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ON THE GLOBAL MONODROMY OF A LEFSCHETZ FIBRATION

ARISING FROM THE FERMAT SURFACE OF DEGREE 4

Yusuke Kuno

Abstract

A complete description of the global monodromy of a Lefschetz fibration aris-

ing from the Fermat surface of degree 4 is given. As a by-product we get a positive

relation among right hand Dehn twists in the mapping class group of a closed orientable

surface of genus 3.

1. Introduction

The motivation of this work is an interest in the topological monodromy
of surface bundles obtained by the following way. Let X HPN be a complex
surface embedded in the complex projective space of dimension N. We denote
by PN the dual projective space of PN , i.e., the space of all hyperplanes of
PN . The dual variety X4 of X is, by definition, the set of all hyperplanes
of PN tangent to X at some point. Then we have a complex analytic family
of compact Riemann surfaces over PNnX4; the fiber over H A PNnX4 is the
hyperplane section H VX .

If we regard such a family as an oriented surface bundle, its bundle structure
is totally encoded (at least when the genus of H VX is b 2) in the associated
topological monodromy r from the fundamental group p1ðPNnX4Þ, which is non-
trivial when X4 is a hypersurface, to the mapping class group Gg of a closed
orientable surface of genus g, where g is the genus of H VX . If a finite
presentation of p1ðPNnX4Þ and a description of r in terms of this presentation
are obtained, we might say that the topological monodromy r is understood.
However such a nice situation may not be expected in general. One reason for
this is the di‰culty of the computations of p1ðPNnX4Þ, see [4].

Instead we consider to cut PNnX4 by a generic line. Let L be a line (1-
dimensional projective subspace) of PN and consider the restriction of the family
over PNnX4 to LnðLVX4Þ. We focus on the associated topological mono-
dromy r 0 from p1ðLnðLVX4ÞÞ to Gg. If L meets X4 transversely, LVX4

consists of finitely many points and the inclusion LnðLVX4Þ ,! PNnX4 induces
the surjection on the fundamental group level (the Zariski theorem of Lefschetz
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type, see [6]). Thus for instance to know the group ImðrÞ, called the universal
monodromy group in [4], it su‰ces to consider r 0 instead of r. Moreover, theory
of Lefschetz pencils can be applied to the study of r 0, as follows. There is a
natural family of algebraic curves over L; the fiber over H A L is the (possibly
singular) hyperplane section H VX . As in [8] or [9], this family turns out to be
a Lefschetz fibration in the sense of [5], Definition 8.1.4. In particular all the
singular fibers, which are over LVX4, have one nodal singularity and the local
monodromy around each point of LVX4 is the right hand Dehn twist along a
simple closed curve, called the vanishing cycle. Thus the determination of the
positions of all the vanishing cycles on a fixed reference fiber will lead to a
complete description of the global monodromy r 0. Also, as a by-product we will
get a positive relation among right hand Dehn twists in Gg, since p1ðLnLVX4Þ
admits a presentation by a standard generating system subject to one relation, see
the paragraph before Theorem 1.1.

In this paper we investigate a particular example. Hereafter X is the
Fermat surface of degree 4, namely the smooth hypersurface in P3 defined by
the equation

x4
0 þ x4

1 þ x4
2 þ x4

3 ¼ 0;

where ½x0 : x1 : x2 : x3� is a homogeneous coordinate system of P3. In this case
X4 is an irreducible hypersurface of P3, whose defining equation will be given in
section 2. Let

F :¼ fðx;HÞ A P3 � ðP3nX4Þ; x A H VXg
and let

r : p1ðP3nX4; b0Þ ! G3ð1:1Þ
be the associated topological monodromy of the second projection p : F !
P3nX4, where b0 is a base point. Note that for each H A P3nX4, the hyperplane
section p�1ðHÞ ¼ H VX HHGP2 is a non-singular plane curve of degree 4.

To state the result we prepare a terminology. Let fvigi be a set of n points
in P1 and choose a base point b0 of P1nfvigi. We say a set of n based loops
fligi is a standard generating system for p1ðP1nfvigi; b0Þ if each li is free
homotopic to a loop nearby vi going once around vi by counter-clockwise
manner, and their product l1l2 � � � ln is trivial as an element of p1ðP1nfvigi; b0Þ.

Theorem 1.1. Let X be the Fermat surface of degree 4 and L a line of
P3 meeting X4 transversely. Choose a base point b0 of LnðLVX4Þ. Then there
is a standard generating system l1; . . . ; l36 for p1ðLnðLVX4Þ; b0Þ such that the
monodromy r 0ðliÞ is given by the right hand Dehn twist along the simple closed
curve Ci on a genus 3 surface as shown in Figure 1.1. Here, r 0 is the composition
of p1ðLnðLVX4Þ; b0Þ ! p1ðP3nX4; b0Þ induced by the inclusion and (1.1).

Since l1l2 � � � l36 ¼ 1 and r 0 is an anti-homomorphism (see the conventions
below), we immediately have the following
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Figure 1.1
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Corollary 1.2. Let us denote by ti the right hand Dehn twist along Ci.
Then the relation t36t35 � � � t2t1 ¼ 1 holds in the mapping class group G3.

Also we can show the following

Corollary 1.3. The topological monodromy (1.1) is surjective. In other
words, the universal monodromy group ImðrÞ coincides with G3.

Proof. The set of the right hand Dehn twists along the seven simple closed
curves C9, t9ðC8Þ, C28, t

�1
28 ðC1Þ, C10, t

�1
10 ðC11Þ, and t�1

3 t�1
28 ðC6Þ constitutes a Dehn-

Lickorish-Humphries generating system of G3 (see [7], Corollary 4.2.F). Thus r 0

is surjective, so is r. r

The study of the global monodromy of a holomorphic fibration of Riemann
surfaces over a Riemann surface via numerical analysis is initiated by Ahara [2]
and Matsumoto [10]. They introduced a holomorphic fibration f : Vn ! P1,
where Vn is the Fermat surface of degree n. Their fibration is not a Lefschetz
fibration and has more degenerated singular fibers. Their method was to express
the general fibers as branched coverings of P1 and analyze the motions of the
critical points of these branched coverings. The analysis is based on Newton
approximation, see [2], section 3. Based on the result of [2], the global
monodromy was described in terms of Dehn twists for the case n ¼ 5 in [10]
(in this case the genus of the general fibers is 3). Recently, Ahara and Awata [1]
determined how general fibers of f degenerate to the singular fibers for all n,
without numerical analysis.

The rest of the paper is devoted to the proof of Theorem 1.1. Note that the
total space of our Lefschetz fibration p : F ! L (see section 5) is the blow up
of X at 4 points. We adopt the same method as [2], [10]. In section 2 we give

Figure 1.1 (continued)
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the defining equation of X4. In section 3 we cut P3nX4 by a line L ¼ Lðc1; c2Þ
whose defining equation has two parameters c1 and c2. For a suitable choice
of c1 and c2, L will meet X4 transversely. We will introduce a homogeneous
coordinate system ½u : v� to L and will denote by CL the set Lnf½0 : 1�g. Then we
proceed to express general fibers as 4-branched coverings of P1. In section 4 we
introduce a projection pv from Xv ¼ vVX to P1 for v ¼ ½1 : v� A CL HP3 and
prove its ‘‘tameness’’ over ½1 : 0� A P1 (see Lemma 4.1). Section 5 is a prepa-
ration for sections 6 and 7. We choose explicit values for c1 and c2. Most of
the results in sections 6 and 7 depend on numerical analysis using a computer.
In section 6 we describe the projection p0 : X0 ! P1 and in section 7 we analyze
motions of the critical values of pv caused by movements of v along suitable
chosen paths in L and give a complete description of the topological monodromy
r 0 : p1ðLnðLVX4ÞÞ ! G3. Theorem 1.1 will easily follow from Proposition 7.1.

Conventions about topological monodromy
It is sometimes confusing that there are di¤erent kinds of conventions about

product of paths or product of maps, so let us fix the conventions in this paper:
1) for any two mapping classes f1 and f2, the multiplication f1 � f2 means that f2
is applied first, 2) for any two homotopy classes of based loops l1 and l2, their
product l1 � l2 means that l1 is traversed first.

Let S be a closed oriented surface and p : E ! B an oriented S-bundle.
Choose a base point b0 A B and fix an identification f : S !G p�1ðb0Þ. For each
based loop l : ½0; 1� ! B, consider the pull back l�ðEÞ ! ½0; 1�. Since ½0; 1� is
contractible there exists a trivialization F : S� ½0; 1� ! l�ðEÞ such that Fðx; 0Þ ¼
fðxÞ. By assigning the isotopy class of f�1 �Fðx; 1Þ to the homotopy class of
l, we obtain a map r, called the topological monodromy of p : E ! B, from
p1ðB; b0Þ to the mapping class group of S. Under the conventions above, r is an
anti-homomorphism, i.e., for l1; l2 A p1ðB; b0Þ we have

rðl1l2Þ ¼ rðl2Þrðl1Þ:

2. The defining equation of X4

Our first task is to describe the defining equation of X4. The result might
be known, but we give it here since our numerical analysis by a computer
performed in sections 6 and 7 will heavily use it. To begin with, we compute the
degree of X4. By using the formula of Katz [8] (5.5.1), it is computed as

degðX4Þ ¼
ð
X

ð1þ hÞ2

cð½X �Þ ¼
ð
X

ð1þ hÞ2

1þ 4h
¼ 36:

Here, h A H 2ðP3;ZÞ denotes the hyperplane class and cð½X �Þ A H �ðP3;ZÞ denotes
the total Chern class of the divisor X . Let ½a0 : a1 : a2 : a3� be the homogeneous
coordinate system of P3 dual to ½x0 : x1 : x2 : x3�. Namely, ½a0 : a1 : a2 : a3� A P3

is the hyperplane of P3 defined by

a0x0 þ a1x1 þ a2x2 þ a3x3 ¼ 0:
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Proposition 2.1. Let o ¼ expð2p
ffiffiffiffiffiffiffi
�1

p
=3Þ and let bi be a formal indeter-

minate such that b3
i ¼ ai for i ¼ 0; 1; 2, and 3. Then the defining equation of X4

is given by Y
0ai1; i2; i3a2

ðb4
0 þ o i1b4

1 þ o i2b4
2 þ o i3b4

3Þ ¼ 0:ð2:1Þ

Remark that the left hand side of (2.1) is invariant under the transformations
ffig

3
i¼0 where fi is defined by fiðbjÞ ¼ obj for j0 i and fiðbiÞ ¼ bi. Thus it is

in fact a homogeneous polynomial in ai’s and the degree is 36.

Proof of Proposition 2.1. Since we know the degree of X4 is also equal to
36, it su‰ces to show that a A X4 if and only if a satisfies the equation (2.1).
Let a ¼ ½a0 : a1 : a2 : a3� A P3 and assume that a0 ¼ 1. Let Pðx0; x1; x2; x3Þ ¼
x4
0 þ x4

1 þ x4
2 þ x4

3 . By definition, a A X4 if and only if there exists a point y ¼
½y0 : y1 : y2 : y3� A P3 such that

Pðy0; y1; y2; y3Þ ¼ 0

y0 þ a1 y1 þ a2 y2 þ a3 y3 ¼ 0

½Px0ðyÞ : Px1ðyÞ : Px2ðyÞ : Px3ðyÞ� ¼ ½1 : a1 : a2 : a3�;

8<
:ð2:2Þ

where Px0 is the partial derivative of P with respect to x0, etc. Since Pxi ¼ 4x3
i

we see that y0 0 0, by the third equation of (2.2). Thus we may assume y0 ¼ 1
and we have

y31 ¼ a1; y32 ¼ a2; y33 ¼ a3:ð2:3Þ

Under (2.3), the first and the second equations of (2.2) are equivalent. Therefore
a A X4 if and only if there exists ðy1; y2; y3Þ A C3 such that

y31 ¼ a1; y
3
2 ¼ a2; y

3
3 ¼ a3

1þ a1 y1 þ a2 y2 þ a3 y3 ¼ 0:

�

Let bi be a complex number such that b3
i ¼ ai for i ¼ 1; 2; and 3. Then, a A X4

if and only if there exist i1; i2; i3 A f0; 1; 2g such that

1þ o i1b4
1 þ o i2b4

2 þ o i3b4
3 ¼ 0;

namely b ¼ ½1 : b1 : b2 : b3� satisfies the equation (2.1). This completes the proof.
r

3. Cutting X4 by a line of special type

Let c1 and c2 be complex numbers and L ¼ Lðc1; c2Þ the line of P3 defined
by

c31a0 � a1 ¼ c32a0 � a2 ¼ 0:
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We introduce a homogeneous coordinate system ½u : v� of L by assigning
½a0 : a1 : a2 : a3� ¼ ½u : c31u : c32u : v� to ½u : v�.

Proposition 3.1. The defining equation of LVX4HL is given byY
0ai1; i2a2

ðð1þ o i1c41 þ o i2c42Þ
3
u4 þ v4Þ ¼ 0:

Proof. Let bi, 0a ia 3 be the formal elements as in Proposition 2.1 and
suppose c1b0 � b1 ¼ c2b0 � b2 ¼ 0. Then b4

0 þ o i1b4
1 þ o i2b4

2 þ o i3b4
3 is equal to

b4
0 þ o i1ðc1b0Þ

4 þ o i2ðc2b0Þ
4 þ o i3b4

3 ¼ ð1þ o i1c41 þ o i2c42Þb
4
0 þ o i3b4

3 ;

and Y
0ai3a2

ð1þ o i1c41 þ o i2c42Þb
4
0 þ o i3b4

3 ¼ ðð1þ o i1c41 þ o i2c42Þb
4
0Þ

3 þ ðb4
3Þ

3

¼ ð1þ o i1c41 þ o i2c42Þ
3
a40 þ a43 :

Note that o is a primitive third root of unity. Combining this computation with
Proposition 2.1, we have the result. r

Suppose c1 and c2 are chosen so that
1. for any pair ði1; i2Þ, we have 1þ o i1c41 þ o i2c42 0 0,
2. for any two distinct pairs i ¼ ði1; i2Þ and j ¼ ð j1; j2Þ, the roots of fiðvÞ ¼

v4 þ ð1þ o i1c41 þ o i2c42Þ
3 and those of fjðvÞ ¼ v4 þ ð1þ o j1c41 þ o j2c42Þ

3

are all di¤erent.
Then by Proposition 3.1, LVX4 consists of degðX4Þ ¼ 36 points therefore L
meets X4 transversely. Moreover, LVX4 is contained in Lnf½1 : 0�; ½0 : 1�g.
For simplicity we write CL instead of Lnf½0 : 1�g, and we identify CL with C by
v 7! ½1 : v�, v A C. Choose 0 A CL as a base point of LnðLVX4Þ. By the Zariski
theorem of Lefschetz type [6], (for our purpose, a weaker statement in [9], (7.4.1)
is su‰cient) the natural homomorphism

p1ðLnðLVX4Þ; 0Þ ! p1ðP3nX4; b0Þð3:1Þ

induced by the inclusion is surjective (we denote by b0 the image of 0 A CL by the
inclusion). From now on, we assume that c1 and c2 satisfy the two conditions
above and will focus on the surface bundle

p 0 : F 0 ! LnðLVX4Þ

where F 0 ¼ p�1ðLnðLVX4ÞÞ and p 0 ¼ pjF 0 . The associated topological mono-
dromy

r 0 : p1ðLnðLVX4Þ; 0Þ ! G3

is the composition of (3.1) and (1.1).
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4. A lemma on the hyperplane section by v A CL

Let v A CL. We denote by Xv the hyperplane section vVX , whose defining
equation is

x4
0 þ x4

1 þ x4
2 þ x4

3 ¼ 0

x0 þ c31x1 þ c32x2 þ vx3 ¼ 0:

�

Eliminating the indeterminate x0, we obtain

ðc31x1 þ c32x2 þ vx3Þ4 þ x4
1 þ x4

2 þ x4
3 ¼ 0:

Let Ev ¼ Evðx1; x2; x3Þ be the left hand side of this equation. Then by regarding
½x1 : x2 : x3� as a homogeneous coordinate system of P2, Xv is identified with the
plane curve determined by Ev. Under this identification, consider the projection

pv : Xv ! P1; ½x1 : x2 : x3� 7! ½x1 : x3�:

Lemma 4.1. If jc1j4 þ jc2j4 < 1, the following holds: for any v A CL,
1. the plane curve Xv has no singularities on the line x3 ¼ 0, and
2. the projection pv does not branch over ½1 : 0� A P1.

Proof. For simplicity, we write E instead of Ev. Suppose E ¼ Ex1 ¼
Ex2 ¼ Ex3 ¼ 0 has a solution ½x1 : x2 : 0� for some v A CL. If v0 0, we have
c31x1 þ c32x2 ¼ 0 since Ex3 ¼ 0. Substituting this into Ex1 ¼ Ex2 ¼ 0 we have x1 ¼
x2 ¼ 0, a contradiction. Thus it su‰ces to consider the case when v ¼ 0. Sup-
pose x2 ¼ 1. Then we have

Ex1 ¼ 4c31ðc31x1 þ c32Þ
3 þ 4x3

1 ¼ 0

Ex2 ¼ 4c32ðc31x1 þ c32Þ
3 þ 4 ¼ 0:

(
ð4:1Þ

By the second equation of (4.1), we have

ðc31x1 þ c32Þ
3 ¼ �c�3

2 :ð4:2Þ
Substituting this into the first equation of (4.1), we have x3

1 ¼ ðc1=c2Þ3 therefore
we can write x1 ¼ o jc1=c2 for some j, 0a ja 2. Substituting this into (4.2) we
have a necessary condition ðc41o j þ c42Þ

3 ¼ �1. But this is impossible by our
assumption jc1j4 þ jc2j4 < 1. If we assume x1 ¼ 1 a similar argument leads to a
contradiction. This establishes the first part.

To show the second part, it su‰ces to show the following: for ðx1; x3Þ ¼
ð1; 0Þ, the equation E ¼ Ex2 ¼ 0 does not have any solution in x2. The argument
is similar to the first part. Suppose x2 A C satisfies

E ¼ ðc31 þ c32x2Þ
4 þ 1þ x4

2 ¼ 0

Ex2 ¼ 4c32ðc31 þ c32x2Þ
3 þ 4x3

2 ¼ 0:

(
ð4:3Þ

By the second equation of (4.3), we have

ðc31 þ c32x2Þ
3 ¼ � x3

2

c32
:ð4:4Þ
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Substituting this into the first equation of (4.3), we see that x2 ¼ o jc2=c1 for
some j, 0a ja 2. Substituting this into (4.4) we have ðc41 þ c42o

jÞ3 ¼ �1, a
contradiction. r

5. A special choice of c1 and c2

Henceforth, let c1 ¼ 7=8 and c2 ¼ 3=4. For this choice, the conditions for
c1 and c2 given in section 3 and the assumption of Lemma 4.1 are satisfied.

To study r 0 (see section 3) we also consider F :¼ fðx;HÞ A P3 � L; x A
H VXg and the second projection p : F ! L. By the transversality of L and
X4, it follows that F is non-singular and p : F ! L is a Lefschetz fibration (see
section 1). The set of critical values of p is LVX4¼ fv1; . . . ; v36g. For each
vi, there is a unique critical point ~vvi in p�1ðviÞ and for a suitable choice of local
holomorphic coordinates, the projection p looks like ðz1; z2Þ 7! z21 þ z22 near ~vvi.
In this local model, the singular fiber p�1ðviÞ looks like S0 ¼ fz21 þ z22 ¼ 0g, which
is obtained from the smooth fibers Se ¼ fz21 þ z22 ¼ eg, e > 0 by collapsing the
simple closed curves Ce ¼ fðx1; x2Þ A R2; x2

1 þ x2
2 ¼ eg. The curve Ce is called the

vanishing cycle. By the Picard-Lefschetz formula ([5], p. 295), the local mono-
dromy around each vi is the right hand Dehn twist along the corresponding
vanishing cycle.

Recall that the defining equation of Xv ¼ vVX is

ðc31x1 þ c32x2 þ vx3Þ4 þ x4
1 þ x4

2 þ x4
3 ¼ 0:

By Lemma 4.1, pv is unramified over ½1 : 0� A P1. Thus we focus on pv restricted
to P1nf½1 : 0�g, which is identified with C by x1 7! ½x1 : 1�, x1 A C. Let

F v
x1
ðx2Þ :¼ ðc31x1 þ c32x2 þ vÞ4 þ x4

1 þ x4
2 þ 1

and Gvðx1Þ the discriminant of F v
x1

regarded as a polynomial in x2 and QðvÞ the
discriminant of Gvðx1Þ regarded as a polynomial in x1. Gvðx1Þ is a polynomial
of degree 12 in x1. By definition v A CL is a root of Q if and only if there is
a root of Gv with multiplicityb 2. As we will see in section 7, Gvi has this
property hence QðviÞ ¼ 0 for i ¼ 1; . . . ; 36. Therefore if v is not a root of Q the
curve Xv is non-singular and all the roots of Gv, which correspond to the critical
values of pv, are simple. By the Riemann-Hurwitz formula we see that the total
branching order of each critical value of pv is 1. This means that over each
critical value there is an exactly one critical point of pv, near which pv looks like
z 7! z2 for a suitable choice of local coordinates.

6. Description of the reference fiber

In this section, we describe the reference fiber X0 ¼ p 0�1ð0Þ as a 4-fold
branched covering p0 : X0 ! P1. As in the last section we focus on p0 restricted
to P1nf½1 : 0�gGC.

The roots of G0ðx1Þ are numerically computed and we denote them by
a1; . . . ; a12 as shown in the following schematic figure:
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Here, a1A0:709187þ 0:642143
ffiffiffiffiffiffiffi
�1

p
, a2A0:692307þ 0:692307

ffiffiffiffiffiffiffi
�1

p
, a3A

0:642143 þ 0:709187
ffiffiffiffiffiffiffi
�1

p
and aiþ3 ¼

ffiffiffiffiffiffiffi
�1

p
ai for 1a ia 9.

For x1 A C, the points in the fiber p�1
0 ðx1Þ correspond to the roots of F 0

x1
by ½x1 : x2 : 1� 7! x2. Now we choose 0 as a base point of Cnfaigi. The fiber
p�1
0 ð0Þ corresponds to the roots of

F 0
0 ðx2Þ ¼ ðc122 þ 1Þx4

2 þ 1;

i.e., fskg4k¼1 where sk ¼ ð1þ c122 Þ�1=4 expðð2k � 1Þp
ffiffiffiffiffiffiffi
�1

p
=4Þ.

We will investigate the monodromy

w : p1ðCnfaigi; 0Þ ! S4

of the unramified 4-covering p�1
0 ðCnfaigiÞ ! Cnfaigi. Here, S4 is the symmetric

group on the four letters s1, s2, s3, and s4.
For each j ¼ 1; . . . ; 12, let mj be the straight line segment from 0 to aj and lj

be a based loop in Cnfaigi going from 0 to a point nearby aj along mj, then
going once around aj by counter-clockwise manner and then coming back to 0
along mj, as shown in the following figure.

Figure 6.1

Figure 6.2
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By numerical analysis using a computer, we see that wðljÞ is given by the
following table:

j wðljÞ j wðljÞ
1 (12) 7 (34)
2 (13) 8 (13)
3 (14) 9 (23)
4 (23) 10 (14)
5 (24) 11 (24)
6 (12) 12 (34)

For example, wðl1Þ ¼ ð12Þ means wðl1Þ is the transposition of s1 and s2,
etc. Let Sk ¼ ½0 : sk : 1� and ~aaj the unique critical point of p0 over aj, and ~mmj

the connected component of p�1
0 ðmjÞ containing ~aaj as an interior point. Then

p�1
0 ð0Þ ¼ fSkg4k¼1 and we can draw the picture of Sk, ~aaj , and ~mmj on X0 by using

the table above, which determines the topological type of the branched covering
p0 : X0 ! P1. See the figure below.

For example, ~mm1 is the unique path from S1 through ~aa1 to S2, corresponding to
the data wðl1Þ ¼ ð12Þ. In section 7 this figure will be a key to find the vanishing
cycles.

7. Finding the vanishing cycles

In this section we give a complete description of

r 0 : p1ðLnðLVX4Þ; 0Þ ! G3

and finish the proof of Theorem 1.1. Our task is to determine the position of all
the vanishing cycles in X0. We will achieve this by investigating the motions of

Figure 6.3
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the critical values of pv along a suitably chosen path from 0 to each point of
LVX4¼ fv1; . . . ; v36g.

Now we arrange indices of vi’s and let mi : ½0; 1� ! CL be a simple path from
0 to vi, satisfying QðmiðtÞÞ0 0 for t A ½0; 1Þ, as shown in Figure 7.1.

Approximate values of vi’s are: v1A0:600851þ 0:315483
ffiffiffiffiffiffiffi
�1

p
, v2A

0:963952 þ 0:064039
ffiffiffiffiffiffiffi
�1

p
, v3A0:999689 þ 0:470655

ffiffiffiffiffiffiffi
�1

p
, v4A1:059535þ

0:794167
ffiffiffiffiffiffiffi
�1

p
, v5A1:145495þ 1:145495

ffiffiffiffiffiffiffi
�1

p
, vi ¼ Imðv10�iÞ þReðv10�iÞ for 6a

ia 9, and viþ9 ¼
ffiffiffiffiffiffiffi
�1

p
vi for 1a ia 27. Each mi consists of 4 straight line

segments, as shown in the figure. Here, zi is a root of ð1þ o ic41Þ
3 þ z4i such that

ReðziÞ > 0, ImðziÞ > 0 for i ¼ 1; 2; 3 and miþ9 ¼
ffiffiffiffiffiffiffi
�1

p
mi for 1a ia 27.

Let li be a based loop in CLnðLVX4Þ going from 0 to a point nearby
vi along mi, then going once around vi by counter-clockwise manner and then
coming back to 0 along mi. Then fl1; . . . ; l36g is a standard generating system
for p1ðLnðLVX4Þ; 0Þ in the sense of section 1.

Figure 7.1
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For a while we fix i, 1a ia 36. For each t A ½0; 1Þ the roots of GmiðtÞðx1Þ
are all simple, therefore we can choose complex valued continuous functions
a1ðtÞ; . . . ; a12ðtÞ such that GmiðtÞðajðtÞÞ ¼ 0 and ajð0Þ ¼ aj for j ¼ 1; . . . ; 12. We
have ajðtÞ0 akðtÞ for t A ½0; 1Þ and ð j; kÞ with j0 k.

By continuity, ajðtÞ is uniquely extended to a continuous function on the unit
interval ½0; 1�. We would like to study what happens when t approaches 1. By
numerical analysis using a computer, we can investigate the motions of ajðtÞ,
1a ja 12.

Observation 1. There exist two indices d ¼ dðiÞ and e ¼ eðiÞ, 1a d < ea 12
such that adð1Þ ¼ aeð1Þ and ajð1Þ0 akð1Þ for any pair ð j; kÞ with j < k other than
ðd; eÞ, see the table below. In particular, the number of roots of Gvi is 11.

i ðdðiÞ; eðiÞÞ i ðdðiÞ; eðiÞÞ i ðdðiÞ; eðiÞÞ i ðdðiÞ; eðiÞÞ
1 ð3; 6Þ 10 ð6; 9Þ 19 ð9; 12Þ 28 ð3; 12Þ
2 ð1; 4Þ 11 ð4; 7Þ 20 ð7; 10Þ 29 ð1; 10Þ
3 ð2; 5Þ 12 ð5; 8Þ 21 ð8; 11Þ 30 ð2; 11Þ
4 ð1; 7Þ 13 ð4; 10Þ 22 ð1; 7Þ 31 ð4; 10Þ
5 ð2; 8Þ 14 ð5; 11Þ 23 ð2; 8Þ 32 ð5; 11Þ
6 ð3; 9Þ 15 ð6; 12Þ 24 ð3; 9Þ 33 ð6; 12Þ
7 ð2; 11Þ 16 ð2; 5Þ 25 ð5; 8Þ 34 ð8; 11Þ
8 ð3; 12Þ 17 ð3; 6Þ 26 ð6; 9Þ 35 ð9; 12Þ
9 ð1; 10Þ 18 ð1; 4Þ 27 ð4; 7Þ 36 ð7; 10Þ

Observation 2. For any root ajð1Þ of Gvi , the number of roots of F vi
ajð1Þ is

3.
Let fg ti : ½0; 1� ! Cg0ata1 be a continuous family of paths constructed by the

following way. First choose a real number t0 < 1 su‰ciently near 1, and for
t A ½t0; 1�, let g ti be the straight path joining adðtÞ and aeðtÞ. Next extending the
motions of aiðtÞ’s for t A ½0; t0�, we have an ambient isotopy t : C� ½0; t0� ! C
of C such that tðx1; t0Þ ¼ x1 and tðaiðt0Þ; tÞ ¼ aiðtÞ, 1a ia 12. Finally we set
g ti ðsÞ ¼ tðg t0i ðsÞ; tÞ for t A ½0; t0�. Note that we may assume that g tiþ9 ¼

ffiffiffiffiffiffiffi
�1

p
g ti .

This follows from the fact that x1 A C is a root of Gv if and only if
ffiffiffiffiffiffiffi
�1

p
x1 is a

root of G
ffiffiffiffiffi
�1

p
v. Then we have

Observation 3. g0i , 1a ia 9 look like Figure 7.2.
By construction the family fg ti g0ata1 satisfies the following three conditions:

1. for each t A ½0; 1�, g ti ð0Þ ¼ adðtÞ and g ti ð1Þ ¼ aeðtÞ,
2. for each t0 1, g ti is a simple path not meeting fajðtÞgj0d; e,
3. g1i ðsÞ ¼ adð1Þ ¼ aeð1Þ, for s A ½0; 1�.
Let CiðtÞ be the connected component of p�1

miðtÞðg
t
i ð½0; 1�ÞÞ containing the

critical points of pmiðtÞ over adðtÞ and aeðtÞ. We can draw the picture of Cið0Þ on
X0 in Figure 6.3, then we see that it is a simple closed curve in X0, and isotopic
to Ci if we identify X0 with the genus 3 surfaces in Figure 1.1 by an obvious
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manner. The simplicity of the roots of GmiðtÞðx1Þ for t A ½0; 1Þ implies that the
topological type of pmiðtÞ is the same as p0, therefore CiðtÞ is also a simple closed

curve in XmiðtÞ for t A ½0; 1Þ. On the other hand Cið1Þ ¼ p�1
vi
ðadð1ÞÞ consists of a

single point, which is a unique singular point of Xvi .

Let D be the unit closed disk and choose a continuous family
fi ti : D ! Cg0ata1 of embeddings of D such that i ti ðDÞ contains g ti ð½0; 1�Þ and

does not meet fajðtÞgj0d; e. Let AiðtÞ be the connected component of p�1
miðtÞði

t
i ðDÞÞ

containing CiðtÞ. For t A ½0; 1Þ, AiðtÞ is homeomorphic to an annulus, and Aið1Þ
is homeomorphic to the space obtained from an annulus by collapsing a non null-
homologous simple closed curve in it.

Let Mi be the quotient space of X0 � ½0; 1� obtained by identifying all of
Cið0Þ � f1g to a single point. Using fi ti g0ata1, we have a di¤eomorphism

6
0ata1

qAiðtÞG qAið0Þ � ½0; 1�

Figure 7.2
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(qAiðtÞ is the boundary of AiðtÞ) compatible with the natural projections onto
½0; 1�. By the observations, we can extended it to a di¤eomorphism

6
0ata1

XmiðtÞnInt AiðtÞG ðX0nInt Aið0ÞÞ � ½0; 1�ð7:1Þ

(Int AiðtÞ is the interior of AiðtÞ). Moreover, using fi ti g0ata1 again we can extend
(7.1) to a homeomorphism from p�1ðmiÞ ¼ 6

0ata1
XmiðtÞ to Mi also compatible

with the projections onto ½0; 1�. Here ðX0nInt Aið0ÞÞ � ½0; 1� is understood to be
a subspace of Mi by an obvious manner.

The exsistence of the homeomorphism p�1ðmiÞGMi implies that Cið0Þ is the
vanishing cycle along mi. In summary, we have proved the following.

Proposition 7.1. The monodromy r 0ðliÞ A G3 is the right hand Dehn twist
along Ci.

Now we can complete the proof of Theorem 1.1.

Proof of Theorem 1.1. We write L0 instead L ¼ Lð7=8; 3=4Þ and let L1 be
a line of P3 meeting X4 transversely. Choose a base point b1 A L1nðL1 VX4Þ.
Since the set of all lines of P3 meeting X4 transversely is Zariski open hence
path connected, there exist a continuous family fLðtÞgt A ½0;1� of lines of P3

such that LðtÞ meets X4 transversely and Lð0Þ ¼ L0, Lð1Þ ¼ L1. Let F 0
t :¼

fðx;HÞ A P3 � ðLðtÞnðLðtÞVX4ÞÞ; x A H VXg. Then there exist continuous
families of homeomorphisms fct : L0nðL0 VX4Þ ! LðtÞnðLðtÞVX4Þg0ata1 and
fCt : F

0
0 ! F 0

t g0ata1 such that p 0
t �Ct ¼ ct � p 0

0 where p 0
t is the second projec-

tion. Now fc1ðliÞgi is a standard generating system for p1ðL1nðL1 VX4Þ;c1ð0ÞÞ
such that the image of c1ðliÞ under the associated topological monodromy is
the right hand Dehn twist along Ci. The result follows by considering an
isomorphism p1ðL1nðL1 VX4Þ, c1ð0ÞÞG p1ðL1nðL1 VX4Þ; b1Þ induced by a path
from c1ð0Þ to b1. r

Acknowledgments. The author is grateful to Professor Nariya Kawazumi
for reading a draft and comments on expositions of the paper. He is also
grateful to Masatoshi Sato for his advice which made the arguments in Section 7
clear. This research is supported by JSPS Research Fellowships for Young
Scientists (19�5472).

References

[ 1 ] K. Ahara and I. Awata, On the global monodromy of a fibration of the Fermat surface of

degree n (full version), MIMS preprint, 2009.

[ 2 ] K. Ahara, On the topology of Fermat type surface of degree 5 and the numerical analysis of

algebraic curves, Tokyo J. Math. 16 (1993), 321–340.

[ 3 ] A. Beauville, Le groupe de monodromie des familles universelles d’hypersufaces et d’inter-
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