

Now consider a 2-abelian fiber space f : X ! B with kðX Þ ¼ 1, and the
rational map FjmKX j : X ! PN induced by the complete linear system jmKX j.

Proposition 2.2 (see [1]). Let f : X ! B be a 2-abelian fiber space with
kðXÞ ¼ 1 as in Theorem 1.5. Assume FjmKX j : X ! FjmKX jðX ÞHPN is a mor-
phism. Then FjmKX j gives the fibration f : X ! B.

Proof. Suppose that we have two di¤erent fibrations f : X ! B and
f 0 : X ! B 0. First of all we shall prove that there exists b 0 A B 0 such that
F 0
b 0 ¼ f 0�1ðb 0Þ satisfies f ðF 0

b 0 Þ ¼ b A B. Suppose the contrary, i.e. for any b 0 A B 0,
the fiber F 0

b 0 projects onto B under f . The canonical bundle formula for X
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with respect to f shows that for a generic hyperplane section H of X , we have
ðKX � F 0

b 0 �HÞ > 0. On the other hand, using the canonical bundle formula for X
we have ðKX � F 0

b 0 �HÞ ¼ 0 (since KX consists of fibers of f 0). A contradiction.
This immediately implies that for any point b 0 A B 0 the fiber F 0

b 0 projects to a
point under f . Suppose the cotrary, i.e. let b 0; c 0 A B 0 be two points of B 0 such
that f ðF 0

c 0 Þ ¼ c A B and f maps F 0
b 0 onto B. Let b A B be a point di¤erent from

c. Let H denote a generic hyperplane section of X . Note that F 0
c 0 HFc. Then

by our choices ðFb � F 0
b 0 �HÞ > 0 and ðFb � F 0

c 0 �HÞ ¼ 0. However, F 0
b 0 and F 0

c 0 are
algebraically equivalent, so we arrive at a contradiction. Hence the statement is
proved, by using the irreducibility of the pencil. r

Let f : X ! B be a 2-abelian fiber space as in Theorem 1.5. Now we
consider the problem: ‘‘Find the smallest integer M such that the multicanonical
system jmKX j gives the structure of 2-abelian fiber space f : X ! B with Kodaira
dimension kðX Þ ¼ 1 and for any 2-abelian fiber space and any integer mbM.’’
This problem is equivalent to the problem: ‘‘Find the smallest integer M such
that

Mð2gðBÞ � 2þ deg L�1Þ þ
Xr
i¼1

Mai

mi

� �
b 2gðBÞ þ 1

under the condition

2gðBÞ � 2þ deg L�1 þ
Xr
i¼1

ai

mi

> 0:’’

Theorem 2.3 (see [1]). Assume charðkÞ ¼ 0. Let f : X ! B be a 2-abelian
fiber space with kðX Þ ¼ 1 such that KX is f -nef and the jumping values for all
multiple fibers are equal to 1. Then the multicanonical system jmKX j gives the
structure of abelian fiber space if mb 14. Moreover 14 is the best possible bound.

We give here an example which shows Theorem 2.3 does not hold in positive
characteristic.

Example. Let f : X ! P1 be as in Example ð4Þ of section 1. We have the
canonical bundle formura

KX ¼ f �OP1ð�1Þ þ 5F0 þ ð2p� 3ÞFy;

where 6F0 ¼ f �1ð0Þ and 6pFy ¼ f �1ðyÞ. Since �1þ 5

6
þ 2p� 3

6p
¼ p� 3

6p
> 0,

we have kðXÞ ¼ 1. Now assume p ¼ 7. Then, putting m ¼ 14, we see that the

value of �mþ 5m

6

� �
þ 11m

42

� �
is equal to 0. Therefore, this gives an example

which shows that Theorem 2.3 does not hold in characteristic p ¼ 7.
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