INVARIANTS OF AMPLE LINE BUNDLES ON PROJECTIVE VARIETIES AND THEIR APPLICATIONS, II* ${ }^{+\dagger}$

Yoshiaki Fukuma

Abstract

Let X be a smooth complex projective variety of dimension n and let L_{1}, \ldots, L_{n-i} be ample line bundles on X, where i is an integer with $0 \leq i \leq n-1$. In the previous paper, we defined the i-th sectional geometric genus $g_{i}\left(X, L_{1}, \ldots, L_{n-i}\right.$) of (X, L_{1}, \ldots, $\left.L_{n-i}\right)$. In this part II, we will investigate a lower bound for $g_{i}\left(X, L_{1}, \ldots, L_{n-i}\right)$. Moreover we will study the first sectional geometric genus of ($X, L_{1}, \ldots, L_{n-1}$).

Introduction

This is the continuation of [13]. This paper (Part II) consists of section 3, 4, 5 and 6 . Let X be a smooth complex projective variety of dimension n and let L_{1}, \ldots, L_{n-i} be ample line bundles on X, where i is an integer with $0 \leq i \leq n-1$. In [13], we defined the i th sectional geometric genus $g_{i}\left(X, L_{1}, \ldots, L_{n-i}\right)$. This invariant is thought to be a generalization of the i th sectional geometric genus $g_{i}(X, L)$ of polarized varieties (X, L). Furthermore in [13], we showed some fundamental properties of this invariant. In this paper and [14], we will study projective varieties more deeply by using some properties of the i th sectional geometric genus of multi-polarized varieties which have been proved in [13]. In this paper, we will mainly study a lower bound of $g_{i}\left(X, L_{1}, \ldots, L_{n-i}\right)$ and some properties of the case where $i=1$. The content of this paper is the following.

In section 3 we will give some results and definitions which will be used in this paper.

In section 4 , we will investigate a lower bound for the i th sectional geometric genus of multi-polarized variety $\left(X, L_{1}, \ldots, L_{n-i}\right)$. In particular, we will study a relation between $g_{i}\left(X, L_{1}, \ldots, L_{n-i}\right)$ and $h^{i}\left(\mathcal{O}_{X}\right)$.

[^0]In section 5, we will study the nefness of $K_{X}+L_{1}+\cdots+L_{t}$ for $t \geq n-2$. This investigation will make us possible to study a lower bound for $g_{1}\left(X, L_{1}, \ldots, L_{n-1}\right)$ (see section 6) and some properties of $g_{2}\left(X, L_{1}, \ldots, L_{n-2}\right)$ (see [14]).

In section 6 , we mainly consider the case where $\left(X, L_{1}, \ldots, L_{n-1}\right)$ is a multipolarized manifold of type $n-1$ by using results in section 5 , and we will make a study of the following:
(1) The non-negativity of $g_{1}\left(X, L_{1}, \ldots, L_{n-1}\right)$.
(2) A classification of $\left(X, L_{1}, \ldots, L_{n-1}\right)$ with $g_{1}\left(X, L_{1}, \ldots, L_{n-1}\right) \leq 1$.
(3) Under the assumption that $\left|L_{j}\right|$ is base point free for any j with $1 \leq$ $j \leq n-1$, we will prove that $g_{1}\left(X, L_{1}, \ldots, L_{n-1}\right) \geq h^{1}\left(\mathcal{O}_{X}\right)$. Moreover we will classify $\left(X, L_{1}, \ldots, L_{n-1}\right)$ with $g_{1}\left(X, L_{1}, \ldots, L_{n-1}\right)=h^{1}\left(\mathcal{O}_{X}\right)$.
(4) Assume that $n=3, h^{0}\left(L_{1}\right) \geq 2$ and $h^{0}\left(L_{2}\right) \geq 1$. Then we will prove $g_{1}\left(X, L_{1}, L_{2}\right) \geq h^{1}\left(\mathcal{O}_{X}\right)$. Furthermore we will classify multi-polarized 3folds (X, L_{1}, L_{2}) with $g_{1}\left(X, L_{1}, L_{2}\right)=h^{1}\left(\mathcal{O}_{X}\right), h^{0}\left(L_{1}\right) \geq 2$ and $h^{0}\left(L_{2}\right) \geq 3$.
In this paper we use the same notation as in [13].

3. Preliminaries for the second part

Notation 3.1. Let X be a projective variety of dimension n, let i be an integer with $0 \leq i \leq n-1$, and let L_{1}, \ldots, L_{n-i} be line bundles on X. Then $\chi\left(L_{1}^{t_{1}} \otimes \cdots \otimes L_{n-i}^{t_{n-i}}\right)$ is a polynomial in t_{1}, \ldots, t_{n-i} of total degree at most n. So we can write $\chi\left(L_{1}^{t_{1}} \otimes \cdots \otimes L_{n-i}^{t_{n-i}}\right)$ uniquely as follows.

$$
\begin{aligned}
& \chi\left(L_{1}^{t_{1}} \otimes \cdots \otimes L_{n-i}^{t_{n-i}}\right) \\
& \quad=\sum_{p=0}^{n} \sum_{\substack{p_{1} \geq 0, \ldots, p_{n-i} \geq 0 \\
p_{1}+\ldots+p_{n-i}=p}} \chi_{p_{1}, \ldots, p_{n-i}}\left(L_{1}, \ldots, L_{n-i}\right)\binom{t_{1}+p_{1}-1}{p_{1}} \cdots\binom{t_{n-i}+p_{n-i}-1}{p_{n-i}} .
\end{aligned}
$$

Definition 3.1 ([13, Definition 2.1]). Let X be a projective variety of dimension n, let i be an integer with $0 \leq i \leq n$, and let L_{1}, \ldots, L_{n-i} be line bundles on X.
(1) The ith sectional H-arithmetic genus $\chi_{i}^{H}\left(X, L_{1}, \ldots, L_{n-i}\right)$ is defined by the following:

$$
\chi_{i}^{H}\left(X, L_{1}, \ldots, L_{n-i}\right)= \begin{cases}\chi_{\underbrace{1, \ldots, 1}_{n-i}}\left(L_{1}, \ldots, L_{n-i}\right) & \text { if } 0 \leq i \leq n-1, \\ \chi\left(\mathcal{O}_{X}\right) & \text { if } i=n .\end{cases}
$$

(2) The ith sectional geometric genus $g_{i}\left(X, L_{1}, \ldots, L_{n-i}\right)$ is defined by the following:

$$
\begin{aligned}
g_{i}\left(X, L_{1}, \ldots, L_{n-i}\right)= & (-1)^{i}\left(\chi_{i}^{H}\left(X, L_{1}, \ldots, L_{n-i}\right)-\chi\left(\mathcal{O}_{X}\right)\right) \\
& +\sum_{j=0}^{n-i}(-1)^{n-i-j} h^{n-j}\left(\mathcal{O}_{X}\right) .
\end{aligned}
$$

(3) The ith sectional arithmetic genus $p_{a}^{i}\left(X, L_{1}, \ldots, L_{n-i}\right)$ is defined by the following:

$$
p_{a}^{i}\left(X, L_{1}, \ldots, L_{n-i}\right)=(-1)^{i}\left(\chi_{i}^{H}\left(X, L_{1}, \ldots, L_{n-i}\right)-h^{0}\left(\mathcal{O}_{X}\right)\right) .
$$

Remark 3.1. Let X be a smooth projective variety of dimension n and let \mathscr{E} be an ample vector bundle of rank r on X with $1 \leq r \leq n$. Then in [10, Definition 2.1], we defined the ith c_{r}-sectional geometric genus $g_{i}(X, \mathscr{E})$ of (X, \mathscr{E}) for every integer i with $0 \leq i \leq n-r$. Let i be an integer with $0 \leq i \leq n-1$. Here we note that if $i=1$, then $g_{1}(X, \mathscr{E})$ is the genus defined in [15, Definition 1.1], and moreover if $r=n-1$, then $g_{1}(X, \mathscr{E})$ is the curve genus $g(X, \mathscr{E})$ of (X, \mathscr{E}) which was defined in [1] and has been studied by many authors (see [22], [23] and so on). Let L_{1}, \ldots, L_{n-i} be ample line bundles on X. By setting $\mathscr{E}:=L_{1} \oplus \cdots \oplus L_{n-i}$, we see that $g_{i}(X, \mathscr{E})=g_{i}\left(X, L_{1}, \ldots, L_{n-i}\right)$. In particular if $i=1$, then $g_{1}\left(X, L_{1}, \ldots, L_{n-1}\right)$ is equal to the curve genus of (X, \mathscr{E}).

Definition 3.2. Let X and Y be smooth projective varieties with $\operatorname{dim} X>$ $\operatorname{dim} Y \geq 1$. Then a morphism $f: X \rightarrow Y$ is called a fiber space if f is surjective with connected fibers. Let L be a Cartier divisor on X. Then (f, X, Y, L) is called a polarized (resp. quasi-polarized) fiber space if $f: X \rightarrow Y$ is a fiber space and L is ample (resp. nef and big).

Definition 3.3. Let $\left(X, L_{1}, \ldots, L_{k}\right)$ be an n-dimensional polarized manifold of type k, where k is a positive integer. Then $\left(X, L_{1}, \ldots, L_{k}\right)$ is called a scroll (resp. quadric fibration, Del Pezzo fibration) over a normal variety W if there exists a fiber space $f: X \rightarrow W$ such that $\operatorname{dim} W=n-k+1$ (resp. $n-k$, $n-k-1)$ and $K_{X}+L_{1}+\cdots+L_{k}=f^{*}(A)$ for an ample line bundle A on W. We say that a polarized manifold (X, L) is a scroll (resp. quadric fibration, Del Pezzo fibration) over a normal variety Y with $\operatorname{dim} Y=m$ if there exists a fiber space $f: X \rightarrow Y$ such that $K_{X}+(n-m+1) L=f^{*}(A)\left(\right.$ resp. $K_{X}+(n-m) L=$ $\left.f^{*}(A), K_{X}+(n-m-1) L=f^{*}(A)\right)$ for an ample line bundle A on Y.

Theorem 3.1. Let (X, L) be a polarized manifold with $n=\operatorname{dim} X \geq 3$. Then (X, L) is one of the following types:
(1) $\left(\mathbf{P}^{n}, \mathcal{O}_{\mathbf{P}^{n}}(1)\right)$.
(2) $\left(\mathbf{Q}^{n}, \mathcal{O}_{\mathbf{Q}^{n}}(1)\right)$.
(3) A scroll over a smooth curve.
(4) $K_{X} \sim-(n-1) L$, that is, (X, L) is a Del Pezzo manifold.
(5) A quadric fibration over a smooth curve.
(6) A scroll over a smooth surface.
(7) Let $\left(X^{\prime}, L^{\prime}\right)$ be a reduction of (X, L).
(7-1) $n=4,\left(X^{\prime}, L^{\prime}\right)=\left(\mathbf{P}^{4}, \mathcal{O}_{\mathbf{p}^{4}}(2)\right)$.
(7-2) $n=3,\left(X^{\prime}, L^{\prime}\right)=\left(\mathbf{Q}^{3}, \mathcal{O}_{\mathbf{Q}^{3}}(2)\right)$.
(7-3) $n=3,\left(X^{\prime}, L^{\prime}\right)=\left(\mathbf{P}^{3}, \mathcal{O}_{\mathbf{P}^{3}}(3)\right)$.
(7-4) $n=3, X^{\prime}$ is a \mathbf{P}^{2}-bundle over a smooth curve and $\left(F^{\prime},\left.L^{\prime}\right|_{F^{\prime}}\right)$ is isomorphic to $\left(\mathbf{P}^{2}, \mathcal{O}_{\mathbf{P}^{2}}(2)\right)$ for any fiber F^{\prime} of it.
$(7-5) K_{X^{\prime}}+(n-2) L^{\prime}$ is nef.
Proof. See [2, Proposition 7.2.2, Theorem 7.2.4, Theorem 7.3.2 and Theorem 7.3.4].

Notation 3.2. Let X be a projective manifold of dimension n.
$\cdot \equiv$ denotes the numerical equivalence.

- $Z_{n-1}(X)$: the group of Weil divisors.
- $N_{1}(X):=(\{1$-cycles $\} / \equiv) \otimes \mathbf{R}$.
- $N E(X)$: the convex cone in $N_{1}(X)$ generated by the effective 1-cycles.
- $\overline{N E}(X)$: the closure of $N E(X)$ in $N_{1}(X)$ with respect to the Euclidean topology.
- $\rho(X):=\operatorname{dim}_{\mathrm{R}} N_{1}(X)$.
- If C is a 1-dimensional cycle in X, then we denote $[C]$ its class in $N_{1}(X)$.
- Let D be an effective divisor on X and $D=\sum_{i} a_{i} D_{i}$ its prime decomposition, where $a_{i} \geq 1$ for any i. Then we write $D_{\text {red }}=\sum_{i} D_{i}$.
- \mathfrak{S}_{l} denotes the symmetric group of order l.

Definition 3.4 ([27, (1.9)]). Let X be a projective manifold of dimension n and let R be an extremal ray. Then the length $l(R)$ is defined by the following:

$$
l(R)=\min \left\{-K_{X} C \mid C \text { is a rational curve with }[C] \in R\right\} .
$$

Remark 3.2. By the cone theorem (see [24, Theorem (1.4)], [18] and [20]), $l(R) \leq n+1$ holds.

Proposition 3.1. Let X be a projective manifold of dimension n.
(1) If there exists an extremal ray R with $l(R)=n+1$, then $\operatorname{Pic} X \cong \mathbf{Z}$ and $-K_{X}$ is ample.
(2) If there exists an extremal ray R with $l(R)=n$, then Pic $X \cong \mathbf{Z}$ and $-K_{X}$ is ample, or $\rho(X)=2$ and there exists a morphism cont $_{R}: X \rightarrow B$ onto a smooth curve B whose general fiber is a smooth ($n-1$)-manifold that satisfies conditions of (1).

Proof. See [27, Proposition 2.4].
Lemma 3.1. Let (f, X, Y, L) be a quasi-polarized fiber space, where X is a normal projective variety with only \mathbf{Q}-factorial canonical singularities and Y is a smooth projective variety with $\operatorname{dim} X=n>\operatorname{dim} Y \geq 1$. Assume that $K_{X / Y}+t L$ is f-nef, where t is a positive integer. Then $\left(K_{X / Y}+t L\right) L^{n-1} \geq 0$. Moreover if $\operatorname{dim} Y=1$, then $K_{X / Y}+t L$ is nef.

Proof. For any ample Cartier divisor A on X and any natural number p, $K_{X / Y}+t L+(1 / p) A$ is f-nef by assumption. Let m be a natural number such
that $m\left(K_{X / Y}+t L+(1 / p) A\right)$ is a Cartier divisor. Since $m\left(K_{X / Y}+t L+(1 / p) A\right)$ $-K_{X}$ is f-ample, by the base point free theorem ([19, Theorem 3-1-1]),

$$
f^{*} f_{*} \mathcal{O}_{X}\left(\operatorname{lm}\left(K_{X / Y}+t L+\frac{1}{p} A\right)\right) \rightarrow \mathcal{O}_{X}\left(\operatorname{lm}\left(K_{X / Y}+t L+\frac{1}{p} A\right)\right)
$$

is surjective for any $l \gg 0$.
Let $\mu: X_{1} \rightarrow X$ be a resolution of X. We put $h=f \circ \mu$. Since

$$
\mu^{*} f^{*} f_{*} \mathscr{O}_{X}\left(\operatorname{lm}\left(K_{X / Y}+t L+\frac{1}{p} A\right)\right)=h^{*} h_{*} \mathscr{O}_{X_{1}}\left(\operatorname{lm}\left(K_{X_{1} / Y}+\mu^{*}\left(t L+\frac{1}{p} A\right)\right)\right)
$$

we have

$$
\begin{equation*}
h^{*} h_{*} \mathcal{O}_{X_{1}}\left(\operatorname{lm}\left(K_{X_{1} / Y}+\mu^{*}\left(t L+\frac{1}{p} A\right)\right)\right) \rightarrow \mu^{*} \mathcal{O}_{X}\left(\operatorname{lm}\left(K_{X / Y}+t L+\frac{1}{p} A\right)\right) \tag{1}
\end{equation*}
$$

is surjective. We note that $h_{*} \mathcal{O}_{X_{1}}\left(\operatorname{lm}\left(K_{X_{1} / Y}+\mu^{*}(t L+(1 / p) A)\right)\right)$ is weakly positive by [8, Theorem A^{\prime} in Page 358] because $\mu^{*} \theta_{X}(\operatorname{lm}(t L+(1 / p) A))$ is semiample. (For the definition of weak positivity, see [26].) Hence by [8, Remark 1.3.2 (1)] and (1) above $\mu^{*} \mathcal{O}_{X}\left(\operatorname{lm}\left(K_{X / Y}+t L+(1 / p) A\right)\right)$ is pseudo-effective. Since p is any natural number, we get $\left(K_{X / Y}+t L\right) L^{n-1}=\mu^{*}\left(K_{X / Y}+t L\right)\left(\mu^{*} L\right)^{n-1} \geq 0$.

If $\operatorname{dim} Y=1$, then we see that $h_{*} \mathcal{O}_{X_{1}}\left(\operatorname{lm}\left(K_{X_{1} / Y}+\mu^{*}(t L+(1 / p) A)\right)\right)$ is semipositive by [8, Theorem A^{\prime} in page 358] since semi-positivity and weak positivity are equivalent for torsion free sheaves on nonsingular curves. Hence by (1) above $K_{X / Y}+t L+(1 / p) A$ is nef for any natural number p. Since p is any natural number, $K_{X / Y}+t L$ is nef.

Lemma 3.2. Let X and Y be smooth projective varieties with $\operatorname{dim} X>$ $\operatorname{dim} Y \geq 1$ and let $f: X \rightarrow Y$ be a surjective morphism with connected fibers. Then $q(X) \leq q(F)+q(Y)$, where F is a general fiber of f.

Proof. See [8, Theorem B in Appendix] or [3, Theorem 1.6].
Lemma 3.3. Let X be a smooth projective variety, and let D_{1} and D_{2} be effective divisors on X. Then $h^{0}\left(D_{1}+D_{2}\right) \geq h^{0}\left(D_{1}\right)+h^{0}\left(D_{2}\right)-1$.

Proof. See [11, Lemma 1.12] or [21, 15.6.2 Lemma].
Notation 3.3. Let X be a smooth projective variety of dimension n and let i be an integer with $1 \leq i \leq n-1$. Let L_{1}, \ldots, L_{n-i} be nef and big line bundles on X. Assume that $\mathrm{Bs}\left|L_{j}\right|=\emptyset$ for every integer j with $1 \leq j \leq n-i$. Then by Bertini's theorem, for every integer j with $1 \leq j \leq n-i$, there exists a general member $X_{j} \in\left|L_{j}\right|_{X_{j-1}} \mid$ such that X_{j} is a smooth projective variety of dimension $n-j$. (Here we set $X_{0}:=X$.) Namely there exists an $(n-i)$-ladder $X \supset$ $X_{1} \supset \cdots \supset X_{n-i}$ such that a projective variety X_{j} is smooth with $\operatorname{dim} X_{j}=n-j$.

4. Properties of the sectional geometric genus

In this section we study the relationship between $g_{i}\left(X, L_{1}, \ldots, L_{n-i}\right)$ and $h^{i}\left(\mathcal{O}_{X}\right)$.

Lemma 4.1. Let X be a projective variety of dimension n, and let s be an integer with $0 \leq s \leq n-1$. Let L_{1}, \ldots, L_{s} be Cartier divisors on X. Assume the following conditions:
(a) There exists an irreducible and reduced divisor $X_{k+1} \in\left|L_{k+1}\right|_{X_{k}} \mid$ for any integer k with $0 \leq k \leq s-2$. (Here we put $X_{0}:=X$.)
(b) $h^{j}\left(-\sum_{m=1}^{s} t_{m} L_{m}\right)=0$ for any integer j and t_{m} with $0 \leq j \leq n-1, t_{m} \geq 0$ for any m, and $\sum_{m=1}^{s} t_{m}>0$.
(c) $h^{0}\left(\left.L_{s}\right|_{X_{s-1}}\right)>0$ and there exists a member $X_{s} \in\left|L_{s}\right|_{X_{s-1}} \mid$. Then
(1) $h^{j}\left(-\left.\sum_{m=k+1}^{s} u_{m} L_{m}\right|_{X_{k}}\right)=0$ for any integer k, j and u_{m} with $1 \leq k \leq$ $s-1,0 \leq j \leq n-k-1, u_{m} \geq 0$ for any m, and $\sum_{m=k+1}^{s} u_{m}>0$.
(2) $h^{j}\left(\mathcal{O}_{X}\right)=h^{j}\left(\mathcal{O}_{X_{1}}\right)=\cdots=h^{j}\left(\mathcal{O}_{X_{s-1}}\right)$ for any integer j with $0 \leq j \leq n-s$.
(3) $h^{n-s}\left(\mathcal{O}_{X_{s-1}}\right) \leq h^{n-s}\left(\mathcal{O}_{X_{s}}\right)$.

Proof. (1) First we study the case where $k=1$. By the above (b) and the exact sequence

$$
0 \rightarrow \mathcal{O}_{X}\left(-L_{1}-\sum_{m=2}^{s} u_{m} L_{m}\right) \rightarrow \mathcal{O}_{X}\left(-\sum_{m=2}^{s} u_{m} L_{m}\right) \rightarrow \mathcal{O}_{X_{1}}\left(-\left.\sum_{m=2}^{s} u_{m} L_{m}\right|_{X_{1}}\right) \rightarrow 0
$$

we have $h^{j}\left(-\left.\sum_{m=2}^{s} u_{m} L_{m}\right|_{X_{1}}\right)=0$ for any integer j and u_{m} with $0 \leq j \leq n-2$, $u_{m} \geq 0$ for any m, and $\sum_{m=2}^{s} u_{m}>0$.

Assume that (1) is true for any integer k with $k \leq l-1$, where l is an integer with $2 \leq l \leq s-1$. We consider the case where $k=l$. By the exact sequence

$$
\begin{aligned}
0 & \rightarrow \mathcal{O}_{X_{l-1}}\left(-\left.L_{l}\right|_{X_{l-1}}-\left.\sum_{m=l+1}^{s} u_{m} L_{m}\right|_{X_{l-1}}\right) \rightarrow \mathcal{O}_{X_{l-1}}\left(-\left.\sum_{m=l+1}^{s} u_{m} L_{m}\right|_{X_{l-1}}\right) \\
& \rightarrow \mathcal{O}_{X_{l}}\left(-\left.\sum_{m=l+1}^{s} u_{m} L_{m}\right|_{X_{l}}\right) \rightarrow 0
\end{aligned}
$$

we have $h^{j}\left(-\left.\sum_{m=l+1}^{s} u_{m} L_{m}\right|_{X_{l}}\right)=0$ for any integer j and u_{m} with $0 \leq j \leq$ $n-l-1, u_{m} \geq 0$ for any m, and $\sum_{m=l+1}^{s} u_{m}>0$. Hence we get the assertion.

Next we prove (2) and (3). By (1) above, we obtain $h^{j}\left(-\left.L_{k+1}\right|_{X_{k}}\right)=0$ for any integer j and k with $0 \leq k \leq s-1$ and $0 \leq j \leq n-k-1$. Hence by the exact sequence

$$
0 \rightarrow \mathcal{O}\left(-\left.L_{k+1}\right|_{X_{k}}\right) \rightarrow \mathcal{O}_{X_{k}} \rightarrow \mathcal{O}_{X_{k+1}} \rightarrow 0,
$$

we get the assertion.

Lemma 4.2. Let X be a projective variety of dimension n, and let L be a Cartier divisor on X. Assume that $h^{0}(L)>0$ and $h^{n-1}(-L)=0$. Then $g_{n-1}(X, L)=h^{n-1}\left(\mathcal{O}_{X_{1}}\right)$, where $X_{1} \in|L|$.

Proof. We consider the exact sequence

$$
0 \rightarrow-L \rightarrow \mathcal{O}_{X} \rightarrow \mathcal{O}_{X_{1}} \rightarrow 0
$$

Then

$$
\begin{aligned}
H^{n-1}(-L) & \rightarrow H^{n-1}\left(\mathcal{O}_{X}\right) \rightarrow H^{n-1}\left(\mathcal{O}_{X_{1}}\right) \\
& \rightarrow H^{n}(-L) \rightarrow H^{n}\left(\mathcal{O}_{X}\right) \rightarrow 0
\end{aligned}
$$

is exact. Since $h^{n-1}(-L)=0$, we see that $h^{n}(-L)-h^{n}\left(\mathcal{O}_{X}\right)+h^{n-1}\left(\mathcal{O}_{X}\right)=$ $h^{n-1}\left(\mathcal{O}_{X_{1}}\right)$. By [11, Definition 2.1 and Theorem 2.2] or [13, Corollary 2.2], we get

$$
\begin{aligned}
g_{n-1}(X, L) & =h^{n}(-L)-h^{n}\left(\mathcal{O}_{X}\right)+h^{n-1}\left(\mathcal{O}_{X}\right) \\
& =h^{n-1}\left(\mathcal{O}_{X_{1}}\right) .
\end{aligned}
$$

Hence we get the assertion.
Theorem 4.1. Let X be a projective variety of dimension n, and let i be an integer with $0 \leq i \leq n-1$. Let L_{1}, \ldots, L_{n-i} be Cartier divisors on X. Assume the following conditions:
(a) There exists an irreducible and reduced divisor $X_{k+1} \in\left|L_{k+1}\right|_{X_{k}} \mid$ for any integer k with $0 \leq k \leq n-i-2$. (Here we put $X_{0}:=X$.)
(b) $h^{j}\left(-\sum_{m=1}^{n-i} t_{m} L_{m}\right)=0$ for any integer j and t_{m} with $0 \leq j \leq n-1, t_{m} \geq 0$ for any m, and $\sum_{m=1}^{n-i} t_{m}>0$.
(c) $h^{0}\left(\left.L_{n-i}\right|_{X_{n-i-1}}\right)>0$ and there exists a member $X_{n-i} \in\left|L_{n-i}\right|_{X_{n-i-1}} \mid$. Then

$$
g_{i}\left(X, L_{1}, \ldots, L_{n-i}\right) \geq h^{i}\left(\mathcal{O}_{X}\right)
$$

Proof. By Lemma 4.1 (2), we have $h^{j}\left(\mathcal{O}_{X}\right)=h^{j}\left(\mathcal{O}_{X_{n-i-1}}\right)$ for every j with $0 \leq j \leq i$. Therefore

$$
\begin{aligned}
& (-1)^{i} \chi\left(\mathcal{O}_{X}\right)-\sum_{j=0}^{n-i}(-1)^{n-i-j} h^{n-j}\left(\mathcal{O}_{X}\right) \\
& \quad=(-1)^{i} \chi\left(\mathcal{O}_{X_{n-i-1}}\right)-\sum_{j=0}^{1}(-1)^{1-j} h^{i+1-j}\left(\mathcal{O}_{X_{n-i-1}}\right) .
\end{aligned}
$$

By [13, Lemma 2.4] we also get

$$
\begin{aligned}
\chi_{1, \ldots, 1}\left(L_{1}, \ldots, L_{n-i}\right) & =\chi_{1, \ldots, 1}\left(\left.L_{2}\right|_{X_{1}}, \ldots,\left.L_{n-i}\right|_{X_{1}}\right) \\
& =\cdots \\
& =\chi_{1}\left(\left.L_{n-i}\right|_{X_{n-i-1}}\right) .
\end{aligned}
$$

Hence by [11, Definition 2.1] and Definition 3.1 (2) we have

$$
g_{i}\left(X, L_{1}, \ldots, L_{n-i}\right)=g_{i}\left(X_{n-i-1},\left.L_{n-i}\right|_{X_{n-i-1}}\right)
$$

Here we note that by Lemma 4.1 (1) we have $h^{j}\left(-\left.L_{n-i}\right|_{X_{n-i-1}}\right)=0$ for any integer j with $0 \leq j \leq i$. By Lemma 4.2 we see that $g_{i}\left(X_{n-i-1},\left.L_{n-i}\right|_{X_{n-i-1}}\right)=h^{i}\left(\mathcal{O}_{X_{n-i}}\right)$. Hence by Lemma 4.1 (2) and (3) we get

$$
\begin{aligned}
g_{i}\left(X, L_{1}, \ldots, L_{n-i}\right) & =g_{i}\left(X_{n-i-1},\left.L_{n-i}\right|_{X_{n-i-1}}\right) \\
& =h^{i}\left(\mathcal{O}_{X_{n-i}}\right) \\
& \geq h^{i}\left(\mathcal{O}_{X}\right)
\end{aligned}
$$

Hence we obtain the assertion.
Lemma 4.3. Let X be a projective variety of dimension n, and let i be an integer with $0 \leq i \leq n-1$. Let L_{1}, \ldots, L_{n-i} be Cartier divisors on X. Then the following are equivalent: (Here $\chi^{i}\left(\mathcal{O}_{X}\right):=\sum_{j=0}^{i}(-1)^{j} h^{j}\left(\mathcal{O}_{X}\right)$.)
(a) $g_{i}\left(X, L_{1}, \ldots, L_{n-i}\right) \geq h^{i}\left(\mathcal{O}_{X}\right)$.
(b) $(-1)^{i} \chi_{i}^{H}\left(X, L_{1}, \ldots, L_{n-i}\right) \geq(-1)^{i} \chi^{i}\left(\mathcal{O}_{X}\right)$.
(c) $p_{a}^{i}\left(X, L_{1}, \ldots, L_{n-i}\right) \geq(-1)^{i}\left(\chi^{i}\left(\mathcal{O}_{X}\right)-1\right)$.

Proof. By definition, we get

$$
\begin{aligned}
g_{i}\left(X, L_{1}, \ldots, L_{n-i}\right)-h^{i}\left(\mathcal{O}_{X}\right)= & (-1)^{i}\left(\chi_{1, \ldots, 1}\left(L_{1}, \ldots, L_{n-i}\right)-\chi\left(\mathcal{O}_{X}\right)\right) \\
& +\sum_{j=0}^{n-i-1}(-1)^{n-i-j} h^{n-j}\left(\mathcal{O}_{X}\right) \\
= & (-1)^{i}\left(\chi_{i}^{H}\left(X, L_{1}, \ldots, L_{n-i}\right)-\chi\left(\mathcal{O}_{X}\right)\right) \\
& +\sum_{j=0}^{n-i-1}(-1)^{n-i-j} h^{n-j}\left(\mathcal{O}_{X}\right) \\
= & (-1)^{i} \chi_{i}^{H}\left(X, L_{1}, \ldots, L_{n-i}\right)-(-1)^{i} \chi^{i}\left(\mathcal{O}_{X}\right),
\end{aligned}
$$

and

$$
\begin{aligned}
& p_{a}^{i}\left(X, L_{1}, \ldots, L_{n-i}\right)-(-1)^{i}\left(\chi^{i}\left(\mathcal{O}_{X}\right)-1\right) \\
& \quad=(-1)^{i}\left(\chi_{i}^{H}\left(X, L_{1}, \ldots, L_{n-i}\right)-1\right)-(-1)^{i}\left(\chi^{i}\left(\mathcal{O}_{X}\right)-1\right) \\
& \quad=(-1)^{i} \chi_{i}^{H}\left(X, L_{1}, \ldots, L_{n-i}\right)-(-1)^{i} \chi^{i}\left(\mathcal{O}_{X}\right) .
\end{aligned}
$$

Hence we get the assertion.
Corollary 4.1. Let X be a projective variety of dimension n, and let i be an integer with $0 \leq i \leq n-1$. Let L_{1}, \ldots, L_{n-i} be Cartier divisors on X. Assume the following conditions:
(a) There exists an irreducible and reduced divisor $X_{k+1} \in\left|L_{k+1}\right|_{X_{k}} \mid$ for any integer k with $0 \leq k \leq n-i-1$. (Here we put $X_{0}:=X$.)
(b) $h^{j}\left(-\sum_{m=1}^{n-i} t_{m} L_{m}\right)=0$ for any integer j and t_{m} with $0 \leq j \leq n-1, t_{m} \geq 0$ for any m, and $\sum_{m=1}^{n-i} t_{m}>0$.
(c) $h^{0}\left(\left.L_{n-i}\right|_{X_{n-i-1}}\right)>0$ and there exists a member $X_{n-i} \in\left|L_{n-i}\right|_{X_{n-i-1}} \mid$.

Then we get the following: (Here $\chi^{i}\left(\mathcal{O}_{X}\right):=\sum_{j=0}^{i}(-1)^{j} h^{j}\left(\mathcal{O}_{X}\right)$.)
(1) $(-1)^{i} \chi_{i}^{H}\left(X, L_{1}, \ldots, L_{n-i}\right) \geq(-1)^{i} \chi^{i}\left(\mathcal{O}_{X}\right)$.
(2) $p_{a}^{i}\left(X, L_{1}, \ldots, L_{n-i}\right) \geq(-1)^{i}\left(\chi^{i}\left(\mathcal{O}_{X}\right)-1\right)$.

Proof. By Lemma 4.3 and Theorem 4.1, we get the assertion.
If X is normal, then we get the following.
Corollary 4.2. Let X be a normal projective variety of dimension $n \geq 3$. Let i be an integer with $0 \leq i \leq n-1$. Let $L_{1}, L_{2}, \ldots, L_{n-i}$ be ample line bundles on X such that $\mathrm{Bs}\left|L_{j}\right|=\emptyset$ for every integer j with $1 \leq j \leq n-i$. Assume that $h^{j}\left(-\sum_{k=1}^{n-i} t_{k} L_{k}\right)=0$ for any integer j and t_{k} with $0 \leq j \leq n-1, t_{k} \geq 0$ for any k, and $\sum_{k=1}^{n-i} t_{k}>0$. Then

$$
g_{i}\left(X, L_{1}, \ldots, L_{n-i}\right) \geq h^{i}\left(\mathcal{O}_{X}\right)
$$

Proof. If $i=n-1$, then by [12, Corollary 2.9] we get $g_{n-1}\left(X, L_{1}\right) \geq$ $h^{n-1}\left(\mathcal{O}_{X}\right)$.

If $i=0$, then $g_{0}\left(X, L_{1}, \ldots, L_{n}\right)=L_{1} \cdots L_{n} \geq 1=h^{0}\left(\mathcal{O}_{X}\right)$.
So we may assume that $1 \leq i \leq n-2$. For every integer k with $1 \leq k \leq$ $n-i-1$, let $X_{k} \in\left|L_{k}\right|_{X_{k-1}} \mid$ be a general member. Then since $\mathrm{Bs}\left|L_{k}\right|_{X_{k-1}} \mid=\emptyset$, we see that X_{k} is a normal projective variety (for example, see [6, (0.2.9) Fact and (4.3) Theorem] or [2, Theorem 1.7.1]). Since L_{n-i} is ample with $\mathrm{Bs}\left|L_{n-i}\right|=\emptyset$, we have $h^{0}\left(\left.L_{n-i}\right|_{X_{n-i-1}}\right)>0$ and $\left|L_{n-i}\right|_{X_{n-i-1}} \mid \neq \emptyset$. Hence by Theorem 4.1, we get the assertion.

Here we propose the following conjecture, which is a multi-polarized version on [11, Conjecture 4.1].

Conjecture 4.1. Let n and i be integers with $n \geq 2$ and $0 \leq i \leq n-1$. Let $\left(X, L_{1}, \ldots, L_{n-i}\right)$ be an n-dimensional multi-polarized manifold of type $(n-i)$. Then $g_{i}\left(X, L_{1}, \ldots, L_{n-i}\right) \geq h^{i}\left(\mathcal{O}_{X}\right)$ holds.

Proposition 4.1. Let X be a normal projective variety of dimension $n \geq 2$. Let i be an integer with $0 \leq i \leq n-1$. Let $L_{1}, \ldots, L_{n-i-1}, A, B$ be ample Cartier divisors on X. Assume that $h^{j}\left(-\left(\sum_{p=1}^{n-i-1} t_{p} L_{p}\right)-a A-b B\right)=0$ for any integers j, a, b and t_{p} with $0 \leq j \leq n-1, a \geq 0, b \geq 0, t_{p} \geq 0$, and $a+b+\sum t_{p}>0$, and that $\mathrm{Bs}\left|L_{j}\right|=\emptyset$ for $1 \leq j \leq n-i-1, \mathrm{Bs}|A|=\emptyset$, and $\mathrm{Bs}|B|=\emptyset$. Then

$$
g_{i}\left(X, A+B, L_{1}, \ldots, L_{n-i-1}\right) \geq g_{i}\left(X, A, L_{1}, \ldots, L_{n-i-1}\right)+g_{i}\left(X, B, L_{1}, \ldots, L_{n-i-1}\right) .
$$

Proof. We note that by [13, Corollary 2.4]

$$
\begin{aligned}
g_{i}\left(X, A+B, L_{1}, \ldots, L_{n-i-1}\right)= & g_{i}\left(X, A, L_{1}, \ldots, L_{n-i-1}\right)+g_{i}\left(X, B, L_{1}, \ldots, L_{n-i-1}\right) \\
& +g_{i-1}\left(X, A, B, L_{1}, \ldots, L_{n-i-1}\right)-h^{i-1}\left(\mathcal{O}_{X}\right) .
\end{aligned}
$$

By assumption and Corollary 4.2 we have

$$
g_{i-1}\left(X, A, B, L_{1}, \ldots, L_{n-i-1}\right) \geq h^{i-1}\left(\mathcal{O}_{X}\right)
$$

Hence we get the assertion.
Remark 4.1. If $i=1$, then by [13, Corollary 2.4] for any ample Cartier divisors $A, B, L_{1}, \ldots, L_{n-2}$ we have

$$
g_{1}\left(X, A+B, L_{1}, \ldots, L_{n-2}\right) \geq g_{1}\left(X, A, L_{1}, \ldots, L_{n-2}\right)+g_{1}\left(X, B, L_{1}, \ldots, L_{n-2}\right)
$$

because $A B L_{1} \cdots L_{n-2} \geq 1=h^{0}\left(\mathcal{O}_{X}\right)$.

5. Adjunction theory of multi-polarized manifolds

In this section, we are going to investigate the nefness of $K_{X}+L_{1}+\cdots+L_{k}$. Results in this section will be used when we study the i th sectional geometric genus of multi-polarized manifolds in this paper and the Part III [14].
5.1. The nefness of $K_{X}+L_{1}+\cdots+L_{t}$ for $t \geq n-1$

By putting $\mathscr{E}:=L_{1} \oplus \cdots \oplus L_{l}$ for $l=n+1, n, n-1$, we can get the following theorem by using a result of Ye and Zhang [28, Theorems 1, 2 and 3]. Here $\mathfrak{\Xi}_{l}$ denotes the symmetric group of order l (see Notation 3.2).

Theorem 5.1.1. (1) Let $\left(X, L_{1}, \ldots, L_{n+1}\right)$ be an n-dimensional multipolarized manifold of type $n+1$ with $n \geq 3$. Then $K_{X}+L_{1}+\cdots+L_{n+1}$ is nef.
(2) Let $\left(X, L_{1}, \ldots, L_{n}\right)$ be an n-dimensional multi-polarized manifold of type n with $n \geq 3$. Then $K_{X}+L_{1}+\cdots+L_{n}$ is nef unless

$$
\left(X, L_{1}, \ldots, L_{n}\right) \cong\left(\mathbf{P}^{n}, \mathcal{O}_{\mathbf{P}^{n}}(1), \ldots, \mathcal{O}_{\mathbf{P}^{n}}(1)\right) .
$$

(3) Let X be a smooth projective variety of dimension $n \geq 3$. Let L_{1}, L_{2}, \ldots, L_{n-1} be ample line bundles on X. If $K_{X}+L_{1}+L_{2}+\cdots+L_{n-1}$ is not nef, then there exists $\sigma \in \mathbb{G}_{n-1}$ such that $\left(X, L_{\sigma(1)}, L_{\sigma(2)}, \ldots, L_{\sigma(n-1)}\right)$ is one of the following:
(A) $\left(\mathbf{P}^{n}, \mathcal{O}_{\mathbf{P}^{n}}(1), \mathcal{O}_{\mathbf{P}^{n}}(1), \ldots, \mathcal{O}_{\mathbf{P}^{n}}(1)\right)$.
(B) $\left(\mathbf{P}^{n}, \mathcal{O}_{\mathbf{P}^{n}}(2), \mathcal{O}_{\mathbf{P}^{n}}(1), \ldots, \mathcal{O}_{\mathbf{P}^{n}}(1)\right)$.
(C) $\left(\mathbf{Q}^{n}, \mathcal{O}_{\mathbf{Q}^{n}}(1), \mathscr{O}_{\mathbf{Q}^{n}}(1), \ldots, \mathcal{O}_{\mathbf{Q}^{n}}(1)\right)$.
(D) X is a \mathbf{P}^{n-1}-bundle over a smooth projective curve B and $\left.L_{j}\right|_{F}=$ $\mathcal{O}_{\mathbf{P}^{n-1}}(1)$ for any fiber F and every integer j with $1 \leq j \leq n-1$.
5.2. The nefness of $K_{X}+L_{1}+\cdots+L_{n-2}$

Theorem 5.2.1. Let X be a smooth projective variety of dimension $n \geq 4$ and let L_{1}, \ldots, L_{n-2} be ample line bundles on X. Assume the following:
(a) $K_{X}+L_{1}+\cdots+L_{n-2}$ is not nef.
(b) $K_{X}+(n-1) L_{j}$ is nef for every integer j with $1 \leq j \leq n-2$. Then $\left(X, L_{1}, \ldots, L_{n-2}\right)$ is one of the following.
(1) There exists a multi-polarized manifold $\left(Y, A_{1}, \ldots, A_{n-2}\right)$ of type $(n-2)$ such that $\left(Y, A_{1}, \ldots, A_{n-2}\right)$ is a reduction of $\left(X, L_{1}, \ldots, L_{n-2}\right)$ (see [13, Definition 1.5]) and $K_{Y}+(n-1) A_{j}$ is ample for every integer j.
(2) $K_{X}+(n-1) L_{j}=\mathcal{O}_{X}$ for every j with $1 \leq j \leq n-2$. Moreover $L_{j}=L_{k}$ for every pair (j, k) with $j \neq k$.
(3) $n=4$ and $\left(X, L_{1}, L_{2}\right) \cong\left(\mathbf{P}^{4}, \mathcal{O}_{\mathbf{P}^{4}}(2), \mathcal{O}_{\mathbf{P}^{4}}(2)\right)$.
(4) There exist a smooth projective curve W and a surjective morphism $f: X \rightarrow W$ with connected fibers such that $\left(X, L_{i}\right)$ is a quadric fibration over W with respect to f for every integer i with $1 \leq i \leq n-2$.
(5) There exist a smooth projective surface S and a surjective morphism $f: X \rightarrow S$ with connected fibers such that f is a \mathbf{P}^{n-2}-bundle over S and $\left(X, L_{j}\right)$ is a scroll over S with respect to f for every integer j with $1 \leq j \leq n-2$, where F is its fiber.

Proof. By assumption, there exists an extremal ray R such that $\left(K_{X}+L_{1}+\cdots+L_{n-2}\right) R<0$. Here we may assume that $L_{1} R \leq L_{2} R \leq \cdots \leq$ $L_{n-2} R$. Then $\quad\left(K_{X}+(n-2) L_{1}\right) R \leq\left(K_{X}+L_{1}+\cdots+L_{n-2}\right) R<0 \quad$ and $\quad K_{X}+$ $(n-2) L_{1}$ is not nef. There exists a rational curve C with $[C] \in R$ such that $0<-K_{X} C \leq n+1$, and

$$
\begin{equation*}
0>\left(K_{X}+L_{1}+\cdots+L_{n-2}\right) C \geq\left(K_{X} C\right)+(n-2) \tag{5.2.1.a}
\end{equation*}
$$

So we get $-K_{X} C \geq n-1$.
(A) The case where there exists an extremal rational curve C such that $K_{X} C=-n-1$.

In this case $0>\left(K_{X}+(n-2) L_{1}\right) C=-n-1+(n-2) L_{1} C$.
(A.1) Assume that $L_{1} C \geq 2$. Then $-n-1+2 n-4 \leq-n-1+(n-2) L_{1} C$ <0. In particular $n=4$ by assumption.

By Proposition 3.1 (1), we get $\operatorname{Pic}(X) \cong \mathbf{Z}$ in this case. Since $K_{X}+$ $(n-1) L_{1}=K_{X}+3 L_{1}$ is nef by assumption and $K_{X}+(n-2) L_{1}=K_{X}+2 L_{1}$ is not nef, we get $L_{1} C=2$ and $L_{1}=\mathcal{O}(1)$ or $\mathcal{O}(2)$, where $\mathcal{O}(1)$ is the ample generator of $\operatorname{Pic}(X)$.

If $L_{1}=\mathcal{O}(1)$, then $\mathcal{O}(1) C=2$ and $K_{X} C$ is even because $\operatorname{Pic}(X) \cong \mathbf{Z}$ and $\mathcal{O}(1)$ is the ample generator of $\operatorname{Pic}(X)$. But then $K_{X} C=-n-1=-5$ and this is impossible. Hence $L_{1}=\mathcal{O}(2)$ and $\mathcal{O}(1) C=1$. Therefore $K_{X}=\mathcal{O}(-n-1)=$ $\mathcal{O}(-5)$. We set $L_{2}:=\mathcal{O}\left(a_{2}\right)$. Since $K_{X}+L_{1}+L_{2}=\mathcal{O}\left(a_{2}-3\right)$ is not nef, we obtain $a_{2} \leq 2$. By assumption, $K_{X}+3 L_{2}=\mathcal{O}\left(3 a_{2}-5\right)$ is nef. Hence $a_{2} \geq 2$. Therefore $a_{2}=2$. Since $-\left(K_{X}+4 \mathcal{O}(1)\right)$ is ample, by Kobayashi-Ochiai's theorem (see $[6,(1.3)$ Corollary $]$), we have $X \cong \mathbf{P}^{4}$. Therefore we get the type (3).
(A.2) Assume that $L_{1} C=1$. Then $\left(K_{X}+(n-1) L_{1}\right) C=-2<0$. But this contradicts the assumption.
(B) The case where there exists an extremal rational curve C such that $K_{X} C=-n$.

In this case, $0>\left(K_{X}+(n-2) L_{1}\right) C=-n+(n-2) L_{1} C$.
(B.1) If $L_{1} C \geq 2$, then $0>\left(K_{X}+(n-2) L_{1}\right) C \geq-n+(n-2) 2=n-4 \geq 0$ and this is impossible.
(B.2) If $L_{1} C=1$, then $\left(K_{X}+(n-1) L_{1}\right) C=-n+(n-1)=-1<0$ and this is a contradiction.
(C) The case where $\left(X, L_{1}, \ldots, L_{n-2}\right)$ satisfies neither the case (A) nor the case (B) above.

We set $H:=L_{1}+\cdots+L_{n-2}$. In this case by (5.2.1.a) for every extremal rational curve $B, K_{X} B=-n+1$ and $L_{i} B=1$ for every integer i with $1 \leq i \leq$ $n-2$. In particular $H B=(n-2) L_{i} B$ for every i. Let τ_{H} (resp. τ_{i}) be the nef value of $(X, H)\left(\operatorname{resp} .\left(X, L_{i}\right)\right)$.

Claim 5.2.1. $\tau_{H}=(n-1) /(n-2)$ and $\tau_{i}=n-1$ for every integer i with $1 \leq i \leq n-2$.

Proof. Assume that there exists $C \in \overline{\mathrm{NE}}(X)$ such that

$$
\left(K_{X}+\frac{n-1}{n-2} H\right) C<0 .
$$

Then by the cone theorem (see also [2, Remark 4.2.6]) C can be written as $\sum_{j} \lambda_{j} C_{j}+\gamma$, where C_{j} is an extremal rational curve and γ is a 1 -cycle such that the following holds:

$$
\left(K_{X}+\frac{n-1}{n-2} H\right) \gamma=0 .
$$

Hence

$$
\left(K_{X}+\frac{n-1}{n-2} H\right) C_{j}<0
$$

for some j. But this is impossible because $K_{X} B=-n+1$ and $L_{i} B=1$ for any extremal rational curve B. Therefore $\tau_{H} \leq(n-1) /(n-2)$. Furthermore $\left(K_{X}+a H\right) B<0$ for every rational number $a<(n-1) /(n-2)$ and every extremal rational curve B. Therefore $\tau_{H}=(n-1) /(n-2)$. By the same arguement as above, we see that $\tau_{i}=n-1$.

Let ϕ_{H} and ϕ_{i} be the nef value morphism of (X, H) and $\left(X, L_{i}\right)$ respectively. Let F_{H} and F_{i} be the corresponding extremal face.

Claim 5.2.2. $\quad \phi_{H}=\phi_{i}$ for every integer i with $1 \leq i \leq n-2$.

Proof. Let $C \subset X$ be an irreducible curve with $[C] \in F_{H}$. Then

$$
\left(K_{X}+\frac{n-1}{n-2} H\right) C=0
$$

Then by the cone theorem there exist extremal rational curves C_{j} such that $C=\sum_{j} \lambda_{j} C_{j}$ (see [2, Lemma 4.2.14]). Hence

$$
\begin{aligned}
0 & =\left(K_{X}+\frac{n-1}{n-2} H\right) C \\
& =\sum_{j} \lambda_{j}\left(K_{X}+\frac{n-1}{n-2} H\right) C_{j} \\
& =\sum_{j} \lambda_{j}\left(K_{X}+(n-1) L_{i}\right) C_{j} \\
& =\left(K_{X}+(n-1) L_{i}\right) C .
\end{aligned}
$$

Therefore $[C] \in F_{L_{i}}$. By the same argument as above, $[C] \in F_{H}$ if C is a curve in X with $[C] \in F_{L_{i}}$. Hence $\phi_{H}=\phi_{i}$ because $\phi_{H}\left(\right.$ resp. $\left.\phi_{i}\right)$ is the contraction morphism of F_{H} (resp. F_{i}).

In particular $\phi_{i}=\phi_{j}$. By Claim 5.2.1 $\tau_{i}=n-1$ for every integer i with $1 \leq i \leq n-2$. Hence by [2, Theorem 7.3.2], $\left(X, L_{1}, \ldots, L_{n-2}\right)$ is either of the type (1), (2), (4), or (5) in the statement of Theorem 5.2.1. Here we note that in the type (1) $K_{Y}+(n-1) A_{j}$ is ample for every j. Next we consider the type (2). Then $K_{X}+(n-1) L_{j}=\mathcal{O}_{X}$ for any j. Hence $(n-1) L_{j}=(n-1) L_{k}$ for $j \neq k$. Therefore $L_{j} \equiv L_{k}$. But since $h^{1}\left(\mathcal{O}_{X}\right)=0$ and $H^{2}(X, \mathbf{Z})$ is torsion free in this case, we see that $L_{j}=L_{k}$.

This completes the proof of Theorem 5.2.1.
Remark 5.2.1. In (1) of Theorem 5.2.1, we see that

$$
K_{Y}+\frac{n-1}{n-2}\left(A_{1}+\cdots+A_{n-2}\right)
$$

is ample. Therefore by Theorem 5.2.1 we get the following:
Let X be a smooth projective variety of dimension $n \geq 4$ and let L_{1}, \ldots, L_{n-2} be ample line bundles on X. Assume that $K_{X}+L_{1}+\cdots+L_{n-2}$ is not nef and $K_{X}+(n-1) L_{j}$ is nef for any j. Then $\left(X, L_{1}, \ldots, L_{n-2}\right)$ is one of the following:
(I) $K_{X}+(n-1) L_{j}=\mathcal{O}_{X}$ for any j. Moreover $L_{j}=L_{k}$ for any (j, k) with $j \neq k$.
(II) There exist a smooth projective curve W and a surjective morphism $f: X \rightarrow W$ with connected fibers such that $\left(X, L_{i}\right)$ is a quadric fibration over W with respect to f for every integer i with $1 \leq i \leq n-2$.
(III) There exist a smooth projective surface S and a surjective morphism $f: X \rightarrow S$ with connected fibers such that f is a \mathbf{P}^{n-2}-bundle over S
and $\left(X, L_{j}\right)$ is a scroll over S with respect to f for every integer j with $1 \leq j \leq n-2$.
(IV) There exists a reduction $\left(Y, A_{1}, \ldots, A_{n-2}\right)$ of ($X, L_{1}, \ldots, L_{n-2}$) such that ($Y, A_{1}, \ldots, A_{n-2}$) satisfies one of the following.
(IV.1) $n=4$ and $\left(Y, A_{1}, A_{2}\right) \cong\left(\mathbf{P}^{4}, \mathcal{O}_{\mathbf{P}^{4}}(2), \mathcal{O}_{\mathbf{P}^{4}}(2)\right)$.
(IV.2) $K_{Y}+A_{1}+\cdots+A_{n-2}$ is nef.

Remark 5.2.2. Let $\left(Y, A_{1}, \ldots, A_{n-2}\right)$ be a reduction of ($X, L_{1}, \ldots, L_{n-2}$). If Y is not isomorphic to X, then $K_{Y}+A_{1}+\cdots+A_{n-2}+A_{j}$ is ample for every integer j with $1 \leq j \leq n-2$.

Theorem 5.2.2. Let X be a smooth projective variety of dimension $n \geq 4$ and let L_{1}, \ldots, L_{n-2} be ample line bundles on X. Assume the following:
(a) $K_{X}+L_{1}+\cdots+L_{n-2}$ is not nef.
(b) $K_{X}+(n-1) L_{j}$ is not nef for some j.

Then there exists $\sigma \in \mathbb{\Xi}_{n-2}$ such that $\left(X, L_{\sigma(1)}, \ldots, L_{\sigma(n-2)}\right)$ is one of the following:
(1) $\left(\mathbf{P}^{n}, \mathcal{O}_{\mathbf{P}^{n}}(1), \ldots, \mathcal{O}_{\mathbf{P}^{n}}(1), \mathcal{O}_{\mathbf{P}^{n}}(3)\right)$.
(2) $n \geq 5$ and $\left(\mathbf{P}^{n}, \mathcal{O}_{\mathbf{P}^{n}}(1), \ldots, \mathcal{O}_{\mathbf{P}^{n}}(1), \mathcal{O}_{\mathbf{P}^{n}}(2), \mathcal{O}_{\mathbf{P}^{n}}(2)\right)$.
(3) $\left(\mathbf{P}^{n}, \mathcal{O}_{\mathbf{P}^{n}}(1), \ldots, \mathcal{O}_{\mathbf{P}^{n}}(1), \mathcal{O}_{\mathbf{P}^{n}}(2)\right)$.
(4) $\left(\mathbf{P}^{n}, \mathcal{O}_{\mathbf{P}^{n}}(1), \ldots, \mathcal{O}_{\mathbf{P}^{n}}(1)\right)$.
(5) $\left(\mathbf{Q}^{n}, \mathscr{O}_{\mathbf{Q}^{n}}(1), \ldots, \mathscr{O}_{\mathbf{Q}^{n}}(1), \mathscr{O}_{\mathbf{Q}^{n}}(2)\right)$.
(6) $\left(\mathbf{Q}^{n}, \mathscr{O}_{\mathbf{Q}^{n}}(1), \ldots, \mathscr{O}_{\mathbf{Q}^{n}}(1)\right)$.
(7) X is a \mathbf{P}^{n-1}-bundle over a smooth curve C and one of the following holds. (Here F denotes its fiber.)
(7.1) $\left.L_{\sigma(j)}\right|_{F}=\mathcal{O}_{\mathbf{P}^{n-1}}(1)$ for every integer j with $1 \leq j \leq n-2$.
(7.2) $\left.L_{\sigma(j)}\right|_{F}=\mathcal{O}_{\mathbf{P}^{n-1}}(1)$ for every integer j with $1 \leq j \leq n-3$ and $\left.L_{\sigma(n-2)}\right|_{F}=\mathcal{O}_{\mathbf{P}^{n-1}}(2)$.

Proof. We may assume that $j=1$ in (b). Since $K_{X}+(n-1) L_{1}$ is not nef, by [4, Theorem 1 and Theorem 2] or [16, Theorem] we see that X is isomorphic to one of the following types:
(A) \mathbf{P}^{n}.
(B) \mathbf{Q}^{n}.
(C) $\mathrm{A} \mathbf{P}^{n-1}$-bundle over a smooth curve C.

Next we study each case.
(A) If $X \cong \mathbf{P}^{n}$, then we set $L_{j}:=\mathcal{O}_{\mathbf{P}^{n}}\left(a_{j}\right)$ for $1 \leq j \leq n-2$. Since $K_{X}+$ $(n-1) L_{1}$ is not nef, we have $a_{1}=1$. Here we may assume that $a_{2} \leq \cdots \leq a_{n-2}$. Since $K_{X}+L_{1}+\cdots+L_{n-2}$ is not nef, we get $\left(a_{1}, \ldots, a_{n-4}, a_{n-3}, a_{n-2}\right)=$ $(1, \ldots, 1,1,1),(1, \ldots, 1,1,2),(1, \ldots, 1,2,2)$ or $(1, \ldots, 1,1,3)$. We note that if $n=4$, then $\left(a_{1}, a_{2}\right)=(2,2)$ cannot occur.
(B) If $X \cong \mathbf{Q}^{n}$ with $n \geq 4$, then $\operatorname{Pic}(X) \cong \mathbf{Z}$ and we set $L_{j}:=\mathcal{O}_{\mathbf{Q}^{n}}\left(a_{j}\right)$ for $1 \leq j \leq n-2$. Since $K_{X}+(n-1) L_{1}$ is not nef, we have $a_{1}=1$. Here we may assume that $a_{2} \leq \cdots \leq a_{n-2}$. Then we note that $K_{X}=\mathcal{O}_{\mathbf{Q}^{n}}(-n)$. Since $K_{X}+L_{1}+\cdots+L_{n-2}$ is not nef, we get $\left(a_{1}, \ldots, a_{n-3}, a_{n-2}\right)=(1, \ldots, 1,1)$ or $(1, \ldots, 1,2)$.
(C) The case where X is a \mathbf{P}^{n-1}-bundle over a smooth curve C.
(C.1) The case where $g(C) \geq 1$.

Since $K_{X}+(n-1) L_{1}$ is not nef, there exists a vector bundle \mathscr{E} on C with $\operatorname{rank}(\mathscr{E})=n$ such that $X=\mathbf{P}_{C}(\mathscr{E})$ and $L_{1}=H(\mathscr{E})$, where $H(\mathscr{E})$ denotes the tautological line bundle on X. Then we note that \mathscr{E} is ample. Let $\pi: \mathbf{P}_{C}(\mathscr{E}) \rightarrow C$ be its projection. Let $L_{j}:=a_{j} H(\mathscr{E})+\pi^{*}\left(B_{j}\right)$ for every integer j with $2 \leq j \leq n-2$. Here we may assume that $a_{2} \leq \cdots \leq a_{n-2}$. Since $K_{X}+$ $L_{1}+\cdots+L_{n-2}$ is not nef, there exists an extremal rational curve B on X such that $\left(K_{X}+L_{1}+\cdots+L_{n-2}\right) B<0$. We note that B is contained in a fiber of π. Hence

$$
0>\left(K_{X}+L_{1}+\cdots+L_{n-2}\right) B=\mathcal{O}_{\mathbf{P}^{n-1}}\left(-n+1+\sum_{j=2}^{n-2} a_{j}\right) B .
$$

Hence we obtain $\left(a_{2}, \ldots, a_{n-3}, a_{n-2}\right)=(1, \ldots, 1,1)$ or $(1, \ldots, 1,2)$.
(C.2) The case where $g(C)=0$.

There exists a vector bundle \mathscr{E} on \mathbf{P}^{1} such that $X=\mathbf{P}_{C}(\mathscr{E})$ and $\mathscr{E} \cong \mathcal{O}_{C} \oplus$ $\mathcal{O}_{C}\left(d_{1}\right) \oplus \cdots \oplus \mathcal{O}_{C}\left(d_{n-1}\right)$, where d_{j} is a non-negative integer for $1 \leq j \leq n-1$. In this case we set $L_{j}:=\tilde{a}_{j} H(\mathscr{E})+\pi^{*}\left(\widetilde{B}_{j}\right)$ for $1 \leq j \leq n-2$. By [2, Lemma 3.2.4] $\tilde{a}_{j}>0$ and $\tilde{b}_{j}>0$ for any integer j with $1 \leq j \leq n-2$, where $\tilde{b}_{j}:=\operatorname{deg} \widetilde{B}_{j}$. Since $K_{X}+(n-1) L_{1}$ is not nef, we have $\tilde{a}_{1}=1$. We may assume that $\tilde{a}_{2} \leq \cdots \leq \tilde{a}_{n-2}$.

Since $K_{X} \equiv-n H(\mathscr{E})+\left(c_{1}(\mathscr{E})-2\right) F$, we have

$$
K_{X}+L_{1}+\cdots+L_{n-2} \equiv\left(-n+\sum_{j=1}^{n-2} \tilde{a}_{j}\right) H(\mathscr{E})+\left(c_{1}(\mathscr{E})-2+\sum_{j=1}^{n-2} \tilde{b}_{j}\right) F .
$$

We note that $c_{1}(\mathscr{E})-2+\sum_{j=1}^{n-2} \tilde{b}_{j} \geq 0-2+(n-2) \geq 0$. Hence $K_{X}+L_{1}+\cdots+$ L_{n-2} is not nef if and only if $-n+\sum_{j=1}^{n-2} \tilde{a}_{j}<0$ because $H(\mathscr{E})$ is nef. So we get $\left(\tilde{a}_{1}, \ldots, \tilde{a}_{n-3}, \tilde{a}_{n-2}\right)=(1, \ldots, 1,1)$ or $(1, \ldots, 1,2)$.

This completes the proof.
Remark 5.2.3. Assume that $\left(X, L_{1}, \ldots, L_{k}\right)$ is either the type (3) (D) in Theorem 5.1.1 ($k=n-1$ in this case) or (7.1) in Theorem 5.2.2 $(k=n-2$ in this case). Let $f: X \rightarrow C$ be its projection. Then for every j with $1 \leq j \leq k$ there exists an ample line bundle $B_{j} \in \operatorname{Pic}(C)$ such that $K_{X}+n L_{j}=f^{*}\left(B_{j}\right)$. Hence $n\left(K_{X}+L_{b_{1}}+\cdots+L_{b_{n}}\right)=f^{*}\left(B_{b_{1}}+\cdots+B_{b_{n}}\right)$ for any $\left(b_{1}, \ldots, b_{n}\right)$ with $\left\{b_{1}, \ldots, b_{n}\right\} \subset\{1, \ldots, k\}$. On the other hand, by assumption, there exists a line bundle $D \in \operatorname{Pic}(C)$ such that $K_{X}+L_{b_{1}}+\cdots+L_{b_{n}}=f^{*}(D)$. Hence D is ample because $\operatorname{deg} D=\operatorname{deg}\left(B_{b_{1}}+\cdots+B_{b_{n}}\right) / n>0$. Therefore we see that $\left(X, L_{b_{1}}, \ldots, L_{b_{n}}\right)$ is a scroll over C.

Remark 5.2.4. By Theorem 5.2.1, Remark 5.2.1 and Theorem 5.2.2, we get the following:

Let X be a smooth projective variety of dimension $n \geq 4$ and let L_{1}, \ldots, L_{n-2} be ample line bundles on X. Let $\left(Y, A_{1}, \ldots, A_{n-2}\right)$ be a reduction of $\left(X, L_{1}, \ldots, L_{n-2}\right)$. Assume that $K_{X}+L_{1}+\cdots+L_{n-2}$ is not nef. Then there exists $\sigma \in \mathbb{S}_{n-2}$ such that $\left(X, L_{\sigma(1)}, \ldots, L_{\sigma(n-2)}\right)$ is one of the following:
(1) $\left(\mathbf{P}^{n}, \mathcal{O}_{\mathbf{P}^{n}}(1), \ldots, \mathcal{O}_{\mathbf{P}^{n}}(1)\right)$.
(2) $n \geq 5$ and $\left(\mathbf{P}^{n}, \mathcal{O}_{\mathbf{P}^{n}}(1), \ldots, \mathcal{O}_{\mathbf{P}^{n}}(1), \mathcal{O}_{\mathbf{P}^{n}}(2), \mathcal{O}_{\mathbf{P}^{n}}(2)\right)$.
(3) $\left(\mathbf{P}^{n}, \mathcal{O}_{\mathbf{P}^{n}}(1), \ldots, \mathcal{O}_{\mathbf{P}^{n}}(1), \mathcal{O}_{\mathbf{P}^{n}}(2)\right)$.
(4) $\left(\mathbf{P}^{n}, \mathcal{O}_{\mathbf{P}^{n}}(1), \ldots, \mathcal{O}_{\mathbf{P}^{n}}(1), \mathcal{O}_{\mathbf{P}^{n}}(3)\right)$.
(5) $\quad\left(\mathbf{Q}^{n}, \mathcal{O}_{\mathbf{Q}^{n}}(1), \ldots, \mathcal{O}_{\mathbf{Q}^{n}}(1)\right)$.
(6) $\left(\mathbf{Q}^{n}, \mathscr{O}_{\mathbf{Q}^{n}}(1), \ldots, \mathcal{O}_{\mathbf{Q}^{n}}(1), \mathcal{O}_{\mathbf{Q}^{n}}(2)\right)$.
(7) X is a \mathbf{P}^{n-1}-bundle over a smooth curve C and one of the following holds. (Here F denotes its fiber).
(7.1) $\left.L_{\sigma(j)}\right|_{F}=\mathcal{O}_{\mathbf{P}^{n-1}}(1)$ for every integer j with $1 \leq j \leq n-2$.
(7.2) $\left.L_{\sigma(j)}\right|_{F}=\mathcal{O}_{\mathbf{P}^{n-1}}(1)$ for every integer j with $1 \leq j \leq n-3$ and $\left.L_{\sigma(n-2)}\right|_{F}=\mathcal{O}_{\mathbf{P}^{n-1}}(2)$.
(8) $K_{X}+(n-1) L_{j}=\mathcal{O}_{X}$ for any j. Moreover $L_{j}=L_{k}$ for any (j, k) with $j \neq k$.
(9) There exist a smooth projective curve W and a surjective morphism $f: X \rightarrow W$ with connected fibers such that $\left(X, L_{i}\right)$ is a quadric fibration over W with respect to f for every integer i with $1 \leq i \leq n-2$.
(10) There exist a smooth projective surface S and a surjective morphism $f: X \rightarrow S$ with connected fibers such that f is a \mathbf{P}^{n-2}-bundle over S and $\left(X, L_{j}\right)$ is a scroll over S with respect to f for every integer j with $1 \leq j \leq n-2$.
(11) $n=4$ and $\left(Y, A_{1}, A_{2}\right) \cong\left(\mathbf{P}^{4}, \mathcal{O}_{\mathbf{P}^{4}}(2), \mathcal{O}_{\mathbf{P}^{4}}(2)\right)$.
(12) $K_{Y}+A_{1}+\cdots+A_{n-2}$ is nef.

Theorem 5.2.3. Let $\left(X, L_{1}, \ldots, L_{n-2}\right)$ be an n-dimensional multi-polarized manifold with $n \geq 4$. Assume that $K_{X}+L_{1}+\cdots+L_{n-2}$ is nef. Then one of the following holds.
(1) $K_{X}+L_{1}+\cdots+L_{n-2}=\mathcal{O}_{X}$.
(2) $\left(X, L_{1}, \ldots, L_{n-2}\right)$ is a Del Pezzo fibration over a smooth curve.
(3) $\left(X, L_{1}, \ldots, L_{n-2}\right)$ is a quadric fibration over a normal surface.
(4) $\left(X, L_{1}, \ldots, L_{n-2}\right)$ is a scroll over a normal 3-fold.
(5) $K_{X}+L_{1}+\cdots+L_{n-2}$ is nef and big.

Proof. If $K_{X}+L_{1}+\cdots+L_{n-2}$ is ample, then ($X, L_{1}, \ldots, L_{n-2}$) satisfies (5). So we may assume that $K_{X}+L_{1}+\cdots+L_{n-2}$ is not ample. Then we can take the nef value morphism $\phi: X \rightarrow Y$ of $\left(X, L_{1}+\cdots+L_{n-2}\right)$, where Y is a normal projective variety.

Assume that $\operatorname{dim} Y<\operatorname{dim} X$. Let F be a general fiber of ϕ. Then $K_{F}+\left.L_{1}\right|_{F}+\cdots+\left.L_{n-2}\right|_{F}=\mathcal{O}_{F}$. Hence $\operatorname{dim} F \geq n-3$ by Remark 3.2. Namely, $\operatorname{dim} Y \leq 3$. Therefore we get the type (1), (2), (3) and (4).

Assume that $\operatorname{dim} Y=\operatorname{dim} X$. Then $K_{X}+L_{1}+\cdots+L_{n-2}$ is nef and big.
Therefore we get the assertion.

6. The first sectional geometric genus

In this section, we consider the first sectional geometric genus of multipolarized manifolds.

6.1. Fundamental results

Proposition 6.1.1. Let X be a smooth projective variety of dimension n, and let L_{1}, \ldots, L_{n-1} be line bundles on X. Then

$$
g_{1}\left(X, L_{1}, \ldots, L_{n-1}\right)=1+\frac{1}{2}\left(K_{X}+\sum_{j=1}^{n-1} L_{j}\right) L_{1} \cdots L_{n-1} .
$$

Proof. We use [13, Corollary 2.7] for $i=1$. Here we note the following: the proof of [13, Theorem 2.4] shows that the equality in [13, Corollary 2.7] holds for any line bundles L_{1}, \ldots, L_{n-i}. By [13, Corollary 2.7], there are the following terms in $g_{1}\left(X, L_{1}, \ldots, L_{n-1}\right)$:

$$
\left(\sum_{j=1}^{n-1} L_{j}\right) L_{1} \cdots L_{n-1}
$$

and

$$
L_{1} \cdots L_{n-1} T_{1}(X)
$$

Here $T_{1}(X)$ denotes the Todd polynomial of weight 1 of the tangent bundle \mathscr{T}_{X} (see [13, Definition 1.7]). The coefficient of $\left(\sum_{j=1}^{n-1} L_{j}\right) L_{1} \cdots L_{n-1}$ is $1 / 2$ and the coefficient of $L_{1} \cdots L_{n-1} T_{1}(X)$ is $(-1)^{1} /(1!\cdots 1!)=-1$. Since $T_{1}(X)=$ $(1 / 2) c_{1}(X)=-(1 / 2) K_{X}$, we obtain

$$
\begin{aligned}
g_{1}\left(X, L_{1}, \ldots, L_{n-1}\right) & =1+\frac{1}{2}\left(\sum_{j=1}^{n-1} L_{j}\right) L_{1} \cdots L_{n-1}+\frac{1}{2} K_{X} L_{1} \cdots L_{n-1} \\
& =1+\frac{1}{2}\left(K_{X}+\sum_{j=1}^{n-1} L_{j}\right) L_{1} \cdots L_{n-1} .
\end{aligned}
$$

So we get the assertion.
By setting $\mathscr{E}:=L_{1} \oplus \cdots \oplus L_{n-1}$, we can obtain the following theorems by Remark 3.1 and [23, Theorems 1 and 2].

Theorem 6.1.1. Let X be a smooth projective variety of dimension $n \geq 3$. Let L_{1}, \ldots, L_{n-1} be ample line bundles on X. Then $g_{1}\left(X, L_{1}, \ldots, L_{n-1}\right) \geq 0$.

If $g_{1}\left(X, L_{1}, \ldots, L_{n-1}\right)=0$, then $\left(X, L_{\sigma(1)}, \ldots, L_{\sigma(n-1)}\right)$ is one of the following: (Here $\sigma \in \mathfrak{\Im}_{n-1}$.)
(A) $\left(\mathbf{P}^{n}, \mathcal{O}_{\mathbf{P}^{n}}(1), \ldots, \mathcal{O}_{\mathbf{P}^{n}}(1)\right)$.
(B) $\left(\mathbf{P}^{n}, \mathcal{O}_{\mathbf{P}^{n}}(2), \mathcal{O}_{\mathbf{P}^{n}}(1), \ldots, \mathcal{O}_{\mathbf{P}^{n}}(1)\right)$.
(C) $\left(\mathbf{Q}^{n}, \mathcal{O}_{\mathbf{Q}^{n}}(1), \ldots, \mathcal{O}_{\mathbf{Q}^{n}}(1)\right)$.
(D) X is a \mathbf{P}^{n-1}-bundle over a projective line \mathbf{P}^{1} and $\left.L_{j}\right|_{F}=\mathcal{O}_{\mathbf{P}^{n-1}}(1)$ for any fiber F and j with $1 \leq j \leq n-1$.

Theorem 6.1.2. Let X be a smooth projective variety of dimension $n \geq 3$ and let L_{1}, \ldots, L_{n-1} be ample line bundles on X. Assume that $g_{1}\left(X, L_{1}, \ldots, L_{n-1}\right)=1$. Then $\left(X, L_{1}, \ldots, L_{n-1}\right)$ is one of the following:
(1) $\left(X, L_{1}, \ldots, L_{n-1}\right)$ satisfies $K_{X}+L_{1}+\cdots+L_{n-1}=\mathcal{O}_{X}$.
(2) X is a \mathbf{P}^{n-1}-bundle over an elliptic curve C and $\left.L_{j}\right|_{F}=\mathcal{O}_{\mathbf{P}^{n-1}}(1)$ for any fiber F and any integer j with $1 \leq j \leq n-1$.

Here we note that we can characterize $\left(X, L_{1}, \ldots, L_{n-1}\right)$ in the case (1) in Theorem 6.1.2.

Theorem 6.1.3. Let X be a smooth projective variety of dimension $n \geq 3$. Let $L_{1}, L_{2}, \ldots, L_{n-1}$ be ample line bundles on X. Assume that $K_{X}+L_{1}+\cdots+$ $L_{n-1}=\mathcal{O}_{X}$. Then there exists $\sigma \in \mathbb{G}_{n-1}$ such that $\left(X, L_{\sigma(1)}, L_{\sigma(2)}, \ldots, L_{\sigma(n-1)}\right)$ is one of the following:
(A) (X, L) is a Del Pezzo manifold for some ample line bundle L on X and $L_{j}=L$ for every integer j with $1 \leq j \leq n-1$.
(B) $\left(\mathbf{P}^{n}, \mathcal{O}_{\mathbf{P}^{n}}(3), \mathscr{O}_{\mathbf{P}^{n}}(1), \ldots, \mathcal{O}_{\mathbf{P}^{n}}(1)\right)$.
(C) $n \geq 4$ and $\left(\mathbf{P}^{n}, \mathcal{O}_{\mathbf{P}^{n}}(2), \mathcal{O}_{\mathbf{P}^{n}}(2), \mathcal{O}_{\mathbf{P}^{n}}(1), \ldots, \mathcal{O}_{\mathbf{P}^{n}}(1)\right)$.
(D) $\left(\mathbf{Q}^{n}, \mathcal{O}_{\mathbf{Q}^{n}}(2), \mathcal{O}_{\mathbf{Q}^{n}}(1), \ldots, \mathcal{O}_{\mathbf{Q}^{n}}(1)\right)$.
(E) $X \cong \mathbf{P}^{2} \times \mathbf{P}^{1}, \quad L_{1}=p_{1}^{*}\left(\mathcal{O}_{\mathbf{P}^{2}}(2)\right)+p_{2}^{*}\left(\mathcal{O}_{\mathbf{P}^{1}}(1)\right) \quad$ and $\quad L_{2}=p_{1}^{*}\left(\mathcal{O}_{\mathbf{P}^{2}}(1)\right)+$ $p_{2}^{*}\left(\mathcal{O}_{\mathbf{P}^{1}}(1)\right)$, where p_{i} is the ith projection.

Proof. First we note that $h^{1}\left(\mathcal{O}_{X}\right)=0$ by assumption.
(1) Assume that $K_{X}+(n-1) L_{j}$ is nef for any j. Then

$$
\begin{aligned}
\sum_{j=1}^{n-1}\left(K_{X}+(n-1) L_{j}\right) & =(n-1)\left(K_{X}+L_{1}+\cdots+L_{n-1}\right) \\
& =\mathcal{O}_{X}
\end{aligned}
$$

Therefore $\left(K_{X}+(n-1) L_{j}\right) L_{j}^{n-1}=0$. Since $K_{X}+(n-1) L_{j}$ is nef, we have $K_{X}+(n-1) L_{j}=\mathcal{O}_{X}$, that is, $\left(X, L_{j}\right)$ is a Del Pezzo manifold. Moreover since $(n-1) L_{j}=(n-1) L_{k}$ for any $j \neq k$, we have $L_{j} \equiv L_{k}$. But since $h^{1}\left(\mathcal{O}_{X}\right)=0$ and $H^{2}(X, \mathbf{Z})$ is torsion free, we have $L_{j}=L_{k}$. So we get the type (A) above.
(2) Assume that $K_{X}+(n-1) L_{j}$ is not nef for some j. Then by the adjunction theory, we see that X is one of the following type:
(2.1) $X \cong \mathbf{P}^{n}$.
(2.2) $X \cong \mathbf{Q}^{n}$.
(2.3) X is a \mathbf{P}^{n-1}-bundle over a smooth curve B.
(2.1) First we consider the case where $X \cong \mathbf{P}^{n}$. Then by assumption we get $\left(L_{1}, \ldots, L_{n-1}\right)$ is isomorphic to

$$
\left(\mathcal{O}_{\mathbf{P}^{n}}(3), \mathcal{O}_{\mathbf{P}^{n}}(1), \ldots, \mathcal{O}_{\mathbf{P}^{n}}(1)\right) \quad \text { or } \quad\left(\mathcal{O}_{\mathbf{P}^{n}}(2), \mathcal{O}_{\mathbf{P}^{n}}(2), \mathcal{O}_{\mathbf{P}^{n}}(1), \ldots, \mathcal{O}_{\mathbf{P}^{n}}(1)\right) .
$$

Here we note that $n \geq 4$ in the latter case because $K_{X}+(n-1) L_{j}$ is not nef for some j.
(2.2) Next we consider the case where $X \cong \mathbf{Q}^{n}$. Then by assumption we get the type (D) above.
(2.3) Finally we consider the case where X is a \mathbf{P}^{n-1}-bundle over a smooth curve B. Since $h^{1}\left(\mathcal{O}_{X}\right)=0$, we see that $B \cong \mathbf{P}^{1}$. Then there exists a vector bundle \mathscr{E} of rank n on X such that $\mathscr{E} \cong \mathcal{O}_{\mathbf{P}^{1}} \oplus \mathcal{O}_{\mathbf{P}^{1}}\left(a_{1}\right) \oplus \cdots \oplus \mathcal{O}_{\mathbf{p}^{1}}\left(a_{n-1}\right)$ and $X \cong \mathbf{P}_{\mathbf{P}^{1}}(\mathscr{E})$, where $a_{j} \geq 0$ for every j. Then by [2, Lemma 3.2.4], $a H(\mathscr{E})+b F$ is ample if and only if $a>0$ and $b>0$. Here we note that by the assumption that $\mathcal{O}_{X}\left(K_{X}+L_{1}+\cdots+L_{n-1}\right)=\mathcal{O}_{X}$, we may assume that $\left.L_{1}\right|_{F}=\mathcal{O}_{\mathbf{P}^{n-1}}(2)$ and $\left.L_{j}\right|_{F}=\mathcal{O}_{\mathbf{P}^{n-1}}(1)$ for any fiber F and every integer j with $2 \leq j \leq n-1$. Hence we can write $L_{1}=2 H(\mathscr{E})+\pi^{*}\left(B_{1}\right)$ and $L_{j}=H(\mathscr{E})+\pi^{*}\left(B_{j}\right)$ for every integer j with $2 \leq j \leq n-1$, where $B_{j} \in \operatorname{Pic}\left(\mathbf{P}^{1}\right)$. Set $b_{j}:=\operatorname{deg} B_{j}$. Then $b_{j} \geq 1$ because L_{j} is ample. Since $K_{X}=-n H(\mathscr{E})+\pi^{*}\left(K_{\mathbf{P}^{1}}+\operatorname{det} \mathscr{E}\right)$, we have $K_{X}+L_{1}+\cdots+$ $L_{n-1}=\pi^{*}\left(K_{\mathbf{P}^{1}}+\operatorname{det} \mathscr{E}+B_{1}+\cdots+B_{n-1}\right)$. Since $\operatorname{deg} \mathscr{E} \geq 0$, we see that

$$
\begin{aligned}
\operatorname{deg}\left(K_{\mathbf{P}^{1}}+\operatorname{det} \mathscr{E}+B_{1}+\cdots+B_{n-1}\right) & =-2+\operatorname{deg} \mathscr{E}+b_{1}+\cdots+b_{n-1} \\
& \geq n-3 \geq 0 .
\end{aligned}
$$

By the assumption that $\mathcal{O}_{X}\left(K_{X}+L_{1}+\cdots+L_{n-1}\right)=\mathcal{O}_{X}$, we get $\operatorname{deg}\left(K_{\mathbf{P}^{1}}+\right.$ $\left.\operatorname{det} \mathscr{E}+B_{1}+\cdots+B_{n-1}\right)=0$. Hence $n=3, \operatorname{deg} \mathscr{E}=0$ and $b_{j}=1$ for every j. In particular $\mathscr{E} \cong \mathcal{O}_{\mathbf{P}^{1}} \oplus \mathcal{O}_{\mathbf{P}^{1}} \oplus \mathcal{O}_{\mathbf{P}^{1}}$. Therefore we get the type (E).

Remark 6.1.1. In general, let \mathscr{F} be an ample vector bundle of rank $n-1$ on a smooth projective variety X of dimension n. Then a classification of (X, \mathscr{F}) with $\mathcal{O}_{X}\left(K_{X}+\operatorname{det} \mathscr{F}\right)=\mathcal{O}_{X}$ has been obtained. See [25].

By Corollary 4.2, we get the following:
Theorem 6.1.4. Let X be a smooth projective variety of dimension $n \geq 3$, let i be an integer with $0 \leq i \leq n-1$, and let L_{1}, \ldots, L_{n-i} be ample and spanned line bundles on X. Then $g_{i}\left(X, L_{1}, \ldots, L_{n-i}\right) \geq h^{i}\left(\mathcal{O}_{X}\right)$.

By considering this theorem, it is natural to classify $\left(X, L_{1}, \ldots, L_{n-i}\right)$ such that $\mathrm{Bs}\left|L_{j}\right|=\emptyset$ for any j with $1 \leq j \leq n-i$ and $g_{i}\left(X, L_{1}, \ldots, L_{n-i}\right)=h^{i}\left(\mathcal{O}_{X}\right)$. Here we consider the case where $i=1$. Set $\mathscr{E}:=L_{1} \oplus \cdots \oplus L_{n-1}$. Then \mathscr{E} is an ample vector bundle of rank $n-1$ on X. Since, as we said in Remark 3.1, $g_{1}\left(X, L_{1}, \ldots, L_{n-1}\right)$ is equal to the curve genus $g(X, \mathscr{E})$ of \mathscr{E}, we can get the following theorem by [22, Theorem].

Theorem 6.1.5. Let X be a smooth projective variety of dimension $n \geq 3$, and let L_{1}, \ldots, L_{n-1} be ample and spanned line bundles on X. If $g_{1}\left(X, L_{1}, \ldots\right.$, $\left.L_{n-1}\right)=h^{1}\left(\mathcal{O}_{X}\right)$, then $\left(X, L_{1}, \ldots, L_{n-1}\right)$ is one of the following:
(1) $g_{1}\left(X, L_{1}, \ldots, L_{n-1}\right)=0$.
(2) X is a \mathbf{P}^{n-1}-bundle over a smooth curve B and $L_{j}=H(\mathscr{E})+f^{*}\left(D_{j}\right)$ for any j with $1 \leq j \leq n-1$, where \mathscr{E} is a vector bundle of rank n on B such that $X \cong \mathbf{P}_{B}(\mathscr{E}), H(\mathscr{E})$ is the tautological line bundle on $X, f: X \rightarrow B$ is its fibration, and $D_{j} \in \operatorname{Pic}(B)$ for any j.

Moreover we can also get the following theorem by Remark 3.1 and [15, Theorems 5.2 and 5.3].

Theorem 6.1.6. Let X be a smooth projective variety of dimension $n \geq 3$. Assume that there exists a fiber space $f: X \rightarrow C$, where C is a smooth projective curve. Let L_{1}, \ldots, L_{n-1} be ample line bundles on X. Then $g_{1}\left(X, L_{1}, \ldots, L_{n-1}\right)$ $\geq g(C)$. Moreover if $g_{1}\left(X, L_{1}, \ldots, L_{n-1}\right)=g(C)$, then X is a \mathbf{P}^{n-1}-bundle on C via f and $\left.L_{j}\right|_{F} \cong \mathcal{O}_{\mathbf{P}^{n-1}}(1)$ for any fiber F of f and every integer j with $1 \leq j \leq$ $n-1$.

Next we consider Conjecture 4.1 for the case where $i=1$ and $\kappa(X)=0$ or 1 .
Theorem 6.1.7. Let X be a smooth projective variety of dimension $n \geq 3$. Let L_{1}, \ldots, L_{n-1} be ample line bundles on X. Assume that $L_{1} \cdots L_{n-1} L_{j} \geq 2$ for any j with $1 \leq j \leq n-1$ and $\kappa(X)=0$ or 1 . Then $g_{1}\left(X, L_{1}, \ldots, L_{n-1}\right) \geq q(X)$.

Proof. If $\kappa(X)=0$, then $h^{1}\left(\mathcal{O}_{X}\right) \leq n$ by the classification theory of manifolds (see [17, Corollary 2]). Hence

$$
\begin{aligned}
g_{1}\left(X, L_{1}, \ldots, L_{n-1}\right) & =1+\frac{1}{2}\left(K_{X}+L_{1}+\cdots+L_{n-1}\right) L_{1} \cdots L_{n-1} \\
& \geq 1+(n-1)=n \geq h^{1}\left(\mathcal{O}_{X}\right) .
\end{aligned}
$$

Next we consider the case where $\kappa(X)=1$. By taking the Iitaka fibration of X, there exists a smooth projective variety X^{\prime}, a smooth projective curve C^{\prime}, a birational morphism $\mu: X^{\prime} \rightarrow X$ and a fiber space $f^{\prime}: X^{\prime} \rightarrow C^{\prime}$ such that $\kappa\left(F^{\prime}\right)=0$ for any general fiber F^{\prime} of f^{\prime}. In this case $h^{1}\left(\mathcal{O}_{X^{\prime}}\right) \leq h^{1}\left(\mathcal{O}_{C^{\prime}}\right)+$ $h^{1}\left(\mathcal{O}_{F^{\prime}}\right) \leq g\left(C^{\prime}\right)+n-1$ by Lemma 3.2 and [17, Corollary 2]. Here we note that by the proof of [8, Theorem 1.3.3] we have $K_{X^{\prime} / C^{\prime}}\left(\mu^{*} L_{1}\right) \cdots\left(\mu^{*} L_{n-1}\right) \geq 0$. We also note that

$$
\begin{aligned}
& g_{1}\left(X^{\prime}, \mu^{*}\left(L_{1}\right), \ldots, \mu^{*}\left(L_{n-1}\right)\right) \\
& \quad=1+\frac{1}{2}\left(K_{X^{\prime} / C^{\prime}}+\mu^{*}\left(L_{1}\right)+\cdots+\mu^{*}\left(L_{n-1}\right)\right) \mu^{*}\left(L_{1}\right) \cdots \mu^{*}\left(L_{n-1}\right) \\
& \quad+\left(g\left(C^{\prime}\right)-1\right) \mu^{*}\left(L_{1}\right) \cdots \mu^{*}\left(L_{n-1}\right) F^{\prime} .
\end{aligned}
$$

If $g\left(C^{\prime}\right) \geq 1$, then since $\mu^{*}\left(L_{1}\right) \cdots \mu^{*}\left(L_{n-1}\right) F^{\prime} \geq 1$ we see that

$$
\begin{aligned}
g_{1}\left(X, L_{1}, \ldots, L_{n-1}\right) & =g_{1}\left(X^{\prime}, \mu^{*} L_{1}, \ldots, \mu^{*} L_{n-1}\right) \\
& \geq g\left(C^{\prime}\right)+\frac{1}{2}\left(\mu^{*} L_{1}+\cdots+\mu^{*} L_{n-1}\right)\left(\mu^{*} L_{1}\right) \cdots\left(\mu^{*} L_{n-1}\right) \\
& \geq g\left(C^{\prime}\right)+n-1 \\
& \geq h^{1}\left(\mathcal{O}_{X^{\prime}}\right)=h^{1}\left(\mathcal{O}_{X}\right) .
\end{aligned}
$$

If $g\left(C^{\prime}\right)=0$, then $h^{1}\left(\mathcal{O}_{X^{\prime}}\right) \leq n-1$ and by assumption here we get

$$
\begin{aligned}
g_{1}\left(X, L_{1}, \ldots, L_{n-1}\right) & =1+\frac{1}{2}\left(K_{X}+L_{1}+\cdots+L_{n-1}\right) L_{1} \cdots L_{n-1} \\
& \geq 1+(n-1)=n>h^{1}\left(\mathcal{O}_{X^{\prime}}\right)=h^{1}\left(\mathcal{O}_{X}\right) .
\end{aligned}
$$

This completes the proof of Theorem 6.1.7.

6.2. The case of $\mathbf{3}$-folds.

Here we consider the case where X is a 3 -fold. The method is similar to that of [9]. We fix the notation which will be used below.

Notation 6.2.1. Let $\left(X, L_{1}\right)$ be a polarized manifold with $\operatorname{dim} X=3$ and $h^{0}\left(L_{1}\right) \geq 2$. Let Λ be a linear pencil which is contained in $\left|L_{1}\right|$ such that $\Lambda=\Lambda_{M}+Z$, where Λ_{M} is the movable part of Λ and Z is the fixed part of $\left|L_{1}\right|$. We will make a fiber space by using this Λ. Let $\varphi: X \rightarrow \mathbf{P}^{1}$ be the rational map associated with Λ_{M}, and $\theta: X^{\prime} \rightarrow X$ an elimination of indeterminacy of φ. So we obtain a surjective morphism $\varphi^{\prime}: X^{\prime} \rightarrow \mathbf{P}^{1}$. By taking the Stein factorization, if necessary, there exist a smooth projective curve C, a finite morphism $\delta: C \rightarrow \mathbf{P}^{1}$ and a fiber space $f^{\prime}: X^{\prime} \rightarrow C$ such that $\varphi^{\prime}=\delta \circ f^{\prime}$. Let $a_{\Lambda}:=\operatorname{deg} \delta$ and F^{\prime} a general fiber of f^{\prime}.

Theorem 6.2.1. Let X be a smooth projective variety of dimension 3. Let L_{1}, L_{2} be ample line bundles on X. Assume that $h^{0}\left(L_{1}\right) \geq 2$ and $h^{0}\left(L_{2}\right) \geq 1$. Then $g_{1}\left(X, L_{1}, L_{2}\right) \geq q(X)$.

Proof. If $K_{X}+L_{1}+L_{2}$ is not nef, then by Theorem 5.1.1, Remark 5.2.3 and [13, Example $2.1(\mathrm{~A}),(\mathrm{B}),(\mathrm{E})$ and (H)] we get $g_{1}\left(X, L_{1}, L_{2}\right) \geq q(X)$.

So we may assume that $K_{X}+L_{1}+L_{2}$ is nef. Here we use Notation 6.2.1.
(I) If $g(C) \geq 1$, then θ is the identity mapping. By Proposition 6.1.1, we have

$$
\begin{aligned}
g_{1}\left(X, L_{1}, L_{2}\right) & =1+\frac{1}{2}\left(K_{X}+L_{1}+L_{2}\right) L_{1} L_{2} \\
& =1+\frac{1}{2}\left(K_{X / C}+L_{1}+L_{2}\right) L_{1} L_{2}+(g(C)-1) L_{1} L_{2} F^{\prime}
\end{aligned}
$$

Since $K_{X / C}+L_{1}+L_{2}$ is f^{\prime}-nef and $\operatorname{dim} C=1$, we see that $K_{X / C}+L_{1}+L_{2}$ is nef by Lemma 3.1. Here we note that $a_{\Lambda} \geq 2$ because $g(C) \geq 1$. Since $L_{1}-a_{\Lambda} F^{\prime}$ is effective, we obtain

$$
\begin{aligned}
g_{1}\left(X, L_{1}, L_{2}\right) & =1+\frac{1}{2}\left(K_{X / C}+L_{1}+L_{2}\right) L_{1} L_{2}+(g(C)-1) L_{1} L_{2} F^{\prime} \\
& \geq 1+\frac{1}{2}\left(K_{X / C}+L_{1}+L_{2}\right)\left(a_{\Lambda} F^{\prime}\right) L_{2}+(g(C)-1) L_{1} L_{2} F^{\prime} \\
& \geq g(C)+\left.\left(K_{F^{\prime}}+\left.L_{1}\right|_{F^{\prime}}+\left.L_{2}\right|_{F^{\prime}}\right) L_{2}\right|_{F^{\prime}} .
\end{aligned}
$$

If $h^{1}\left(\mathcal{O}_{F^{\prime}}\right)=0$, then $h^{1}\left(\mathcal{O}_{X}\right)=g(C)$. Moreover since $K_{F^{\prime}}+\left.L_{1}\right|_{F^{\prime}}+\left.L_{2}\right|_{F^{\prime}}$ is nef, we get $g_{1}\left(X, L_{1}, L_{2}\right) \geq g(C)$. Hence $g_{1}\left(X, L_{1}, L_{2}\right) \geq g(C)=h^{1}\left(\mathcal{O}_{X}\right)$. Hence we may assume that $h^{1}\left(\mathcal{O}_{F^{\prime}}\right)>0$.

Since $h^{0}\left(\left.L_{2}\right|_{F^{\prime}}\right)>0$ and $\operatorname{dim} F^{\prime}=2$, we have $g\left(\left.L_{2}\right|_{F^{\prime}}\right) \geq h^{1}\left(\mathcal{O}_{F^{\prime}}\right)$ ([7, Lemma 1.2 (2)]). Therefore

$$
g_{1}\left(X, L_{1}, L_{2}\right) \geq g(C)+2 h^{1}\left(\mathcal{O}_{F^{\prime}}\right)-2+\left(\left.L_{1}\right|_{F^{\prime}}\right)\left(\left.L_{2}\right|_{F^{\prime}}\right) .
$$

Then by Lemma 3.2

$$
\begin{aligned}
g_{1}\left(X, L_{1}, L_{2}\right) & \geq g(C)+h^{1}\left(\mathcal{O}_{F^{\prime}}\right)+h^{1}\left(\mathcal{O}_{F^{\prime}}\right)-2+\left(\left.L_{1}\right|_{F^{\prime}}\right)\left(\left.L_{2}\right|_{F^{\prime}}\right) \\
& \geq g(C)+h^{1}\left(\mathcal{O}_{F^{\prime}}\right) \\
& \geq h^{1}\left(\mathcal{O}_{X}\right) .
\end{aligned}
$$

(II) Assume that $g(C)=0$. Let D be an irreducible and reduced divisor on X such that the strict transform of D by θ is a general fiber F^{\prime}. Then $L_{1}-D$ is linearly equivalent to an effective divisor. Here we note that $K_{X}+L_{1}+L_{2}$ is nef. So we have

$$
\begin{aligned}
g_{1}\left(X, L_{1}, L_{2}\right) & =g_{1}\left(X^{\prime}, \theta^{*} L_{1}, \theta^{*} L_{2}\right) \\
& =1+\frac{1}{2}\left(K_{X^{\prime}}+\theta^{*} L_{1}+\theta^{*} L_{2}\right)\left(\theta^{*} L_{1}\right)\left(\theta^{*} L_{2}\right) \\
& =1+\frac{1}{2} \theta^{*}\left(K_{X}+L_{1}+L_{2}\right)\left(\theta^{*} L_{1}\right)\left(\theta^{*} L_{2}\right) \\
& \geq 1+\frac{1}{2} \theta^{*}\left(K_{X}+L_{1}+L_{2}\right)\left(\theta^{*} L_{2}\right) F^{\prime} \\
& =1+\frac{1}{2}\left(\theta^{*}\left(K_{X}+D\right)+\theta^{*}\left(L_{1}-D\right)+\theta^{*} L_{2}\right)\left(\theta^{*} L_{2}\right) F^{\prime}
\end{aligned}
$$

Since $\theta^{*}\left(L_{1}-D\right)\left(\theta^{*} L_{2}\right) F^{\prime} \geq 0$, we have

$$
g\left(X, L_{1}, L_{2}\right) \geq 1+\frac{1}{2}\left(\theta^{*}\left(K_{X}+D\right)+\theta^{*} L_{2}\right)\left(\theta^{*} L_{2}\right) F^{\prime}
$$

By the same argument as in the proof of [9, Claim 2.4], we can prove

$$
\theta^{*}\left(K_{X}+D\right)\left(\theta^{*} L_{2}\right) F^{\prime} \geq\left(K_{X^{\prime}}+F^{\prime}\right)\left(\theta^{*} L_{2}\right) F^{\prime}
$$

Hence

$$
\begin{aligned}
g_{1}\left(X, L_{1}, L_{2}\right) & \geq 1+\frac{1}{2}\left(K_{X^{\prime}}+F^{\prime}+\theta^{*} L_{2}\right)\left(\theta^{*} L_{2}\right) F^{\prime} \\
& =g\left(\left.\theta^{*} L_{2}\right|_{F^{\prime}}\right) .
\end{aligned}
$$

Since $h^{0}\left(\left.\theta^{*}\left(L_{2}\right)\right|_{F^{\prime}}\right)>0$, we get $g\left(\left.\theta^{*}\left(L_{2}\right)\right|_{F^{\prime}}\right) \geq h^{1}\left(\mathcal{O}_{F^{\prime}}\right)$ by [7, Lemma $\left.1.2(2)\right]$. Therefore by Lemma 3.2

$$
g_{1}\left(X, L_{1}, L_{2}\right) \geq g\left(\left.\theta^{*}\left(L_{2}\right)\right|_{F^{\prime}}\right) \geq h^{1}\left(\mathcal{O}_{F^{\prime}}\right) \geq h^{1}\left(\mathcal{O}_{X^{\prime}}\right)=h^{1}\left(\mathcal{O}_{X}\right) .
$$

This completes the proof.
Theorem 6.2.2. Let X be a smooth projective variety of dimension 3 and let L_{1} and L_{2} be ample line bundles on X with $h^{0}\left(L_{1}\right) \geq 2$ and $h^{0}\left(L_{2}\right) \geq 1$. Let $\Lambda \subset\left|L_{1}\right|$ be a linear pencil, and we use Notation 6.2.1. Assume that for some $\sigma \in \mathbb{S}_{2}\left(X, L_{\sigma(1)}, L_{\sigma(2)}\right)$ is neither of the following:
(A) $\left(\mathbf{P}^{3}, \mathcal{O}_{\mathbf{P}^{3}}(1), \mathcal{O}_{\mathbf{P}^{3}}(1)\right)$.
(B) $\left(\mathbf{P}^{3}, \mathcal{O}_{\mathbf{P}^{3}}(2), \mathcal{O}_{\mathbf{P}^{3}}(1)\right)$.
(C) $\left(\mathbf{Q}^{3}, \mathscr{O}_{\mathbf{Q}^{3}}(1), \mathscr{O}_{\mathbf{Q}^{3}}(1)\right)$.
(D) X is a \mathbf{P}^{2}-bundle over a smooth projective curve and $\left.L_{j}\right|_{F}=\mathcal{O}_{\mathbf{P}^{2}}(1)$ for any fiber F and $j=1,2$.
Then
(1) $g_{1}\left(X, L_{1}, L_{2}\right) \geq a_{\Lambda} q(X)$ if $g(C)=0$.
(2) $g_{1}\left(X, L_{1}, L_{2}\right) \geq q(X)+\left(a_{\Lambda}-1\right) q\left(F^{\prime}\right)$ if $g(C) \geq 1$.

Proof. If $K_{X}+L_{1}+L_{2}$ is not nef, then ($\left.X, L_{1}, L_{2}\right)$ is one of the types from (A) to (D) above by Theorem 5.1.1 (3). So we may assume that $K_{X}+L_{1}+L_{2}$ is nef. Let Z, θ, f^{\prime} and C be as in Notation 6.2.1. Let $Z=\sum_{i=1}^{m} b_{i} Z_{i}$, and let Z_{i}^{\prime} be the strict transform of Z_{i} by θ. Let $\theta^{\prime}: X^{\prime \prime} \rightarrow X^{\prime}$ be a birational morphism such that $Z_{i}^{\prime \prime}$ is a smooth surface, where $Z_{i}^{\prime \prime}$ is the strict transform of Z_{i}^{\prime} by θ^{\prime}. We can take a general element $B \in\left|L_{1}\right|$ such that $B=G_{1}+\cdots+G_{a_{\Lambda}}+Z$, where each G_{i} is the image of a general fiber of f^{\prime} by θ. Let $h:=f^{\prime} \circ \theta^{\prime}$ and $\pi:=\theta \circ \theta^{\prime}$. Then the strict transform of G_{i} by π is a general fiber of h. Let $F_{i}^{\prime \prime}$ be the strict transform of G_{i} by π. We note that $Z_{i}^{\prime \prime}$ is the strict transform of Z_{i} by π. Then we have

$$
\begin{aligned}
g_{1}\left(X, L_{1}, L_{2}\right)=g\left(X^{\prime \prime}, \pi^{*} L_{1}, \pi^{*} L_{2}\right) & =1+\frac{1}{2}\left(K_{X^{\prime \prime}}+\pi^{*} L_{1}+\pi^{*} L_{2}\right)\left(\pi^{*} L_{1}\right)\left(\pi^{*} L_{2}\right) \\
& =1+\frac{1}{2} \pi^{*}\left(K_{X}+L_{1}+L_{2}\right)\left(\pi^{*} L_{2}\right)\left(\pi^{*} B\right) \\
& \geq 1+\frac{1}{2} \pi^{*}\left(K_{X}+L_{1}+L_{2}\right)\left(\pi^{*} L_{2}\right)\left(\pi^{*}\left(B_{\mathrm{red}}\right)\right)
\end{aligned}
$$

Put $B_{\mathrm{nr}}:=B-B_{\mathrm{red}}$. Then by the same argument as in [9, Claim 2.9] we have $B_{\mathrm{nr}} B_{\mathrm{red}} L_{2} \geq 0$. Hence

$$
\begin{aligned}
g_{1}\left(X, L_{1}, L_{2}\right) & \geq 1+\frac{1}{2} \pi^{*}\left(K_{X}+L_{1}+L_{2}\right)\left(\pi^{*} L_{2}\right)\left(\pi^{*}\left(B_{\mathrm{red}}\right)\right) \\
& \geq 1+\frac{1}{2}\left(\pi^{*}\left(K_{X}+B_{\mathrm{red}}\right)+\pi^{*} L_{2}\right)\left(\pi^{*} L_{2}\right)\left(\pi^{*}\left(B_{\mathrm{red}}\right)\right) .
\end{aligned}
$$

Moreover since $\pi^{*}\left(B_{\mathrm{red}}\right)-\sum_{i=1}^{a_{\Lambda}} F_{i}^{\prime \prime}-\sum_{i=1}^{m} Z_{i}^{\prime \prime}$ is a π-exceptional effective divisor, we get

$$
\begin{aligned}
g_{1}\left(X, L_{1}, L_{2}\right) \geq & 1+\frac{1}{2}\left(\pi^{*}\left(K_{X}+B_{\mathrm{red}}\right)+\pi^{*} L_{2}\right)\left(\pi^{*} L_{2}\right)\left(\pi^{*}\left(B_{\mathrm{red}}\right)\right) \\
= & 1+\frac{1}{2} \sum_{i=1}^{a_{\Lambda}}\left(\pi^{*}\left(K_{X}+G_{i}\right)+\pi^{*} L_{2}\right)\left(\pi^{*} L_{2}\right) F_{i}^{\prime \prime} \\
& +\frac{1}{2} \sum_{i=1}^{a_{\Lambda}} \pi^{*}\left(B_{\mathrm{red}}-G_{i}\right)\left(\pi^{*} L_{2}\right) F_{i}^{\prime \prime} \\
& +\frac{1}{2} \sum_{i=1}^{m}\left(\pi^{*}\left(K_{X}+Z_{i}\right)+\pi^{*} L_{2}\right)\left(\pi^{*} L_{2}\right) Z_{i}^{\prime \prime} \\
& +\frac{1}{2} \sum_{i=1}^{m} \pi^{*}\left(B_{\mathrm{red}}-Z_{i}\right)\left(\pi^{*} L_{2}\right) Z_{i}^{\prime \prime}
\end{aligned}
$$

Because L_{2} is ample and B is connected, we have

$$
\frac{1}{2}\left(\sum_{i=1}^{a_{\Lambda}} \pi^{*}\left(B_{\mathrm{red}}-G_{i}\right)\left(\pi^{*} L_{2}\right) F_{i}^{\prime \prime}+\sum_{i=1}^{m} \pi^{*}\left(B_{\mathrm{red}}-Z_{i}\right)\left(\pi^{*} L_{2}\right) Z_{i}^{\prime \prime}\right) \geq a_{\Lambda}+m-1
$$

Therefore

$$
\begin{aligned}
g_{1}\left(X, L_{1}, L_{2}\right) \geq & 1+\frac{1}{2} \sum_{i=1}^{a_{\Lambda}}\left(\pi^{*}\left(K_{X}+G_{i}\right)+\pi^{*} L_{2}\right)\left(\pi^{*} L_{2}\right) F_{i}^{\prime \prime} \\
& +\frac{1}{2} \sum_{i=1}^{m}\left(\pi^{*}\left(K_{X}+Z_{i}\right)+\pi^{*} L_{2}\right)\left(\pi^{*} L_{2}\right) Z_{i}^{\prime \prime}+\left(a_{\Lambda}+m-1\right) \\
= & \sum_{i=1}^{a_{\Lambda}}\left(1+\frac{1}{2}\left(\pi^{*}\left(K_{X}+G_{i}\right)+\pi^{*} L_{2}\right)\left(\pi^{*} L_{2}\right) F_{i}^{\prime \prime}\right) \\
& +\sum_{i=1}^{m}\left(1+\frac{1}{2}\left(\pi^{*}\left(K_{X}+Z_{i}\right)+\pi^{*} L_{2}\right)\left(\pi^{*} L_{2}\right) Z_{i}^{\prime \prime}\right) .
\end{aligned}
$$

By the same argument as in the proof of [9, Claim 2.4], we can prove that

$$
\left(\pi^{*}\left(K_{X}+G_{i}\right)+\pi^{*} L_{2}\right)\left(\pi^{*} L_{2}\right) F_{i}^{\prime \prime} \geq\left(K_{X^{\prime \prime}}+F_{i}^{\prime \prime}+\pi^{*} L_{2}\right)\left(\pi^{*} L_{2}\right) F_{i}^{\prime \prime}
$$

and

$$
\left(\pi^{*}\left(K_{X}+Z_{i}\right)+\pi^{*} L_{2}\right)\left(\pi^{*} L_{2}\right) Z_{i}^{\prime \prime} \geq\left(K_{X^{\prime \prime}}+Z_{i}^{\prime \prime}+\pi^{*} L_{2}\right)\left(\pi^{*} L_{2}\right) Z_{i}^{\prime \prime}
$$

So we obtain

$$
\begin{aligned}
g_{1}\left(X, L_{1}, L_{2}\right) \geq & \sum_{i=1}^{a_{\Lambda}}\left(1+\frac{1}{2}\left(K_{X^{\prime \prime}}+F_{i}^{\prime \prime}+\pi^{*} L_{2}\right)\left(\pi^{*} L_{2}\right) F_{i}^{\prime \prime}\right) \\
& +\sum_{i=1}^{m}\left(1+\frac{1}{2}\left(K_{X^{\prime \prime}}+Z_{i}^{\prime \prime}+\pi^{*} L_{2}\right)\left(\pi^{*} L_{2}\right) Z_{i}^{\prime \prime}\right) \\
= & \sum_{i=1}^{a_{\Lambda}} g\left(\left.\left(\pi^{*} L_{2}\right)\right|_{F_{i}^{\prime \prime}}\right)+\sum_{i=1}^{m} g\left(\left.\left(\pi^{*} L_{2}\right)\right|_{Z_{i}^{\prime \prime}}\right) .
\end{aligned}
$$

We note that $g\left(\left.\pi^{*} L_{2}\right|_{Z_{i}^{\prime \prime}}\right) \geq 0$ for any i since $\operatorname{dim} Z_{i}^{\prime \prime}=2$ (for example, see [5, (4.8) Corollary]).
(I) The case where $g(C)=0$.

Because $h^{0}\left(\left.\left(\pi^{*} L_{2}\right)\right|_{F_{i}^{\prime \prime}}\right) \geq 1$ and $\operatorname{dim} F_{i}^{\prime \prime}=2$, we have $g\left(\left.\left(\pi^{*} L_{2}\right)\right|_{F_{i}^{\prime \prime}}\right) \geq q\left(F_{i}^{\prime \prime}\right)$ for every i. Since $q\left(F_{i}^{\prime \prime}\right) \geq q\left(X^{\prime \prime}\right)=q\left(X^{\prime}\right)=q(X)$ for every i by Lemma 3.2, we get $g_{1}\left(X, L_{1}, L_{2}\right) \geq a_{\Lambda} q(X)$.
(II) The case where $g(C) \geq 1$.

Then θ is the identity mapping and $Z_{i}=Z_{i}^{\prime}$ for every i. Since L_{2} is ample and G_{i} is a fiber of f^{\prime}, there exists a Z_{i} such that $\left.f^{\prime}\right|_{Z_{i}}: Z_{i} \rightarrow C$ is surjective. We consider the fiber space $\left.h\right|_{Z_{i}^{\prime \prime}}: Z_{i}^{\prime \prime} \rightarrow C$. By [7, Theorem 2.1 and Theorem 5.5], we have $g\left(\left.\left(\pi^{*} L_{2}\right)\right|_{Z_{i}^{\prime \prime}}\right) \geq g(C)$. On the other hand, $g\left(\left.\left(\pi^{*} L_{2}\right)\right|_{F_{i}^{\prime \prime}}\right) \geq q\left(F_{i}^{\prime \prime}\right)$ holds because $h^{0}\left(\left.\left(\pi^{*} L_{2}\right)\right|_{F^{\prime \prime}}\right) \geq 1$ and $\operatorname{dim} F_{i}^{\prime \prime}=2$. Therefore we get $g_{1}\left(X, L_{1}, L_{2}\right)$ $\geq g(C)+a_{\Lambda} q\left(F_{i}^{\prime \prime}\right)$. Since $g(C)+q\left(F_{i}^{\prime \prime}\right) \geq q\left(X^{\prime \prime}\right)=q\left(X^{\prime}\right)=q(X)$ by Lemma 3.2 and $q\left(F_{i}^{\prime \prime}\right)=q\left(F^{\prime}\right)$ for every i, we get $g_{1}\left(X, L_{1}, L_{2}\right) \geq q(X)+\left(a_{\Lambda}-1\right) q\left(F^{\prime}\right)$. (Here we note that $a_{\Lambda} \geq 2$ in this case.)

This completes the proof of Theorem 6.2.2.

Theorem 6.2.3. Let X be a smooth projective variety of dimension 3 and let L_{1} and L_{2} be ample line bundles on X such that $h^{0}\left(L_{1}\right) \geq 2$ and $h^{0}\left(L_{2}\right) \geq 1$. Let $\Lambda \subset\left|L_{1}\right|$ be a linear pencil and we use Notation 6.2.1.

If $a_{\Lambda}=1$, then $g_{1}\left(X, L_{1}, L_{2}\right) \geq q(X)+\frac{1}{2} G Z L_{2}$, where G is a general element of Λ_{M} and Z is the fixed part of $\left|L_{1}\right|$, unless $\left(X, L_{\sigma(1)}, L_{\sigma(2)}\right)$ is one of the following for some $\sigma \in \mathbb{S}_{2}$:
(A) $\left(\mathbf{P}^{3}, \mathcal{O}_{\mathbf{P}^{3}}(1), \mathcal{O}_{\mathbf{P}^{3}}(1)\right)$.
(B) $\left(\mathbf{P}^{3}, \mathcal{O}_{\mathbf{P}^{3}}(2), \mathcal{O}_{\mathbf{P}^{3}}(1)\right)$.
(C) $\left(\mathbf{Q}^{3}, \mathscr{O}_{\mathbf{Q}^{3}}(1), \mathcal{O}_{\mathbf{Q}^{3}}(1)\right)$.
(D) X is a \mathbf{P}^{2}-bundle over a smooth projective curve and $\left.L_{j}\right|_{F}=\mathcal{O}_{\mathbf{P}^{2}}(1)$ for any fiber F and $j=1,2$.
In particular, $g_{1}\left(X, L_{1}, L_{2}\right) \geq q(X)+1$ if $Z \neq 0$.

Proof. If $K_{X}+L_{1}+L_{2}$ is not nef, then $\left(X, L_{1}, L_{2}\right)$ is one of the types from (A) to (D) above by Theorem 5.1.1 (3). So we may assume that $K_{X}+L_{1}+L_{2}$ is nef. We note that the strict transform of G by θ is F^{\prime}. So we have

$$
\begin{aligned}
g_{1}\left(X, L_{1}, L_{2}\right) & =1+\frac{1}{2}\left(K_{X^{\prime}}+\theta^{*}\left(L_{1}+L_{2}\right)\right)\left(\theta^{*} L_{1}\right)\left(\theta^{*} L_{2}\right) \\
& =1+\frac{1}{2} \theta^{*}\left(K_{X}+L_{1}+L_{2}\right)\left(\theta^{*} L_{1}\right)\left(\theta^{*} L_{2}\right) \\
& \geq 1+\frac{1}{2} \theta^{*}\left(K_{X}+L_{1}+L_{2}\right)\left(\theta^{*} L_{2}\right) F^{\prime} \\
& =1+\frac{1}{2}\left(\theta^{*}\left(K_{X}+G\right)+\theta^{*}\left(L_{1}-G\right)+\theta^{*} L_{2}\right)\left(\theta^{*} L_{2}\right) F^{\prime}
\end{aligned}
$$

By the same argument as in the proof of [9, Claim 2.4], we can prove

$$
\theta^{*}\left(K_{X}+G\right)\left(\theta^{*} L_{2}\right) F^{\prime} \geq\left(K_{X^{\prime}}+F^{\prime}\right)\left(\theta^{*} L_{2}\right) F^{\prime}
$$

On the other hand, $\theta^{*}\left(L_{1}-G\right)\left(\theta^{*} L_{2}\right) F^{\prime}=Z G L_{2}$. Hence

$$
\begin{aligned}
g_{1}\left(X, L_{1}, L_{2}\right) & \geq 1+\frac{1}{2}\left(K_{X^{\prime}}+F^{\prime}+\theta^{*} L_{2}\right)\left(\theta^{*} L_{2}\right) F^{\prime}+\frac{1}{2} Z G L_{2} \\
& =g\left(\left.\left(\theta^{*} L_{2}\right)\right|_{F^{\prime}}\right)+\frac{1}{2} Z G L_{2} .
\end{aligned}
$$

Because $h^{0}\left(\left.\left(\theta^{*} L_{2}\right)\right|_{F^{\prime}}\right) \geq 1$ and $\operatorname{dim} F^{\prime}=2$, we obtain $g\left(\left.\left(\theta^{*} L_{2}\right)\right|_{F^{\prime}}\right) \geq q\left(F^{\prime}\right)$ by [7, Lemma 1.2 (2)]. Since $g(C)=0$ in this case, we have $q\left(F^{\prime}\right) \geq q\left(X^{\prime}\right)=$ $q(X)$. Therefore

$$
g_{1}\left(X, L_{1}, L_{2}\right) \geq q\left(F^{\prime}\right)+\frac{1}{2} Z G L_{2} \geq q(X)+\frac{1}{2} Z G L_{2} .
$$

If $Z \neq 0$, then $Z \cap G \neq \phi$ since $G+Z$ is connected. Since L_{2} is ample and G is a general element of Λ_{M}, we have $Z G L_{2}>0$. Because $g_{1}\left(X, L_{1}, L_{2}\right)$ is an integer, we have $g_{1}\left(X, L_{1}, L_{2}\right) \geq q(X)+1$. This completes the proof.

Theorem 6.2.4. Let X be a smooth projective variety with $\operatorname{dim} X=3$ and let L_{1} and L_{2} be ample line bundles on X with $h^{0}\left(L_{1}\right) \geq 2$ and $h^{0}\left(L_{2}\right) \geq 3$. If $g_{1}\left(X, L_{1}, L_{2}\right)=q(X)$, then $\left(X, L_{\sigma(1)}, L_{\sigma(2)}\right)$ is one of the following types for some $\sigma \in \Sigma_{2}$.
(A) $\left(\mathbf{P}^{3}, \mathcal{O}_{\mathbf{P}^{3}}(1), \mathcal{O}_{\mathbf{P}^{3}}(1)\right)$.
(B) $\left(\mathbf{P}^{3}, \mathcal{O}_{\mathbf{P}^{3}}(2), \mathcal{O}_{\mathbf{P}^{3}}(1)\right)$.
(C) $\left(\mathbf{Q}^{3}, \mathscr{O}_{\mathbf{Q}^{3}}(1), \mathcal{O}_{\mathbf{Q}^{3}}(1)\right)$.
(D) X is a \mathbf{P}^{2}-bundle over a smooth projective curve and $\left.L_{j}\right|_{F}=\mathcal{O}_{\mathbf{P}^{2}}(1)$ for any fiber F and $j=1,2$.

Proof. We use Notation 6.2.1.

If $K_{X}+L_{1}+L_{2}$ is not nef, then by Theorem 5.1.1 (3) we see that (X, L) is one of the types from (A) to (D) above. So we may assume that $K_{X}+L_{1}+L_{2}$ is nef. In particular we note that $g_{1}\left(X, L_{1}, L_{2}\right) \geq 1$.
(1) The case in which $g(C) \geq 1$.

We note that θ is the identity mapping and $a_{\Lambda} \geq 2$ in this case. By Theorem 6.2.2 (2), we have $q(X)=g_{1}\left(X, L_{1}, L_{2}\right) \geq q(X)+\left(a_{\Lambda}-1\right) q\left(F^{\prime}\right)$. Because $a_{\Lambda} \geq 2$, we obtain $q\left(F^{\prime}\right)=0$. Hence $q(X) \leq g(C)+q\left(F^{\prime}\right)=g(C)$ by Lemma 3.2. But since $g(C) \leq q(X)$, we get $q(X)=g(C)$, and $g_{1}\left(X, L_{1}, L_{2}\right)=$ $q(X)=g(C)$. Then $\left(X, L_{1}, L_{2}\right)$ is the type (D) above by Theorem 6.1.6. This is a contradiction by assumption.
(2) The case in which $g(C)=0$.

If $a_{\Lambda} \geq 2$, then $q(X)=g_{1}\left(X, L_{1}, L_{2}\right) \geq 2 q(X)$ by Theorem 6.2.2 (1). Hence $q(X)=0$, and $g\left(X, L_{1}, L_{2}\right)=q(X)=0$. But this is a contradiction.

So we consider the case where $a_{\Lambda}=1$. By Theorem 6.2.3, we see

$$
\begin{equation*}
Z=0 \tag{6.2.4.1}
\end{equation*}
$$

that is, $\left|L_{1}\right|$ has no fixed component. By the proof of Theorem 6.2.3, we see that $g\left(\left.\left(\theta^{*} L_{2}\right)\right|_{F^{\prime}}\right)=q\left(F^{\prime}\right)$. Here we note that

$$
g\left(\left.\left(\theta^{*} L_{2}\right)\right|_{F^{\prime}}\right)-q\left(F^{\prime}\right)=h^{0}\left(K_{F^{\prime}}+\left.\left(\theta^{*} L_{2}\right)\right|_{F^{\prime}}\right)-h^{0}\left(K_{F^{\prime}}\right)
$$

by the Riemann-Roch theorem and the Kawamata-Viehweg vanishing theorem. Since $h^{0}\left(\left.\left(\theta^{*} L_{2}\right)\right|_{F^{\prime}}\right) \geq 2$, we have $h^{0}\left(K_{F^{\prime}}\right)=0$ by Lemma 3.3. Assume that $\kappa\left(F^{\prime}\right) \geq 0$. Then $q\left(F^{\prime}\right) \leq 1$ because $\chi\left(\mathcal{O}_{F^{\prime}}\right) \geq 0$. Hence $g\left(\left.\left(\theta^{*} L_{2}\right)\right|_{F^{\prime}}\right)=q\left(F^{\prime}\right) \leq 1$. But since $\kappa\left(F^{\prime}\right) \geq 0$, we have $g\left(\left.\left(\theta^{*} L_{2}\right)\right|_{F^{\prime}}\right) \geq 2$ and this is a contradiction. Hence we have

$$
\begin{equation*}
\kappa\left(F^{\prime}\right)=-\infty . \tag{6.2.4.2}
\end{equation*}
$$

Because $g\left(\left.\left(\theta^{*} L_{2}\right)\right|_{F^{\prime}}\right)=q\left(F^{\prime}\right)$, we can prove the following claim.
Claim 6.2.1. $\kappa\left(K_{F^{\prime}}+\left.\left(\theta^{*} L_{2}\right)\right|_{F^{\prime}}\right)=-\infty$.
Proof. Assume that $\kappa\left(K_{F^{\prime}}+\left.\left(\theta^{*} L_{2}\right)\right|_{F^{\prime}}\right) \geq 0$. Then $g\left(\left.\left(\theta^{*} L_{2}\right)\right|_{F^{\prime}}\right) \geq 1$.
Since $0<g\left(\left.\left(\theta^{*} L_{2}\right)\right|_{F^{\prime}}\right)=q\left(F^{\prime}\right)$, a $\left(\left.\left(\theta^{*} L_{2}\right)\right|_{F^{\prime}}\right)$-minimalization of $\left(F^{\prime},\left.\left(\theta^{*} L_{2}\right)\right|_{F^{\prime}}\right)$ (see [7, Definition 1.9]) is a scroll over a smooth curve B by [7, Theorem 3.1]. Hence there is a surjective morphism $h: F^{\prime} \rightarrow B$ such that a general fiber F_{h} of h is \mathbf{P}^{1}. Hence $\left(K_{F^{\prime}}+\left.\left(\theta^{*} L_{2}\right)\right|_{F^{\prime}}\right) F_{h}=-1$. But this is a contradiction because F_{h} is nef. This completes the proof of Claim 6.2.1.

On the other hand,

$$
\begin{aligned}
K_{F^{\prime}}+\left.\left(\theta^{*} L_{2}\right)\right|_{F^{\prime}} & =\left(K_{X^{\prime}}+F^{\prime}+\theta^{*} L_{2}\right)_{F^{\prime}} \\
& =\left(\theta^{*}\left(K_{X}+L_{2}\right)+E_{\theta}+F^{\prime}\right)_{F^{\prime}}
\end{aligned}
$$

where E_{θ} is a θ-exceptional effective divisor.

Let (M, A) be a reduction of $\left(X, L_{2}\right)$ and let $\pi: X \rightarrow M$ be its reduction map. Assume that $K_{M}+A$ is nef. Then $h^{0}\left(m\left(K_{M}+A\right)\right)>0$ for any large $m \gg 0$ by the nonvanishing theorem. Here we note that $K_{X}+L_{2}=$ $\pi^{*}\left(K_{M}+A\right)+E$ for an effective π-exceptional divisor E. Hence for any large m, we have

$$
h^{0}\left(m\left(K_{X}+L_{2}\right)\right)=h^{0}\left(m \pi^{*}\left(K_{M}+A\right)+m E\right)>0 .
$$

Therefore $h^{0}\left(m\left(\theta^{*}\left(K_{X}+L_{2}\right)\right)_{F^{\prime}}\right) \geq 1$. Since F^{\prime} is a general fiber of f^{\prime}, we have $h^{0}\left(\left.\left(E_{\theta}+F^{\prime}\right)\right|_{F^{\prime}}\right) \geq 1$. Hence $h^{0}\left(\left.m\left(\theta^{*}\left(K_{X}+L_{2}\right)+E_{\theta}+F^{\prime}\right)\right|_{F^{\prime}}\right) \geq 1$ for any large $m \gg 0$. But this is a contradiction by Claim 6.2.1. Hence $K_{M}+A$ is not nef, and by Theorem 3.1 we see that (M, A) is one of the following types. (Here we note that $\operatorname{dim} M=3$ in this case.)
(a) $\left(\mathbf{P}^{3}, \mathcal{O}_{\mathbf{P}^{3}}(1)\right)$.
(b) $\left(\mathbf{Q}^{3}, \mathcal{O}_{\mathbf{Q}^{3}}(1)\right)$.
(c) A scroll over a smooth curve C.
(d) $K_{M} \sim-2 A$, that is, (M, A) is a Del Pezzo manifold.
(e) A quadric fibration over a smooth curve C.
(f) A scroll over a smooth surface S.
(g) $\left(\mathbf{Q}^{3}, \mathcal{O}_{\mathbf{Q}^{3}}(2)\right)$.
(h) $\left(\mathbf{P}^{3}, \mathcal{O}_{\mathbf{P}^{3}}(3)\right)$.
(i) M is a \mathbf{P}^{2}-bundle over a smooth curve C with $\left(F,\left.A\right|_{F}\right)=\left(\mathbf{P}^{2}, \mathcal{O}_{\mathbf{P}^{2}}(2)\right)$ for any fiber F of it.
If (M, A) is either of the cases (a), (b), (d), (g), and (h), then $q(X)=0$. Hence by assumption $g_{1}\left(X, L_{1}, L_{2}\right)=q(X)=0$. But this is a contradiction.

If (M, A) is either of the cases (c), (e), and (i), then $q(X)=g(C)$. Hence by assumption $g\left(X, L_{1}, L_{2}\right)=q(X)=g(C)$. So by Theorem 6.1.6, $\left(X, L_{1}, L_{2}\right)$ is the type (D) above. But in this case $K_{X}+L_{1}+L_{2}$ is not nef and this is a contradiction.

So we consider the case in which (M, A) is the case (f). Let $\varphi: M \rightarrow S$ be its \mathbf{P}^{1}-bundle, where S is a smooth surface.

Claim 6.2.2. $\quad \kappa(S)=-\infty$.
Proof. We note that $Z=0$ by (6.2.4.1). We take a general element $G \in|A|$. Then G is irreducible and reduced, and the strict transform of G by θ is F^{\prime}. Since A is ample, $\left.\varphi\right|_{G}: G \rightarrow S$ is surjective. Hence we obtain $\kappa(S)=-\infty$ since $\kappa\left(F^{\prime}\right)=-\infty$ by (6.2.4.2). This completes the proof of this claim.

If $q(S)=0$, then $q(X)=q(S)=0$. Hence by assumption $g_{1}\left(X, L_{1}, L_{2}\right)=$ $q(X)=q(S)=0$. Hence $\left(X, L_{1}, L_{2}\right)$ is one of the types from (A) to (D) above by Theorem 6.1.1. But this is a contradiction by assumption.

If $q(S) \geq 1$, we take the Albanese map of $S, \alpha: S \rightarrow B$, where B is a smooth curve. Then by assumption $g_{1}\left(X, L_{1}, L_{2}\right)=q(X)=q(S)=g(B)$. Hence
$\left(X, L_{1}, L_{2}\right)$ is the type (D) above by Theorem 6.1.6. But this is a contradiction by the same reason as above. This completes the proof of Theorem 6.2.4.

References

[1] E. Ballico, On vector bundles on 3-folds with sectional genus 1, Trans. Amer. Math. Soc. 324 (1991), 135-147.
[2] M. C. Beltrametti and A. J. Sommese, The adjunction theory of complex projective varieties, de Gruyter expositions in math. 16, Walter de Gruyter, Berlin, New York, 1995.
[3] O. Fuilno, Remarks on algebraic fiber spaces, J. Math. Kyoto Univ. 45 (2005), 683-699.
[4] T. Fuilta, On polarized manifolds whose adjoint bundles are not semipositive, Advanced Studies in Pure Math. 10 (1985), 167-178.
[5] T. Fuitta, Remarks on quasi-polarized varieties, Nagoya Math. J. 115 (1989), 105-123.
[6] T. Fuilta, Classification theories of polarized varieties, London Math. Soc. lecture note ser. 155, 1990.
[7] Y. Fukuma, A lower bound for the sectional genus of quasi-polarized surfaces, Geom. Dedicata 64 (1997), 229-251.
[8] Y. Fukuma, A lower bound for sectional genus of quasi-polarized manifolds, J. Math. Soc. Japan 49 (1997), 339-362.
[9] Y. Fukuma, On sectional genus of quasi-polarized 3-folds, Trans. Amer. Math. Soc. 351 (1999), 363-377.
[10] Y. Fukuma, On the c_{r}-sectional geometric genus of generalized polarized manifolds, Japan. J. Math. 29 (2003), 335-355.
[11] Y. Fukuma, On the sectional geometric genus of quasi-polarized varieties, I, Comm. Algebra 32 (2004), 1069-1100.
[12] Y. Fukuma, On the sectional geometric genus of quasi-polarized varieties, II, Manuscripta Math. 113 (2004), 211-237.
[13] Y. Fukuma, Invariants of ample line bundles on projective varieties and their applications, I, Kodai. Math. J. 31 (2008), 219-256.
[14] Y. Fukuma, Invariants of ample line bundles on projective varieties and their applications, III, in preparation.
[15] Y. Fukuma and H. Ishihara, A generalization of curve genus for ample vector bundles, II, Pacific J. Math. 193 (2000), 307-326.
[16] P. Ionescu, Generalized adjunction and applications, Math. Proc. Camb. Phil. Soc. 99 (1986), 457-472.
[17] Y. Kawamata, Characterization of Abelian varieties, Compositio Math. 43 (1981), 253-276.
[18] Y. Kawamata, The cone of curves of algebraic varieties, Ann. of Math. 119 (1984), 603-633.
[19] Y. Kawamata, K. Matsuda and K. Matsuki, Introduction to the minimal model problem, Advanced Studies in Pure Math. 10 (1985), 283-360.
[20] J. Kollár, The cone theorem, Ann. of Math. 120 (1984), 1-5.
[21] J. Kollár, Shafarevich maps and automorphic forms, M. B. Porter lectures, Princeton University Press, Princeton, NJ, 1995.
[22] A. Lanteri, H. Maeda and A. J. Sommese, Ample and spanned vector bundles of minimal curve genus, Arch. Math. 66 (1996), 141-149.
[23] H. Maeda, Ample vector bundles of small curve genera, Arch. Math. 70 (1998), 239-243.
[24] S. Mori, Threefolds whose canonical bundles are not numerically effective, Ann. of Math. 116 (1982), 133-176.
[25] T. Peternell, M. Szurek and J. A. Wisniewski, Fano manifolds and vector bundles, Math. Ann. 294 (1992), 151-165.
[26] E. Viehweg, Weak positivity and the additivity of the Kodaira dimension for certain fiber spaces, Advanced studies in pure math. 1 (1983), 329-353.
[27] J. A. Wiśniewski, Length of extremal rays and generalized adjunction, Math. Z. 200 (1989), 409-427.
[28] Y.-G. Ye and Q. Zhang, On ample vector bundles whose adjunction bundles are not numerically effective, Duke Math. J. 60 (1990), 671-687.

Yoshiaki Fukuma
Department of Mathematics
Faculty of Science
Kochi University
Akebono-cho, Kochi 780-8520
Japan
E-mail: fukuma@kochi-u.ac.jp

[^0]: * Key words and phrases. Polarized varieties, ample line bundles, nef and big line bundles, sectional genus, i th sectional geometric genus, i th sectional H-arithmetic genus, i th sectional arithmetic genus, adjoint bundles.
 ${ }^{\dagger} 2000$ Mathematics Subject Classification. Primary 14C20; Secondary 14C17, 14C40, 14D06, 14E30, 14J30, 14J35, 14J40.
 \$This research was partially supported by the Grant-in-Aid for Young Scientists (B) (No. 14740018), The Ministry of Education, Culture, Sports, Science and Technology, Japan, and the Grant-in-Aid for Scientific Research (C) (No. 17540033), Japan Society for the Promotion of Science.

 Received November 11, 2008; revised January 22, 2010.

