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Abstract

In this paper we will consider a holomorphic family of closed Riemann surfaces of

genus two which is constructed by Riera. The goal of this paper is to estimate the

number of holomorphic sections of this family.

1. Introduction

1.1. Holomorphic family of Riemann surfaces and its sections. Let M be a
two-dimensional complex manifold and B be a Riemann surface. We assume
that a proper holomorphic mapping p : M ! B satisfies the following two
conditions:

(i) The Jacobi matrix of p has rank one at every point of M.
(ii) The fiber Sb ¼ p�1ðbÞ over each point b of B is a closed Riemann surface

of genus g0.
We call such a triple ðM; p;BÞ a holomorphic family of closed Riemann surfaces of
genus g0 over B.

A holomorphic mapping s : B!M is said to be a holomorphic section of a
holomorphic family ðM; p;BÞ of Riemann surfaces if p � s is the identity mapping
on B.

Let S be the set of all holomorphic sections of ðM; p;BÞ. Denote by aS
the number of all holomorphic sections of S. Next result is called Mordell
conjecture in the functional field case.

Theorem 1.1 (Manin [13], Grauert [5], Imayoshi and Shiga [8], Noguchi
[14]). The number of all holomorphic sections of S is finite.

We remark that Shioda [17] has discussed holomorphic sections of a rational
elliptic surface ðS; f ;P1Þ by using and developing his theory of Mordell-Weil
lattice.

Hence next it is important to estimate aS for ðM; p;BÞ.
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1.2. Kodaira surfaces. Kodaira constructed a holomorphic family ðM; p;BÞ
whose base surface and fiber are both compact Riemann surfaces. We briefly
review its construction (c.f. Atiyah [1], Kas [10], Kodaira [12]).

Let ðC; tÞ be a compact Riemann surface of genus g0 b 2 with fixed point
free involution t : C ! C. Let f : D! C be a ðZ=2ZÞ2g0 -unbranched covering
corresponding to

p1ðCÞ ! H1ðC;ZÞ ! H1ðC;Z=2ZÞ:
The genus of D is g1 ¼ 22g0ðg0 � 1Þ þ 1.

We consider the product D� C and the graphs of f and t � f ,

Gf ¼ fðu; f ðuÞÞ A D� C j u A Dg;
Gtf ¼ fðu; t � f ðuÞÞ A D� C j u A Dg:

As t is fixed point free, Gf VGtf ¼ j in D� C. Because Gf þ Gtf is 2-
divisible in H2ðD� C;ZÞ, we can find a square root L of the holomorphic line
bundle OðGf þ Gtf Þ, i.e., Ln2 GOðGf þ Gtf Þ.

Let s be a section of OðGf þ Gtf Þ vanishing at Gf þ Gtf , and M be the
inverse image of sðD� CÞ under the square mapping L! OðGf þ Gtf Þ. Then
the natural mapping p : M ! D induces the following diagram.

MHL

p

???y p 0

sðD� CÞHOðGf þ Gtf Þ???y
D D� C ! C

�����������!
�����������!

���! ���!

Therefore ðM; p;DÞ is a holomorphic family whose fiber p�1ðuÞ is a two-sheeted
branched covering of CG fug � C in D� C branched at ðu; f ðuÞÞ and
ðu; t � f ðuÞÞ.

1.3. Estimation of aS for Kodaira surface ðM; p;DÞ. For a Kodaira
surface, we have an explicit estimation of aS as follows.

First of all, a Kodaira surface has ‘‘trivial’’ sections sf and st�f defined by
sf ðuÞ and st�f ðuÞ, where sf ðuÞ is the branched point of p�1ðuÞ over ðu; f ðuÞÞ and
st�f ðuÞ is the branched point of p�1ðuÞ over ðu; t � f ðuÞÞ. Therefore

aSb 2:

Next, we estimateaS from above by considering the canonical mapping S
to the set HolðD;CÞ of all holomorphic mappings from D to C,

F : S! HolðD;CÞ
s 7! p 0 � s:
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Since the involution t : C ! C induces the covering transformation of
M ! D� C, F is 2 to 1 except for sf and st�f .

Thus we have

aS ¼ 2aFðSÞ � 2:

We denote the set of all non-constant holomorphic mappings from D to C by
Holn:c:ðD;CÞ. Then the next claim is a key idea. (See Proposition 3.1)

Proposition 1.1. FðSÞHHoln:c:ðD;CÞ.

It is well known that aHoln:c:ðD;CÞ is finite, for example, Tanabe [18] gave
an explicit estimation of aHoln:c:ðD;CÞ,

aHoln:c:ðD;CÞa ð4g1 � 3Þ2g1 � 6ðg1 � 1Þ;
where g1 is the genus of D. Since g1 ¼ 22g0ðg0 � 1Þ þ 1, we have

aHoln:c:ðD;CÞa f22g0þ2ðg0 � 1Þ þ 1g2
2g0þ1ðg0�1Þþ2 � 3 � 22g0þ1ðg0 � 1Þ:

Therefore we have the following theorem.

Theorem 1.2. The number aS of holomorphic sections can be estimated as
follows.

2aaS ¼ 2aFðSÞ � 2

a 2aHoln:c:ðD;CÞ � 2

a f22g0þ2ðg0 � 1Þ þ 1g2
2g0þ1ðg0�1Þþ2 � 3 � 22g0þ2ðg0 � 1Þ � 2:

1.4. A certain Kodaira surface due to Riera. In [15], Riera gave a
holomorphic universal covering D of a Kodaira surface. In particular,
DHC2 is a Bergman domain and there exist discontinuous subgroups E and
_EE of AutðDÞ such that

DHC2???y
D=EGM???y

???y
D= _EEGD� C:

Moreover, he gave a ‘‘kind’’ of Kodaira surface whose base surface is a forth-
punctured torus and fiber is a closed Riemann surface of genus two. This is our
subject in this paper. We remark that for a Kodaira surface, the genus of the
base surface must be greater than one (Kas [10], Theorem 1.1). We will estimate
aS for this surface. The detail construction will be reviewed in §2. Here we
explain his idea concisely to show it is a ‘‘certain’’ Kodaira surface.
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Let ðT̂T ; 0Þ be a flat torus with the marked point 0 and let r̂r : R̂R! T̂T be a
ðZ=2ZÞ2-unbranched covering corresponding to

p1ðT̂TÞ ! H1ðT̂T ;ZÞ ! H1ðT̂T ;Z=2ZÞ:
We also consider the constant mapping 0 : R̂R! T̂T , r 7! 0. Since two graphs Gr̂r

of r̂r and G0 of 0 intersect at four points in R̂R� T̂T , we can take R ¼ R̂Rnr̂r�1ð0Þ and
r ¼ r̂rjR, and consider Gr and G0 in R� T̂T where Gr and G0 do not intersect.

Riera constructed a two-sheeted covering M ! R� T̂TnðGr þ G0Þ which
induces the next diagram.

M

p

???y b

R R� T̂T ! T̂T
�����! �����!

Then ðM; p;RÞ is a holomorphic family whose fiber p�1ðrÞ is a two-sheeted
branched covering of T̂T G frg � T̂T in R� T̂T branched at ðr; 0Þ and ðr; rðrÞÞ.

1.5. Estimation of aS for Riera’s example ðM; p;DÞ. For the estimation
of aS, we make the following strategy which is the same as in §1.2. We have
‘‘trivial’’ sections sr and s0 coming from r and 0 : R! T̂T , hence

aSb 2:

Also we have the natural mapping

F : S! HolðR; T̂TÞ
s 7! b � s

and the equality aS ¼ 2aFðSÞ � 2. Moreover, we will prove in §3.1 the
following:

Proposition 3.1. FðSÞnf0gHHoln:c:ðR; T̂TÞ.

But we can not go further because T̂T is not hyperbolic,

aHoln:c:ðR; T̂TÞ ¼y;

hence the explicit estimation of aS does not come from the idea in §1.3.
So we need another idea. First we show the following key theorem.

Theorem 3.1. For any g A FðSÞnfr; 0g, the mapping g has a holomorphic
extension ĝg : R̂R! T̂T.

As a consequence, we show in §3.1 that

Proposition 3.2. For any g A FðSÞnfr; 0g, the mapping g satisfies
Gg VGr ¼ j and Gg VG0 ¼ j.
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Let us denote by HoldisðR; T̂TÞ the set of all non-constant holomorphic
mappings g : R! T̂T which extend to the mappings ĝg : R̂R! T̂T and satisfy
Gg VGr ¼ j and Gg VG0 ¼ j.

Then Proposition 3.2 implies that FðSÞHHoldisðR; T̂TÞU fr; 0g. Now we

set t1 ¼ i, t2 ¼ e2pi=3 and put T̂Tj ¼ Cz=G1; tj ð j ¼ 1; 2Þ. The main result of this
paper is as follows.

Main Theorem. The number aHoldisðR; T̂TÞ satisfies the equality
(a) aHoldisðR; T̂TÞ ¼ 4, if T̂T Z T̂T1; T̂T2.

Moreover,
(b) aHoldisðR; T̂TjÞ ¼ 12 for j ¼ 1; 2.

Since fr; 0gHFðSÞHHoldisðR; T̂TÞU fr; 0g, we have the following:

Corollary 3.1.
(a) 2aaFðSÞa 6, if T̂T Z T̂T1; T̂T2.
(b) 2aaFðSÞa 14, if T̂T G T̂T1 or T̂T G T̂T2.

Since aS ¼ 2aFðSÞ � 2, we can estimate aS as

Corollary 3.2. The number aS of holomorphic sections can be estimated
as follows.

(a) aS ¼ 2; 4; : : ; 8, or 10, if T̂T Z T̂T1; T̂T2.
(b) aS ¼ 2; 4; : : ; 24, or 26, if T̂T G T̂T1 or T̂T G T̂T2.

The authors thank the referee for his (or her) hearty comments and
advices: The first and the third authors considered FðSÞ ¼ fr; 0g in the first
version of this paper. That is, Riera’s example ðM; p;RÞ has exactly two
holomorphic sections. In the referee comments, he (or she) suggested them
to reconsider the complex structure on M carefully. After discussing with the
second author, finally they had an idea to consider HoldisðR; T̂TÞ and proved that
FðSÞHHoldisðR; T̂TÞU fr; 0g and aHoldisðR; T̂TÞ ¼ 4 in general. But they could
not determine whether FðSÞ ¼ HoldisðR; T̂TÞU fr; 0g or not, in other words, there
is ‘‘another’’ holomorphic section for our case, which is our next problem.

2. Construction of a holomorphic family due to Riera

In [15], Riera explained how to construct the holomorphic universal covering
of a Kodaira surface whose fibers are branched over hyperbolic Riemann
surfaces.

Since we consider a certain Kodaira surface whose fibers are branched over
flat tori, we must modify his construction as follows.
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2.1. Fiber as a two-sheeted branched covering surface of T̂T . Take a point
t in the upper half-plane H. Let G1; t be the discrete subgroup of AutðCwÞ
generated by w 7! wþ 1, w 7! wþ t. Let a1 : Cw ! Cw=G1; t be the canonical
projection. We denote the pair ðCw=G1; t; a1ð0ÞÞ by ðT̂T ; 0Þ and set T ¼ T̂Tnf0g.

For any point t A T , we cut T̂T along a simple curve from 0 to t. Next we
take two replicas of the torus T̂T with the cut and call them sheet I and sheet
II. The cut on each sheet has two sides, which are labeled þ side and �
side. We attach the þ side of the cut on I to the � side of the cut on II, and
attach the � side of the cut on I to the þ side of the cut on II. Now we obtain
a closed Riemann surface St of genus two, which is the two-sheeted branched
covering surface St ! T̂T branched over 0 and t.

Note that the complex structure on St depends not only on the point t but
also on the cut locus from 0 to t. Essentially there are four cuts as in Figure 1
which determine di¤erent complex structures on St.

Hence we can not construct a family whose fibers are St over T . To solve
this problem, let G2;2t be the discrete subgroup of AutðCzÞ generated by
z 7! zþ 2, z 7! zþ 2t. Let a2 : Cz ! Cz=G2;2t be the canonical projection and
denote the pair ðCz=G2;2t; a2ð0ÞÞ by ðR̂R; 0Þ.

Define ~rr : Cz ! Cw by ~rrðzÞ ¼ z. Then ~rr induces a ðZ=2ZÞ2-unbranched
covering r̂r : R̂R! T̂T which corresponds to

1! r̂rðp1ðR̂RÞÞ ! p1ðT̂TÞ ! ðZ=2ZÞ2 ! 1:

Set R ¼ R̂Rnr̂r�1ð0Þ and r ¼ r̂rjR. For any point r A R, we take a simple curve
~CC from 0 to r such that r̂rð ~CCÞ is a cut from 0 to r̂rðrÞ. By using this cut, we
construct a two-sheeted covering Sr :¼ SrðrÞ ! T̂T . Now Sr is uniquely deter-

Figure 1. Four cuts on T
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mined by r A R not depending on the cut ~CC. Hence we have a family whose
fibers are Sr over R as a set.

Next we introduce a complex structure in this family.

2.2. Quasi-conformal deformation. We fix a point r0 A R and a simple arc
from 0 to r0 in R. The image of this under r is a curve C on T̂T from 0 to rðr0Þ.
Cutting T̂T along C, we have a closed Riemann surface Sr0 of genus two. We
realize this two-sheeted branched covering Sr0 ! T̂T in terms of Fuchsian groups
as follows.

We choose a Fuchsian group _GGHPSLð2;RÞ which satisfies the following
conditions:

(i) there exist two elliptic elements _gg1 and _gg2 in _GG such that each
gj ð j ¼ 1; 2Þ has the fixed point zj in H,

(ii) H= _GG is biholomorphically equivalent to T̂T ,
(iii) The canonical projection H! H= _GG sends z1 and z2 to 0 and rðr0Þ under

a biholomorphical mapping from H= _GG to T̂T , respectively.
Then we can find an index 2 normal subgroup G1 of _GG such that H=G1 ! H= _GG
realizes Sr0 ! T̂T . From the definition of a2, ~rr : Cz ! Cw defined by ~rrðzÞ ¼ z is a

lift of r̂r : R̂R! T̂T to the universal coverings Cz of R̂R and Cw of T̂T , and let er0r0 be a
point r0 ¼ a2ð~rr0Þ.

Let V : H! Cw be the mapping with Vðz1Þ ¼ 0 which makes the next
diagram commutative. Then V becomes a two-sheeted branched covering with
Vð _GGz1Þ ¼ G1; t0 and Vð _GGz2Þ ¼ G1; t~rrð~rr0Þ, where _GGzj is the orbit under _GG of zj, and
G1; t~rrð~rr0Þ and G1; t0 are the orbits under G1; t of ~rrð~rr0Þ for ~rr0 A Cz and 0,
respectively.

H ���!V Cw???y
???y

H= _GG ���! T̂T

We construct for z A Cz, a quasi-conformal mapping oz : Cw ! Cw satisfying
the following conditions:

(i) ozð~rrð~rr0ÞÞ ¼ ~rrðzÞ,
(ii) oz � g � o�1z ¼ g for all g A G1; t,
In order to construct such a quasi-conformal mapping oz, we make the

following observations:
First, let gðtÞ, 0a ta 1 be a path from ~rrð~rr0Þ to ~rrðzÞ in Cw which contains no

points of Lð1; tÞ ¼ fmþ nt A C jm; n A Zg. For each t, there exists a Dirichlet
fundamental region Dt for G1; t centered at gðtÞ. Choose an Euclidean disk Bt

centered at gðtÞ su‰ciently small that the closure Bt is contained in Dt and has no
points of Lð1; tÞ. Moreover we take a finite covering of g, say Bt1 ; . . . ;Btnþ1 , such
that gðt1Þ ¼ ~rrð~rr0Þ and gðtnþ1Þ ¼ ~rrðzÞ and gðtjþ1Þ A Btjþ1 .
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Next, we set

ojðzÞ ¼

zþ gðtjþ1Þ � 2gðtjÞ

1þ 1

r2j
ðgðtjþ1Þ � gðtjÞÞðz� gðtjÞÞ

þ gðtjÞ; on Btj

z; on DtjnBtj :

8>>><
>>>:

where rj is the radius of Btj . Moreover put oj ¼ g � oj � g�1 on gðDtj Þ for all
g A G1; t.

A simple calculation shows that oj : Cw ! Cw is a quasi-conformal mapping
with the Beltrami coe‰cient

tjðzÞ ¼
� 1

r2j
ðgðtjþ1Þ � gðtjÞÞðojðzÞ � gðtjÞÞ; on Btj

0; on DtjnBtj :

8><
>:

We remark that jgðtjþ1Þ � gðtjÞj < rj and jojðzÞ � gðtjÞj < rj imply ktjky < 1.
Finally, we set oz ¼ on � on�1 � � � � � o1. By the construction of each oj,

we see that oz satisfies the conditions (i) and (ii). Hence we have the desired
quasi-conformal mapping oz.

2.3. Construction of D. For z A Cz, we put

mzðzÞ ¼ tzðVðzÞÞ
V 0ðzÞ
V 0ðzÞ ;

then mz is the Beltrami coe‰cient for _GG. We define Wmz as a unique quasi-
conformal mapping of H which has the complex dilatation mz and leaves 0, 1,
and y fixed, respectively. Set

m̂mzðzÞ ¼
mzðzÞ; z A H

0; z A CnH

�
ð2:1Þ

Then there exists a unique quasi-conformal mapping W mz of ĈC which has the
complex dilatation m̂mz and leaves 0, 1, and y fixed, respectively. Now put
DðmzÞ ¼W mzðHÞ. Then we have the following commutative diagrams:

H ���!Wmz
H

V

???y Vz

???y
C ���!oz

C

H ���!W mz

DðmzÞ

V

???y Vz

???y
C ���!oz

C

where Vz ¼ oz � V � ðWmzÞ
�1 and V z ¼ oz � V � ðW mzÞ�1 are branched coverings

branched over the orbits G1; tw and G1; t0.
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Since mz depends holomorphically on z, it is known that W mz also depends
holomorphically on z. Thus we set

D ¼ fðz; zÞ j z A H; z A DðmzÞg:
Then D becomes a domain in C2, so called a Bergman domain.

2.4. Construction of E. Next we construct a subgroup E of automor-
phisms of D which acts properly discontinuously without fixed points.

Let H be the covering transformation group of a four punctured torus R,
that is R ¼ H=H. Denote by modðG1Þ the set of all equivalence classes hoi of
quasi-conformal mapping o : H! H with oG1o

�1 ¼ G1, where two quasi-
conformal mappings o1 and o2 are said to be equivalent if o1 ¼ o2 on R.
Then there exists a homomorphism d : H ! modðG1Þ such that

WmhðzÞ ¼ a �Wmz � dðhÞ
�1 ðz A H; h A HÞð2:2Þ

where a A AutðHÞ is chosen so that a �Wmz � dðhÞ
�1 fixes each of 0, 1, and y.

It should be remarked that we have a homomorphism y2 : H ! AutðG1Þ
given by y2ðhÞðgÞ ¼ dðhÞ � g � dðhÞ�1. By using this homomorphism, we define E
to be the semidirect product of H and G1. In order to define the action of E on
D, we make the following observations:

First, we need the following result.

Proposition 2.1 (Bers [2], Lemma 3.1). Let ½m� A TðGÞ and hoi A modðGÞ.
Define a quasi-conformal mapping Wn by the formula

Wn ¼ a �Wm � o�1;
where a A AutðHÞ such that a �Wm � o�1 fixes each of 0, 1, and y. Then the

mapping z 7! ẑz given by

ẑz ¼W n � o � ðW mÞ�1ðzÞ
is a conformal bijection from DðmÞ onto DðnÞ.

Moreover if ½m� varies holomorphically according to a parameter, so does ẑz for
a fixed value of z.

By (2.2) and Proposition 2.1, the mapping

ẑz ¼W mhðzÞ � dðhÞ � ðW mzÞ�1ðzÞ
is a conformal bijection from DðmzÞ onto DðmhðzÞÞ. It follows from the second

part of Proposition 2.1 that ẑz depends holomorphically on z.
Thus we define the action of E on D by

ðh; g1Þðz; zÞ ¼ ðhðzÞ;W mhðzÞ � g1 � ðW mhðzÞ Þ�1ðẑzÞÞ
¼ ðhðzÞ;W mhðzÞ � g1 � dðhÞ � ðW mzÞ�1ðzÞÞ;

where ðz; zÞ A D and ðh; g1Þ A HyG1. We can check this is a group action.
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Let F ðG1Þ be the Bers fiber space over the Teichmüller space TðG1Þ defined
by FðG1Þ ¼ fð½mz�; zÞ j ½mz� A TðG1Þ; z A DðmzÞg. Every element hoi of modðG1Þ
acts on FðG1Þ by

ð½mz�; zÞ 7! ð½nz�;W nz � o � ðW mzÞ�1ðzÞÞ:

We set

A ¼ fðz; ð½mz�; zÞÞ j z A H; ð½mz�; zÞ A FðG1Þg:

Then D is identified with A under the mapping

ðz; zÞ 7! ðz; ð½mz�; zÞÞ;

and the action of E on AGD can be written as

ðh; g1Þðz; ð½mz�; zÞÞ ¼ ðhðzÞ; g1 � dðhÞð½mz�; zÞÞ;
where g1 � dðhÞ is an element of modðG1Þ.

Theorem 2.1 (Bers [2], Theorem 7). If dimC TðGÞ < y, then modðGÞ acts
properly discontinuously on F ðGÞ.

Hence E acts properly discontinuously on D as dimC TðG1Þ ¼ 3. Moreover
the action of E on D is fixed point free since H and G1 are fixed point free.

2.5. Holomorphic family ðM; p;RÞ. The quotient space D=E becomes a
2-dimensional complex manifold. We set M ¼ D=E.

The group _EE ¼ Hy _GG also acts on D and the quotient space D= _EE is
biholomorphically equivalent to R� T̂T . Therefore we have a two-sheeted
branched covering P : M ! R� T̂T branched over two graphs G0 and Gr.

We define p to be the composite PR �P of the covering mapping P and the
projection PR : R� T̂T ! R, and b to be PT̂T �P, where PT̂T : R� T̂T ! T̂T . Then
the triple ðM; p;RÞ is a holomorphic family such that for any point r A R,
bjSr : Sr ¼ p�1ðrÞ ! T̂T is a two-sheeted branched covering.

3. Proof of Main Theorem

Let us recall HoldisðR; T̂TÞ is the set of all holomorphic mappings g : R! T̂T
which extend to the mappings ĝg : R̂R! T̂T and satisfy Gg VGr ¼ j and Gg VG0 ¼ j.
Set t1 ¼ i, t2 ¼ e2pi=3 and put T̂Tj ¼ Cz=G1; tj , j ¼ 1; 2.

Main Theorem. The number aHoldisðR; T̂TÞ satisfies the equality
(a) aHoldisðR; T̂TÞ ¼ 4, if T̂T Z T̂T1; T̂T2.

Moreover,
(b) aHoldisðR; T̂TjÞ ¼ 12 for j ¼ 1; 2.

Since fr; 0gHFðSÞHHoldisðR; T̂TÞU fr; 0g, we have the following:
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Corollary 3.1. (a) 2aaFðSÞa 6, if T̂T Z T̂T1; T̂T2.
(b) 2aaFðSÞa 14, if T̂T G T̂T1 or T̂T G T̂T2.

Since aS ¼ 2aFðSÞ � 2, we can estimate aS as

Corollary 3.2. The number aS of holomorphic sections can be estimated
as follows.

(a) aS ¼ 2; 4; : : ; 8, or 10, if T̂T Z T̂T1; T̂T2.
(b) aS ¼ 2; 4; : : ; 24, or 26, if T̂T G T̂T1 or T̂T G T̂T2.

3.1. Key theorem.

Proposition 3.1. FðSÞnf0gHHoln:c:ðR; T̂TÞ.

Proof of Proposition 3.1. Assume there exists a constant mapping g A
FðSÞnf0g which is written as gðrÞ ¼ c, where c is not equal to 0. Since
r : R! T is surjective, there exists a point r0 such that rðr0Þ ¼ c, hence r̂rðr0Þ ¼ c.
Since ~rrðzÞ ¼ z is a lift of r̂r, we can find z0 A CznLð1; tÞ such that a2ðz0Þ ¼ r0 and

z0 ¼ c:ð3:1Þ

For su‰ciently small e > 0, Dðz0; eÞ ¼ fz A Cz j jz� z0j < eg and Dðc; eÞ ¼
fw A Cw j jw� cj < eg can be taken as local charts at r0 A R and c A T̂T , respecti-
vely. Then the graph Gg ¼ fðr; cÞ j r A Rg in R� T̂T can be locally written as

w ¼ c

in Dðz0; eÞ � Dðc; eÞ. Thus M is locally represented as

u2 ¼ w� c

Figure 2
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in Cu � Dðz0; eÞ � Dðc; eÞ (see Wavrik [19], Theorem in Appendix). Take e 0 > 0
with e 0 < e, and set z ¼ z0 þ e 0eiy. By using (3.1), we have

u2 ¼ w� c

¼ z0 þ e 0eiy � c

¼ e 0eiy:

When y goes from 0 to 2p, u ¼ uðyÞ becomes two-valued which means that
s ¼ sðyÞ is two-valued. We have a contradiction. 9

Theorem 3.1. For any g A FðSÞnfr; 0g, the mapping g has a holomorphic
extension ĝg : R̂R! T̂T.

Proof of Theorem 3.1. First, we use the following theorem about the
canonical extension of holomorphic families:

Theorem 3.2 (Imayoshi [6], Theorem 4 and Theorem 5). Let
ðN; p;D� f0gÞ be a holomorphic family of compact Riemann surfaces of genus
g over the punctured disk. If the homotopical monodromy is of infinite order, then
ðN; p;D� f0gÞ can be canonically completed in the holomorphic family ðN̂N; p̂p;DÞ
with a singular fiber over the origin, where N̂N is a two-dimensional normal complex
space. Moreover any holomorphic section s : D� f0g ! N has a unique holo-
morphic extension ŝs : D! N̂N.

To use this result, we need to show the following claim.

Claim 1. For any puncture p of R, the homotopical monodromy Mp of
ðM; p;RÞ around p is of infinite order.

Proof. First, we consider the case where p is 0. Fix a point r0 in a
neighborhood of 0 in R and fix r0. When a point r moves from r0, and turns
around 0 once, and comes back to r0, the cut between 0 and rðr0Þ on T as in
Figure 3 also turns around 0 once. Thus the curve l on T as in Figure 3

Figure 3
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changes to l 0. When the point r moves as above, by the construction of the fiber
Sr0 , the curve ~ll on Sr0 as in Figure 4 changes to ~ll 0.

Hence the monodromy M0 is the twice product of a negative Dehn twist
about the simple closed curve C1, where C1 is a separating curve as in Figure 5.
Therefore M0 is of infinite order.

Similarly, for another puncture p of R with p0 0, we see that monodromy
Mp is the twice product of a negative Dehn twist about the simple closed curve
C2, where C2 is a non-separating curve as in Figure 5. Therefore Mp is of
infinite order. 9

By means of Theorem 3.2, we see that our family ðM; p;RÞ can be
canonically completed in the degenerated family ðM̂M; p̂p; R̂RÞ, where M̂M is a compact
two dimensional normal complex space. Moreover every holomorphic section
s : R!M has a unique holomorphic extension ŝs : R̂R! M̂M. Let ŝs0 : R̂R! M̂M be
the holomorphic extension of the zero section s0. Since R̂R is compact, two tori
ŝsðR̂RÞ and ŝs0ðR̂RÞ intersects each other at most finitely many times on M̂M. Then the
set S ¼ g�1ð0Þ is a finite subset of R, hence the restriction of g to RnS induces the
holomorphic mapping RnS ! T̂Tnf0g between hyperbolic Riemann surfaces.
Now we recall a generalization of the ‘‘big’’ Picard Theorem:

Theorem 3.3 (Royden [16]). Let f be a holomorphic mapping of the
punctured disk D� into a hyperbolic Riemann surface W. Then either f extends
to a holomorphic mapping of the disk D into W or else W is contained in a

Figure 4

Figure 5
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Riemann surface W � ¼W U fpg, so that f extends to a holomorphic mapping of D
into W �.

From this result, the mapping RnS ! T̂Tnf0g extends uniquely to a holo-
morphic mapping ĝg : R̂R! T̂T . 9

Proposition 3.2. For any g A FðSÞnfr; 0g, the mapping g satisfies
Gg VGr ¼ j and Gg VG0 ¼ j.

Proof of Proposition 3.2. Every element g in FðSÞnfr; 0g is extended to a
holomorphic mapping ĝg from R̂R to T̂T by Theorem 3.1. We remark that ĝg
becomes an unbranched covering from R̂R onto T̂T by Riemann-Hurwitz formula.
Let ~gg : Cz ! Cw be a lift of ĝg to the universal coverings of R̂R and T̂T which
satisfies a1 � ~gg ¼ ĝg � a2. Since ĝg is non-constant, ~gg must be an automorphism of
C, hence ~gg is written as

~ggðzÞ ¼ Azþ B;

where A and B are complex numbers and A0 0. It should be remarked that ~gg
is not unique, because we may replace ~gg by g1 � ~gg � g2, where g1 A G1; t and
g2 A G2;2t.

Cz ���!~gg Cw

a2

???y
???ya1

R̂R ���!ĝg T̂T

K
��! g

R

 �������

For three graphs Gg, G0 and Gr in R� T̂T , we consider the following two cases:
Case (1) Gg VG0 0j.
Case (2) Gg VGr 0j.
Case (1) In this case, there exists a point r0 A R such that gðr0Þ ¼ 0, hence

ĝgðr0Þ ¼ 0. Then we can find z0 A CznLð1; tÞ such that a2ðz0Þ ¼ r0 and

Az0 þ B ¼ 0:ð3:2Þ
For su‰ciently small e > 0, Dðz0; eÞ ¼ fz A Cz j jz� z0j < eg and Dð0; eÞ ¼

fw A Cw j jwj < eg can be taken as local charts at r0 A R and 0 A T̂T , respectively.
Then the graph G0 ¼ fðr; 0Þ j r A Rg in R� T̂T can be locally written as

w ¼ 0

in Dðz0; eÞ � Dð0; eÞ. Thus M is locally represented as

u2 ¼ w
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in Cu � Dðz0; eÞ � Dð0; eÞ. Take e 0 > 0 with e 0 < e, and set z ¼ z0 þ e 0eiy. By
using (3.2), we have

u2 ¼ Azþ B

¼ Aðz0 þ e 0eiyÞ þ B

¼ Ae 0eiy:

By the same argument as in the proof of Proposition 3.1, we have a contra-
diction.

Case (2) In this case, there exists a point r0 A R such that gðr0Þ ¼ rðr0Þ,
hence ĝgðr0Þ ¼ r̂rðr0Þ. Since ~rrðzÞ ¼ z is a lift of r̂r, we can find z0 A CznLð1; tÞ such
that a2ðz0Þ ¼ r0 and

Az0 þ B ¼ z0:ð3:3Þ
For su‰ciently small e > 0, Dðz0; eÞ and Dðw0; eÞ can be taken as local charts

at r0 A R and rðr0Þ A T̂T , respectively.
Then Gr ¼ fðr; rðrÞÞ j r A Rg in R� T̂T can be locally written as

w ¼ z

in Dðz0; eÞ � Dðw0; eÞ. Thus M is locally represented as

u2 ¼ w� z

in Cu � Dðw0; eÞ � Dðz0; eÞ. Take e 0 > 0 with e 0 < e, set z ¼ z0 þ e 0eiy. By using
(3.3), we have

u2 ¼ Azþ B� z

¼ Aðz0 þ e 0eiyÞ þ B� ðz0 þ e 0eiyÞ

¼ ðA� 1Þe 0eiy:

By the same argument as in the proof of Proposition 3.1, we have a contra-
diction. Thus we have the assertion. 9

Figure 6. Case (1)
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3.2. Proof of Main Theorem. From now on, we assume t is in the domain
F in C defined by the following four conditions: (i) Im t > 0 (ii) �1=2a
Re t < 1=2, (iii) jtjb 1, (iv) Re ta 0 if jtj ¼ 1, since any flat torus is biholo-
morphically equivalent to C=G1; t for some t A F .

We recall

Lð1; tÞ ¼ fmþ nt A C jm; n A Zg

and call an element of Lð1; tÞ a lattice point, and set

Lð2; 2tÞ ¼ f2mþ 2nt A C jm; n A Zg:

Every element g of HoldisðR; T̂TÞ has a holomorphic extension ĝg : R̂R! T̂T
which is a covering mapping of degree less than or equal to 4 since ar̂r�1ð0Þ ¼ 4.
A lift ~gg of ĝg is written as

~ggðzÞ ¼ Azþ B;

where A and B are complex numbers and A0 0.
We need two lemmas.

Lemma 3.1. A0 1.

Proof of Lemma 3.1. Suppose A ¼ 1. If B ¼ 0 modulo Lð1; tÞ, then ~gg is a
lift of r, while r is not an element of HoldisðR; T̂TÞ, a contradiction. Hence B is
not equal to 0 modulo Lð1; tÞ. Put z0 ¼ �B then we have a2ðz0Þ A R and
gða2ðz0ÞÞ ¼ 0, since a1 � ~gg ¼ ĝg � a2. Therefore Gg and G0 in R� T̂T intersect each
other, which contradicts the assumption that g is contained in HoldisðR; T̂TÞ.

9

From now on, we may assume that A0 1.

Lemma 3.2. ~gg can be written as ~ggðzÞ ¼ Aðzþ oÞ where o ¼ 0; 1; t and 1þ t.

Proof of Lemma 3.2. Take the point z0 ¼ �B=ðA� 1Þ. Then
~ggðz0Þ ¼ z0. If z0 A CnLð1; tÞ, we see that Gg VG0 ¼ j, a contradiction. Hence
z0 A Lð1; tÞ: Then there exist integers m and n such that z0 ¼ �B=ðA� 1Þ ¼
�m� nt. The result follows. 9

To determine A, we may assume ~ggðzÞ ¼ Az.

Since ~ggðLð2; 2tÞÞHLð1; tÞ, we have

2A ¼ pþ qt;ð3:4Þ
2At ¼ uþ vt;ð3:5Þ

where p, q, u, and v are integers. The Euclidean areas of R̂R and T̂T , and
degðĝgÞa 4 implies that
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p q u v t 2A ¼ pþ qt fixed point

0 1 �1 0 i i ð4þ 2iÞ=5

0 1 �2 0
ffiffiffi
2
p

i
ffiffiffi
2
p

i ð2þ
ffiffiffi
2
p

iÞ=3

0 1 �3 0
ffiffiffi
3
p

i
ffiffiffi
3
p

i ð2þ
ffiffiffi
3
p

iÞ=7

0 1 �4 0 2i 2i ð1þ iÞ=2

0 1 �1 �1 e2pi=3 e2pi=3 ð5þ
ffiffiffi
3
p

iÞ=7

0 1 �2 �1 ð�1þ
ffiffiffi
7
p

iÞ=2 ð�1þ
ffiffiffi
7
p

iÞ=2 ð5þ
ffiffiffi
7
p

iÞ=8

0 1 �3 �1 ð�1þ
ffiffiffiffiffi
11
p

iÞ=2 ð�1þ
ffiffiffiffiffi
11
p

iÞ=2 ð5þ
ffiffiffiffiffi
11
p

iÞ=9

0 1 �4 �1 ð�1þ
ffiffiffiffiffi
15
p

iÞ=2 ð�1þ
ffiffiffiffiffi
15
p

iÞ=2 ð5þ
ffiffiffiffiffi
15
p

iÞ=10

0 �1 1 0 i �i 2ð1þ 2iÞ=5

0 �1 2 0
ffiffiffi
2
p

i �
ffiffiffi
2
p

i 2ð1þ
ffiffiffi
2
p

iÞ=3

0 �1 3 0
ffiffiffi
3
p

i �
ffiffiffi
3
p

i 2ð3þ 2
ffiffiffi
3
p

iÞ=7

0 �1 4 0 2i �2i ð1þ
ffiffiffi
3
p

iÞ=2

0 �1 1 1 e2pi=3 �e2pi=3 ð3�
ffiffiffi
3
p

iÞ=3

0 �1 2 1 ð�1þ
ffiffiffi
7
p

iÞ=2 ð1�
ffiffiffi
7
p

iÞ=2 ð5þ
ffiffiffi
7
p

iÞ=4

0 �1 3 1 ð�1þ
ffiffiffiffiffi
11
p

iÞ=2 ð1�
ffiffiffiffiffi
11
p

iÞ=2 ð3�
ffiffiffiffiffi
11
p

iÞ=5

0 �1 4 1 ð�1þ
ffiffiffiffiffi
15
p

iÞ=2 ð1�
ffiffiffiffiffi
15
p

iÞ=2 ð3�
ffiffiffiffiffi
15
p

iÞ=6

0 2 �2 0 i 2i ð1þ iÞ=2

0 2 �2 �1 ð�1þ
ffiffiffiffiffi
15
p

iÞ=4 ð�1þ
ffiffiffiffiffi
15
p

iÞ=2 ð5þ
ffiffiffiffiffi
15
p

iÞ=10

0 2 �2 �2 e2pi=3 2e2pi=3
ffiffiffi
3
p

i=3

0 �2 2 0 i �2i ð1þ iÞ=2

0 �2 2 1 ð�1þ
ffiffiffiffiffi
15
p

iÞ=4 ð1�
ffiffiffiffiffi
15
p

iÞ=2 ð3�
ffiffiffiffiffi
15
p

iÞ=6

0 �2 2 2 e2pi=3 �2e2pi=3 lattice point

1 0 0 1 any 1 lattice point

1 1 �1 0 e2pi=3 1þ e2pi=3 ð3þ
ffiffiffi
3
p

iÞ=3

1 1 �2 0 ð�1þ
ffiffiffi
7
p

iÞ=2 ð1þ
ffiffiffi
7
p

iÞ=2 ð3þ
ffiffiffi
7
p

iÞ=4

1 1 �3 0 ð�1þ
ffiffiffiffiffi
11
p

iÞ=2 ð1þ
ffiffiffiffiffi
11
p

iÞ=2 ð5þ
ffiffiffiffiffi
11
p

iÞ=5

1 1 �4 0 ð�1þ
ffiffiffiffiffi
15
p

iÞ=2 ð1þ
ffiffiffiffiffi
15
p

iÞ=2 ð3þ
ffiffiffiffiffi
15
p

iÞ=6
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1a pv� qua 4ð3:6Þ

and

j2Aj ¼ jpþ qtja 2ð3:7Þ
By (3.4) and (3.5), we get

qt2 þ ðp� vÞt� u ¼ 0:ð3:8Þ
Since the assumption t A F implies that the discriminant is negative, we have

ðpþ vÞ2 < 4ðpv� quÞ:ð3:9Þ
The root t of (3.7) with ImðtÞ > 0 is given by

t ¼

v� pþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðpv� quÞ � ðpþ vÞ2

q
i

2q
; if q > 0;

v� p�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðpv� quÞ � ðpþ vÞ2

q
i

2q
; if q < 0:

8>>>>><
>>>>>:

ð3:10Þ

First by the assumption t A F and (3.7), we see that the possibilities of p and
q are follows.

(i) If q ¼ 0, then p ¼G1;G2.
(ii) If q ¼ 1, then p ¼ 0;G1;G2.
(iii) If q ¼ 2, then p ¼ 0;G1;G2.
When q ¼ 0, from (3.8) and t A F , we have ðp; q; u; vÞ ¼ ðG1; 0; 0;G1Þ,

ðG2; 0; 0;G2Þ.

1 1 �1 1 i 1þ i lattice point

1 1 �2 1
ffiffiffi
2
p

i 1þ
ffiffiffi
2
p

i ð1þ
ffiffiffi
2
p

iÞ=3

1 1 �3 1
ffiffiffi
3
p

i 1þ
ffiffiffi
3
p

i ð1þ
ffiffiffi
3
p

iÞ=2

1 �1 1 1 i 1� i lattice point

1 �1 2 1
ffiffiffi
2
p

i 1�
ffiffiffi
2
p

i 2ð1�
ffiffiffi
2
p

iÞ=3

1 �1 3 1
ffiffiffi
3
p

i 1�
ffiffiffi
3
p

i ð1�
ffiffiffi
3
p

iÞ=2

1 �1 1 2 e2pi=3 1� e2pi=3 lattice point

1 �1 2 2 ð�1þ
ffiffiffi
7
p

iÞ=2 ð3�
ffiffiffi
7
p

iÞ=2 lattice point

1 2 �2 �1 e2pi=3 1þ 2e2pi=3 2ð2þ
ffiffiffi
3
p

iÞ=7

1 2 �2 0 ð�1þ
ffiffiffiffiffi
15
p

iÞ=4 ð1þ
ffiffiffiffiffi
15
p

iÞ=2 ð3þ
ffiffiffiffiffi
15
p

iÞ=6

Table 1. p ¼ 0; 1
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When q0 0, for each ðp; qÞ we get v satisfying �1=2aReðtÞa 1=2.
Next for each ðp; q; vÞ we obtain u with (3.6). Finally, finding ðp; q; u; vÞ in
these p; q; u; v such that t represented in (3.10) is an element of F, we have the list
of p; q; u; v; t; 2A and a fixed point of ~gg in the following Table 1 and 2.

p q u v t 2A fixed point

�1 0 0 �1 any �1 2ð1þ tÞ=3

�1 1 �1 �2 e2pi=3 �1þ e2pi=3 ð7þ
ffiffiffi
3
p

iÞ=13

�1 1 �2 �2 ð�1þ
ffiffiffi
7
p

iÞ=2 ð�3þ
ffiffiffi
7
p

iÞ=2 ð7þ
ffiffiffi
7
p

iÞ=14

�1 1 �1 �1 i �1þ i ð3þ iÞ=5

�1 1 �2 �1
ffiffiffi
2
p

i �1þ
ffiffiffi
2
p

i 2ð3þ
ffiffiffi
2
p

iÞ=11

�1 1 �3 �1
ffiffiffi
3
p

i �1þ
ffiffiffi
3
p

i ð3þ
ffiffiffi
3
p

iÞ=6

�1 �1 1 �1 i �1� i 2ð2þ iÞ=5

�1 �1 2 �1
ffiffiffi
2
p

i �1�
ffiffiffi
2
p

i 2ð2þ 3
ffiffiffi
2
p

iÞ=11

�1 �1 3 �1
ffiffiffi
3
p

i �1�
ffiffiffi
3
p

i ð1þ
ffiffiffi
3
p

iÞ=2

�1 �1 1 0 e2pi=3 �1� e2pi=3 ð5�
ffiffiffi
3
p

iÞ=7

�1 �1 2 0 ð�1þ
ffiffiffi
7
p

iÞ=2 �ð1þ
ffiffiffi
7
p

iÞ=2 ð5�
ffiffiffi
7
p

iÞ=8

�1 �1 3 0 ð�1þ
ffiffiffiffiffi
11
p

iÞ=2 �ð1þ
ffiffiffiffiffi
11
p

iÞ=2 ð5�
ffiffiffiffiffi
11
p

iÞ=9

�1 �1 4 0 ð�1þ
ffiffiffiffiffi
15
p

iÞ=2 �ð1þ
ffiffiffiffiffi
15
p

iÞ=2 ð5�
ffiffiffiffiffi
15
p

iÞ=10

�1 �2 2 0 ð�1þ
ffiffiffiffiffi
15
p

iÞ=4 �ð1þ
ffiffiffiffiffi
15
p

iÞ=2 ð5�
ffiffiffiffiffi
15
p

iÞ=10

�1 �2 2 1 e2pi=3 �1� 2e2pi=3 2ð2�
ffiffiffi
3
p

iÞ=7

2 0 0 2 any 2 lattice point

2 1 �1 1 e2pi=3 2þ e2pi=3 lattice point

2 1 �2 1 ð�1þ
ffiffiffi
7
p

iÞ=2 ð3þ
ffiffiffi
7
p

iÞ=2 lattice point

2 2 �2 0 e2pi=3 2þ 2e2pi=3 lattice point

�2 0 0 �2 any �2 1=2

�2 �1 1 �1 e2pi=3 �2� e2pi=3 ð7�
ffiffiffi
3
p

iÞ=13

�2 �1 2 �1 ð�1þ
ffiffiffi
7
p

iÞ=2 �ð3þ
ffiffiffi
7
p

iÞ=2 ð7�
ffiffiffi
7
p

iÞ=14

�2 �2 2 0 e2pi=3 �2� 2e2pi=3 ð3þ
ffiffiffi
3
p

iÞ=6

Table 2. p ¼ �1; G 2
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In these Tables, when some lift ~gg of g has a fixed point which is not
contained in Lð1; tÞ, we see that Gg intersects Gp, a contradiction.

Next when ðp; q; u; vÞ ¼ ð1;�1; 1; 2Þ; ð1;�1; 2; 2Þ; ð2; 1;�1; 1Þ ð2; 1;�2; 1Þ, we
see that Gg intersects G0, a contradiction. Finally when ðp; q; u; vÞ ¼ ð2; 0; 0; 2Þ, ~gg
is a lift of r, a contradiction. Consequently, we have the following

(a) aHoldisðR; T̂TÞ ¼ 4, if t0 i, e2pi=3.

(b) aHoldisðR; T̂TÞ ¼ 3� 4 ¼ 12, if t ¼ i or e2pi=3.
Therefore we have the assertion. 9
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