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ON THE TRUNCATED DEFECT RELATION

FOR HOLOMORPHIC CURVES

Nobushige Toda

Abstract

For a transcendental holomorphic curve and a subset of C nþ1 � f0g in subgeneral

position, we consider the truncated defect relation by using a generalization of Nochka

weight function introduced in [12] and its supplement in Section 3. When it is not

extremal, we estimate the sum of defects and when it is extremal, we investigate the

number of vectors each defect of which is equal to 1 or the structure of vectors each

defect of which is positive.

1. Introduction

Let f ¼ ½ f1; . . . ; fnþ1� be a holomorphic curve from C into the n-dimensional
complex projective space PnðCÞ with a reduced representation

ð f1; . . . ; fnþ1Þ : C ! C nþ1 � f0g;
where n is a positive integer. We use the following notations:

k f ðzÞk ¼ ðj f1ðzÞj2 þ � � � þ j fnþ1ðzÞj2Þ1=2

and for a vector a ¼ ða1; . . . ; anþ1Þ A C nþ1 � f0g
kak ¼ ðja1j2 þ � � � þ janþ1j2Þ1=2; ða; f Þ ¼ a1 f1 þ � � � þ anþ1 fnþ1;

ða; f ðzÞÞ ¼ a1 f1ðzÞ þ � � � þ anþ1 fnþ1ðzÞ:
The characteristic function of f is defined as follows (see [13]):

Tðr; f Þ ¼ 1

2p

ð2p
0

logk f ðreiyÞk dy� logk f ð0Þk:

We suppose throughout the paper that f is transcendental; that is to say,

lim
r!y

Tðr; f Þ
log r

¼ y

and that f is linearly non-degenerate over C ; namely, f1; . . . ; fnþ1 are linearly
independent over C .
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It is well-known that f is linearly non-degenerate over C if and only if the
Wronskian W ¼ Wð f1; . . . ; fnþ1Þ of f1; . . . ; fnþ1 is not identically equal to zero.

For meromorphic functions in the complex plane we use the standard
notation of the Nevanlinna theory of meromorphic functions ([4, 5]).

For a A C nþ1 � f0g, we write

mðr; a; f Þ ¼ 1

2p

ð2p
0

log
kak k f ðreiyÞk
jða; f ðreiyÞÞj dy; Nðr; a; f Þ ¼ N r;

1

ða; f Þ

� �
:

We then have the First Fundamental Theorem ([13, p. 76]):

Tðr; f Þ ¼ mðr; a; f Þ þNðr; a; f Þ þOð1Þ:

We call the quantity

dða; f Þ ¼ 1� lim sup
r!y

Nðr; a; f Þ
Tðr; f Þ ¼ lim inf

r!y

mðr; a; f Þ
Tðr; f Þ

the defect of a with respect to f .
Let nðc; ða; f ÞÞ be the order of zero of ða; f ðzÞÞ at z ¼ c and

nnðr; a; f Þ ¼
X
jcjar

minfnðc; ða; f ÞÞ; ng:

We put for r > 0

Nnðr; a; f Þ ¼
ð r
0

nnðt; a; f Þ � nnð0; a; f Þ
t

dtþ nnð0; a; f Þ log r

and put

dnða; f Þ ¼ 1� lim sup
r!y

Nnðr; a; f Þ
Tðr; f Þ ;

which is called the truncated defect of a with respect to f . It is easy to see that

0a dða; f Þa dnða; f Þa 1ð1:1Þ

since 0aNnðr; a; f ÞaNðr; a; f ÞaTðr; f Þ þOð1Þ ðrb 1Þ.
We denote by Sðr; f Þ the quantity satisfying

Sðr; f Þ ¼ oðTðr; f ÞÞ ðr ! y; r B EÞ;

where E is a subset of ð0;yÞ of finite linear measure.
Let X be a subset of C nþ1 � f0g in N-subgeneral position satisfying

aX b 2N � nþ 1, where N is an integer satisfying Nb n.
Let q be an integer satisfying 2N � nþ 1a q < y and Q a subset of X such

that aQ ¼ q. For a non-empty subset P of Q, we denote by VðPÞ the vector
space spanned by elements of P and by dðPÞ the dimension of VðPÞ. We put

OQ ¼ fPHQ j 0 <aPaN þ 1g:
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Lemma 1.A (see [3, Theorem 2.4.11], [2], [7]). There is a function
o : Q ! ð0; 1� and a constant y satisfying the following properties:

(1.a) For any a A Q, 0 < yoðaÞa 1;
(1.b) q� ð2N � nþ 1Þ ¼ yð

P
a AQ oðaÞ � n� 1Þ;

(1.c) ðN þ 1Þ=ðnþ 1Þa ya ð2N � nþ 1Þ=ðnþ 1Þ;
(1.d) For any P A OQ,

P
a AP oðaÞa dðPÞ.

We call o the Nochka weight function and y the Nochka constant. This
lemma was used to prove the Cartan conjecture. The result is as follows.
Cartan ([1], N ¼ n) and Nochka ([6], N > n) gave the following

Theorem 1.A (see [3, Theorem 3.3.8 and Corollary 3.3.9]). For any q
elements aj ð j ¼ 1; . . . ; qÞ of X ð2N � nþ 1a q < yÞ, we have the following in-
equalities:

(I)
Xq
j¼1

oðajÞdnðaj; f Þa nþ 1;

(II)
Xq
j¼1

dnðaj; f Þa 2N � nþ 1.

The Nochka weight function is defined for a finite subset of C nþ1 � f0g in
N-subgeneral position, so that we can not let q tend to y in Theorem
1.A(I). This is incovenient to apply it to holomorphic curves with an infinite
number of positive truncated defects. To avoid this inconvenience we general-
ized it to any subset of C nþ1 � f0g in N-subgeneral position in [12]. A
proposition similar to [3, Proposition 3.4.4], a generalizaton of the Nochka
weight function, which has properties similar to Lemma 1.A, are given in Section
2. In Section 3, a supplement to Proposition 2.3 in Section 2 is given and in
Section 4 a truncated defect relation with a new weight is given, which will be
used later.

Let
Dþ ¼ Dþ

n ðX ; f Þ ¼ fa A X j dnða; f Þ > 0g
and

D1 ¼ D1
nðX ; f Þ ¼ fa A Dþ j dnða; f Þ ¼ 1g:

Then, we obtain that the set Dþ is at most countable as in the case of
meromorphic functions (see [5, p. 79]) and the truncated defect relationX

a AX

dnða; f Þ ¼
X
a ADþ

dnða; f Þa 2N � nþ 1:ð1:2Þ

In Section 5, we shall give an upper bound smaller than 2N � nþ 1 forX
a AX

dnða; f Þ

in several cases when N > nb 2.
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We are also interested in a holomorphic curve f such that the equality holds
in the truncated defect relation (1.2). It is said that f is extremal for the
truncated defect relation when

X
a ADþ

dnða; f Þ ¼ 2N � nþ 1:ð1:3Þ

In [9, Theorems 3.2 and 3.3], we obtained the following results.

Theorem 1.B. Suppose that N > nb 2 and that (1.3) is satisfied. Then,
[I] If D1 contains nþ 1 linearly independent vectors, thenaD1 ¼ 2N � nþ 1.
[II] If D1 contains n linearly independent vectors and if aD1 < 2N � nþ 1,

then aD1 ¼ N.

One of main purposes of this paper is to extend Theorem 1.B to the case
when D1 contains at most n linearly independent vectors by using the gener-
alization of the Nochka weight function given in Section 2 and the results in
Sections 3 and 4. The result is given in Section 6. Further we unify Theorems
3.1(II) and 4.1(II) in [10] into one theorem, Theorem 6.2 in the section.

2. Generalization of Nochka weight function

Let N, n and X be as in Section 1 such that 2N � nþ 1aaX ay. We
note that X is in N-subgeneral position and thataX is not always finite. For a
non-empty finite subset S of X , we denote by VðSÞ the vector space spanned by
elements of S and by dðSÞ the dimension of VðSÞ. We put

O ¼ fSHX j 0 <aSaN þ 1g:

Lemma 2.1 ([3, p. 68]). For S1;S2 A O,

dðS1 US2Þ þ dðS1 VS2Þa dðS1Þ þ dðS2Þ:

Lemma 2.2 ([3, p. 68]). For RHS ðR;S A OÞ,

aR� dðRÞaaS � dðSÞaN � n:

For RYSðR;S A OÞ, we put

LðR;SÞ ¼ dðSÞ � dðRÞ
aS �aR

:

Then, by Lemma 2.2 we have the following

Proposition 2.1 ([3, p. 67]). 0aLðR;SÞa 1.
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Lemma 2.3 ([12, Lemma 2.3]). afdðSÞ=aS jS A Og is finite.

Definition 2.1 ([12, Definition 2.1]). l ¼ min
S AO

dðSÞ
aS

.

Proposition 2.2 ([12, Proposition 2.2]).

1=ðN � nþ 1Þa la ðnþ 1Þ=ðN þ 1Þ.

Lemma 2.4 ([12, Lemma 2.4]). For a fixed R A O, afLðR;SÞ jRYS A Og
< y.

Proposition 2.3 ([12, Proposition 2.3]). (I) When lb ðnþ 1Þ=ð2N � nþ 1Þ,
for any S A O it holds that

nþ 1

2N � nþ 1
a

dðSÞ
aS

:

(II) When l < ðnþ 1Þ=ð2N � nþ 1Þ, there exist an integer p ð1a p <
ðnþ 1Þ=2Þ and a subfamily fTi j 1a ia pg of O satisfying the following conditions:

(i) f ¼ T0 YT1 Y � � �YTp, dðTpÞ < ðnþ 1Þ=2;

(ii) LðT0;T1Þ < LðT1;T2Þ < � � � < LðTp�1;TpÞ <
nþ 1� dðTpÞ

2N � nþ 1�aTp

;

(iii) When 1a ia p, for any U A O such that Ti�1 YU ; if dðTi�1Þ < dðUÞ,
then

(a) LðTi�1;TiÞaLðTi�1;UÞ and
(b) LðTi�1;TiÞ ¼ LðTi�1;UÞ only if U OTi;
(iv) For any U A O such that Tp YU , if dðTpÞ < dðUÞ, then

nþ 1� dðTpÞ
2N � nþ 1�aTp

aLðTp;UÞ:

Note 2.1. (a) The case ‘‘l < ðnþ 1Þ=ð2N � nþ 1Þ’’ occurs only when
N > nb 2.

In fact, if N ¼ n, then l ¼ 1 or if n ¼ 1 then 1=Na l from Proposition
2.2. They contradict the fact ‘‘l < ðnþ 1Þ=ð2N � nþ 1Þ’’.

(b) From Proposition 2.3(II)(ii), we have the inequalities:

l ¼ dðT1Þ
aT1

<
dðT2Þ
aT2

< � � � < dðTpÞ
aTp

<
nþ 1

2N � nþ 1
<

nþ 1� dðTpÞ
2N � nþ 1�aTp

ð2:1Þ

(see the proof of [12, Proposition 2.3]) and

0 < dðT1Þ < dðT2Þ < � � � < dðTp�1Þ < dðTpÞ:ð2:2Þ

According to Proposition 2.3, we define a weight function w and a constant h
for X as follows:
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Definition 2.2 ([12, Definition 3.1]). (I) When lb ðnþ 1Þ=ð2N � nþ 1Þ.
For any a A X

wðaÞ ¼ nþ 1

2N � nþ 1
and h ¼ 2N � nþ 1

nþ 1
:

(II) When l < ðnþ 1Þ=ð2N � nþ 1Þ.

wðaÞ ¼
LðTi�1;TiÞ if a A Ti � Ti�1 ði ¼ 1; . . . ; pÞ
nþ 1� dðTpÞ

2N � nþ 1�aTp

if a A X � Tp

8<
:

and

h ¼ 2N � nþ 1�aTp

nþ 1� dðTpÞ
;

where T0 ¼ f, Ti and LðTi�1;TiÞ ði ¼ 1; . . . ; pÞ are those given in Proposition
2.3(II).

Note 2.2.

(a)
h ¼ ð2N � nþ 1Þ=ðnþ 1Þ if lb ðnþ 1Þ=ð2N � nþ 1Þ;
h < ð2N � nþ 1Þ=ðnþ 1Þ if l < ðnþ 1Þ=ð2N � nþ 1Þ:

�

(b) fa A X j hwðaÞ < 1g ¼
f if lb ðnþ 1Þ=ð2N � nþ 1Þ;
Tp if l < ðnþ 1Þ=ð2N � nþ 1Þ:

�

Proposition 2.4 ([12, Theorem 3.1]).
(a) For any a A X , 0 < hwðaÞa 1;
(b-1) For any QHX satisfying (i) QI fa A X j hwðaÞ < 1g and (ii) 2N � nþ

1aaQ < y,

aQ� ð2N � nþ 1Þ ¼ h
X
a AQ

wðaÞ � n� 1

 !
;

(b-2)
P

a AX ð1� hwðaÞÞ ¼ 2N � nþ 1� hðnþ 1Þ;
(c) N=na ha ð2N � nþ 1Þ=ðnþ 1Þ;
(d) For any S A O,

P
a AS wðaÞa dðSÞ.

Remark 2.1. (b-1) is given in the proof of [12, Theorem 3.1] and (b-2) is
[12, Theorem 3.1(b)].

3. Supplement to Proposition 2.3

Let N, n, X and O etc. be as in Section 2. By taking Lemma 2.2 into
consideration, we say that an element S of O is maximal if it satisfies the equality

aS ¼ dðSÞ þN � n:
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Proposition 3.1. Let R;S A O such that RYS. If R is maximal, so is S.

This is trivial from Lemma 2.2. From now on throughout this section we
suppose that

l <
nþ 1

2N � nþ 1
:

Then, N > nb 2 (Note 2.1(a)) and there exist sets

f ¼ T0;T1; . . . ;Tp 1a p <
nþ 1

2

� �

in O satisfying Proposition 2.3(II)(i), (ii), (iii) and (iv).
We put

Op ¼ fS A O jTp YS; dðTpÞ < dðSÞg:

Definition 3.1. We say that
(I) X is of type I if for any S A Op

h�1 ¼ nþ 1� dðTpÞ
2N � nþ 1�aTp

< LðTp;SÞ:

(II) X is of type II if for some S A Op

h�1 ¼ nþ 1� dðTpÞ
2N � nþ 1�aTp

¼ LðTp;SÞ:

(A) We first treat the case that X is of type I.

Lemma 3.1. Suppose that X is of type I. Then, afLðTp;SÞ jS A Opg < y.

This is a direct consequence of Lemma 2.4.

Definition 3.2. We put

lp ¼ min
S AOp

LðTp;SÞ:

Proposition 3.2. Suppose that X is of type I. Then,
(a) h�1 < lp.
(b) Further, if Tp is not maximal,

h�1 ¼ nþ 1� dðTpÞ
2N � nþ 1�aTp

<
nþ 1� dðTpÞ
N þ 1� dðTpÞ

:ð3:1Þ

Proof. (a) This is trivial from Definitions 3.1(I) and 3.2.
(b) As aTp < dðTpÞ þN � n, we easily have (3.1). r
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Definition 3.3. When X is of type I and Tp is not maximal, we put

L1 ¼ min lp;
nþ 1� dðTpÞ
N þ 1� dðTpÞ

� �
:

Corollary 3.1. Suppose that X is of type I and Tp is not maximal. Then,

L1 �
1

h
b

1

Nð2N � nÞ :

Proof. (a) For any S A Op,

LðTp;SÞ �
1

h
¼ dðSÞ � dðTpÞ

aS �aTp

� nþ 1� dðTpÞ
2N � nþ 1�aT

¼ ðdðSÞ � dðTpÞÞð2N � nþ 1�aTpÞ � ðaS �aTpÞðnþ 1� dðTpÞÞ
ðaS �aTpÞð2N � nþ 1�aTpÞ

:

As this fraction is positive (Proposition 3.2(a)), the numerator is a positive
integer, so that the numeratorb 1. Further, the denominator is at most equal to
ðN þ 1� 1Þð2N � nþ 1� 1Þ ¼ Nð2N � nÞ. This implies that

lp �
1

h
¼ min

S AOp

LðT ;SÞ � 1

h
b

1

Nð2N � nÞ :

(b) Next, we estimate the following.

nþ 1� dðTpÞ
N þ 1� dðTpÞ

� 1

h
¼ ðnþ 1� dðTpÞÞðN � nþ dðTpÞ �aTpÞ

ðN þ 1� dðTpÞÞð2N � nþ 1�aTpÞ
:ð3:2Þ

As this fraction is positive (Proposition 3.2(b)) and N � nþ dðTpÞ >aTp

since Tp is not maximal, we have the following inequalities.

N � nþ dðTpÞ �aTp b 1;ð3:3Þ
nþ 1� dðTpÞ
N þ 1� dðTpÞ

>
nþ 1

2N � nþ 1
>

1

N
;ð3:4Þ

1

2N � nþ 1�aTp

b
1

2N � n
ð3:5Þ

since dðTpÞ < ðnþ 1Þ=2 andaTp b 1. From (3.2), (3.3), (3.4) and (3.5) we have
the inequality

nþ 1� dðTpÞ
N þ 1� dðTpÞ

� 1

h
b

1

Nð2N � nÞ :

From (a) and (b) we obtain this corollary. r
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Proposition 3.3. Suppose that X is of type I and that Tp is not maximal.
Let

w1ðaÞ ¼
wðaÞ if a A Tp;

L1 if a A X � Tp:

�

Then, for any S A O, X
a AS

w1ðaÞa dðSÞ:ð3:6Þ

Proof. Let S A O. a) When dðS UTpÞ ¼ nþ 1. From Lemma 2.1, we
have the inequality

nþ 1� dðTpÞ ¼ dðS UTpÞ � dðTpÞa dðSÞ:ð3:7Þ
As w1ðaÞ ¼ wðaÞ < h�1 for a A Tp (Note 2.2(b)) and h�1 < L1 by Proposition

3.2, from Lemma 2.2 and (3.7) we have the inequalityX
a AS

w1ðaÞaL1aSaL1ðdðSÞ þN � nÞ

¼ dðSÞL1 1þN � n

dðSÞ

� �
a dðSÞL1 1þ N � n

nþ 1� dðTpÞ

� �

¼ dðSÞL1
N þ 1� dðTpÞ
nþ 1� dðTpÞ

a dðSÞ

since L1ðN þ 1� dðTpÞÞ=ðnþ 1� dðTpÞÞa 1 by the definition of L1.
b) When dðS UTpÞa n and SHTp. From Proposition 2.4(d),X

a AS

w1ðaÞ ¼
X
a AS

wðaÞa dðSÞ:

c) When dðS UTpÞa n and S � Tp 0 f. We have that S UTp A O since
aðS UTpÞaN. We prepare two inequalities.

(c.1) dðTpÞ < dðS UTpÞ.
(Proof.) Suppose to the contrary that

dðTpÞ ¼ dðS UTpÞ:ð3:8Þ
Then, we have from (2.2) that

dðS UTpÞ � dðTp�1Þ ¼ dðTpÞ � dðTp�1Þ > 0;ð3:9Þ

and from Proposition 2.3(II)(iii) that

LðTp�1;TpÞ ¼
dðTpÞ � dðTp�1Þ
aTp �aTp�1

<
dðS UTpÞ � dðTp�1Þ
aðS UTpÞ �aTp�1

¼ ð�Þ

since Tp�1 YTp YS UTp and dðTp�1Þ < dðTpÞ ¼ dðS UTpÞ from (3.8) and (3.9).
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On the other hand from (3.8)

ð�Þ < dðTpÞ � dðTp�1Þ
aTp �aTp�1

¼ LðTp�1;TpÞ

since aTp <aðS UTpÞ. This is a contradiction. (c.1) must hold.
(c.2) ðaS �aðS VTpÞÞlp a dðSÞ � dðS VTpÞ.
(Proof.) Note that aS �aðS VTpÞ > 0. From the facts that
(i) S UTp A O,
(ii) (c.1): dðTpÞ < dðS UTpÞ and
(iii) Tp YS UTp,

we have that S UTp A Op. Then, by Definition 3.2 we have the inequality

lp a
dðS UTpÞ � dðTpÞ
aðS UTpÞ �aTp

¼ ð��Þ:

Here, we have the relations

aðS UTpÞ ¼aTp þaS �aðS VTpÞ
and

dðS UTpÞa dðTpÞ þ dðSÞ � dðS VTpÞ
from Lemma 2.1, so that we have

ð��Þa dðSÞ � dðS VTpÞ
aS �aðS VTpÞ

;

which reduces to (c.2). Note that (c.2) is valid when S VTp ¼ f.
Now, we prove (3.2) in case c). As S VTp A O if S VTp0f and S VTpHTp,

by using (c.2) and Proposition 2.4(d) we have the inequalityX
a AS

w1ðaÞ ¼
X

a ASVTp

wðaÞ þ
X

a AS�SVTp

w1ðaÞ

a dðS VTpÞ þL1aðS � S VTpÞ
a dðS VTpÞ þ lpðaS �aS VTpÞ
a dðS VTpÞ þ ðdðSÞ � dðS VTpÞÞ ¼ dðSÞ:

since w1ðaÞ ¼ L1 ða A X � TpÞ. We obtain this proposition. r

(B) From now on in this subsection we suppose that X is of type II. We
put

Opð1=hÞ ¼ fS A Op jLðTp;SÞ ¼ 1=hg:
As X is of type II,

Proposition 3.4. Opð1=hÞ is not empty.
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Proposition 3.5. For any S A Opð1=hÞ,

dðSÞ < ðnþ 1Þ=2 and aS < ð2N � nþ 1Þ=2:

Proof. We first note that dðSÞa n. In fact, if dðSÞ ¼ nþ 1, then from
Definition 3.1(II), aS ¼ 2N � nþ 1, which is contrary to the fact that S A O as
N > nb 2. We have aSaN. From the equality

dðSÞ � dðTpÞ
aS �aTp

¼ nþ 1� dðTpÞ
2N � nþ 1�aTp

¼ h�1

and Note 2.2(a), we have the inequality

nþ 1

2N � nþ 1
< h�1 ¼ nþ 1� dðSÞ

2N � nþ 1�aS
;

from which we obtain the inequality

dðSÞ 2N � nþ 1

nþ 1
<aSa dðSÞ þN � n

due to Lemma 2.2, so that dðSÞ < ðnþ 1Þ=2 and aS < ð2N � nþ 1Þ=2. r

Proposition 3.6. If S1;S2 A Opð1=hÞ, then S1 US2 A Opð1=hÞ.

Proof. (a) First, we prove that S1 US2 A Op. As

dðS1Þ � dðTpÞ
aS1 �aTp

¼ dðS2Þ � dðTpÞ
aS2 �aTp

¼ h�1;

from Lemma 2.2, we have the inequality

dðS1Þ þ dðS2Þ � 2dðTpÞ

¼ h�1ðaS1 þaS2 � 2aTpÞ

a h�1ðdðS1Þ þN � nþ dðS2Þ þN � n� 2aTpÞ

¼ h�1ðdðS1Þ þ dðS2Þ � 2dðTpÞÞ þ 2h�1ðN � nþ dðTpÞ �aTpÞ;

so that

dðS1Þ þ dðS2Þ � 2dðTpÞa
2h�1

1� h�1
ðN � nþ dðTpÞ �aTpÞ ¼ ð�Þ

since h�1 a ðn=NÞ < 1 from Proposition 2.4(c). Here, we have the equality

1� h�1 ¼ 1� nþ 1� dðTpÞ
2N � nþ 1�aTp

¼ 2N � 2nþ dðTpÞ �aTp

2N � nþ 1�aTp

;
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so that we have

ð�Þ ¼ 2h�1 N � nþ dðTpÞ �aTp

2N � 2nþ dðTpÞ �aTp

ð2N � nþ 1�aTpÞ

< h�1ð2N � nþ 1�aTpÞ ¼ nþ 1� dðTpÞ

since dðTpÞ <aTp from (2.1) and h�1 < 1. We obtain the inequality

dðS1Þ þ dðS2Þ � dðTpÞ < nþ 1;

so that by Lemma 2.1 we have the inequality

dðS1 US2Þa dðS1Þ þ dðS2Þ � dðS1 VS2Þa dðS1Þ þ dðS2Þ � dðTpÞ < nþ 1

since S1 VS2 ITp. That is, dðS1 US2Þa n and so aðS1 US2ÞaN. We have
that S1 US2 A O. In addition, as

dðTpÞ < dðS1Þa dðS1 US2Þ
we have that S1 US2 A Op.

(b) Next, we prove the inequality

h�1ðaðS1 VS2Þ �aTpÞa dðS1 VS2Þ � dðTpÞ:ð3:10Þ

As this inequality is trivial whenaðS1 VS2Þ �aTp ¼ 0, we prove (3.10) when
aðS1 VS2Þ �aTp > 0. We first prove that

dðTpÞ < dðS1 VS2Þ:ð3:11Þ

In fact, suppose to the contrary that dðTpÞ ¼ dðS1 VS2Þ. Then,

S1 VS2 A Op�1 ¼ fS A O jTp�1 YS; dðTp�1Þ < dðSÞg
since Tp�1 YTp YS1 VS2 and dðTp�1Þ < dðTpÞ ¼ dðS1 VS2Þ, so that we have the
inequality

LðTp�1;S1 VS2Þb min
S AOp�1

LðTp�1;SÞ ¼ LðTp�1;TpÞ ¼
dðTpÞ � dðTp�1Þ
aTp �aTp�1

>
dðS1 VS2Þ � dðTp�1Þ
aðS1 VS2Þ �aTp�1

¼ LðTp�1;S1 VS2Þ:

This is a contradiction. We obtain (3.11) and S1 VS2 A Op. From Proposition
2.3(II)(iv), we have the inequality

h�1
aLðTp;S1 VS2Þ:

This means that (3.10) holds.
(c) Finally, we prove that S1 US2 A Opð1=hÞ. From Lemma 2.1 and (3.10)

we have

h�1
aLðTp;S1 US2Þa

dðS1Þ þ dðS2Þ � dðS1 VS2Þ � dðTpÞ
aS1 þaS2 �aðS1 VS2Þ �aTp

a h�1
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since S1;S2 A Opð1=hÞ and the following inequality holds from (3.10):

dðS1Þ þ dðS2Þ � dðS1 VS2Þ � dðTpÞ
¼ dðS1Þ � dðTpÞ þ dðS2Þ � dðTpÞ � ðdðS1 VS2Þ � dðTpÞÞ

a h�1ðaS1 �aTp þaS2 �aTp � ðaðS1 VS2Þ �aTpÞÞ

¼ h�1ðaS1 þaS2 �aðS1 VS2Þ �aTpÞ:

Namely, we have that LðTp;S1 US2Þ ¼ h�1. This means that S1 US2 A
Opð1=hÞ. r

Proposition 3.7. aOpð1=hÞ is finite.

Proof. We have only to prove this proposition when aX is not finite.
Suppose to the contrary that aOpð1=hÞ ¼ y. Then, there are sets S1;S2; . . .
satsfying

Opð1=hÞI fS1;S2; . . . ;Si; . . .g; Si 0Sj if i0 j

and

a 6
y

i¼1

Si

( )
¼ y:

There exists an integer n satisfying

N þ 1 <a 6
n

i¼1

Si

( )
:

On the other hand, 6n

i¼1
Si A Opð1=hÞ from Proposition 3.6 and so from

Proposition 3.5

a 6
n

i¼1

Si

( )
<

2N � nþ 1

2
:

From these two inequalities we obtain that nþ 1 < 0, which is absurd. This
implies that aOpð1=hÞ is finite. r

Definition 3.4. We put Tpþ1 ¼ 6
S AOpð1=hÞ S.

Proposition 3.8. (a) Tpþ1 A Opð1=hÞ. If S A Opð1=hÞ, then SHTpþ1.

(b)

LðTp�1;TpÞ < h�1 ¼ nþ 1� dðTpÞ
2N � nþ 1�aTp

¼ LðTp;Tpþ1Þ ¼
nþ 1� dðTpþ1Þ

2N � nþ 1�aTpþ1
:
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Proof. We obtain (a) from Definition 3.4 and Proposition 3.6. We have
(b) from (a) and Proposition 2.3(II)(ii). r

We put

Fp ¼ fS A O jTp YS; dðTpÞ < dðSÞ;S � Tpþ1 0 fg:

Proposition 3.9. Fp is not empty.

Proof. We can choose an element S from O such that Tp YS and aS ¼
N þ 1 sinceaTp <aTpþ1 < ð2N � nþ 1Þ=2 < N þ 1 from Proposition 3.5. This
set S belongs to Fp since dðTpÞ < dðTpþ1Þ < ðnþ 1Þ=2 < nþ 1 ¼ dðSÞ from
Proposition 3.5, so that S � Tpþ1 0 f. r

Proposition 3.10. afLðTp;SÞ jS A Fpg is finite.
This is due to Lemma 2.4.

Definition 3.5. We put hp ¼ minS AFp
LðTp;SÞ:

Proposition 3.11. h�1 < hp.

Proof. First we note that

h�1 < LðTp;SÞ ðS A FpÞ:ð3:12Þ
In fact, by Proposition 2.3(II)(iv), h�1 aLðTp;SÞ. If there exists an ele-

ment S A Fp such that h�1 ¼ LðTp;SÞ, then by Proposition 3.8(a), SHTpþ1,
which is a contradiction. We have (3.12). By Proposition 3.10, we have this
proposition. r

Proposition 3.12. Tp is not maximal and we have

h�1 ¼ nþ 1� dðTpÞ
2N � nþ 1�aTp

<
nþ 1� dðTpÞ
N þ 1� dðTpÞ

:

Proof. Suppose that Tp is maximal. Then, from Lemma 2.2, Tpþ1 is
maximal and we have aTpþ1 �aTp ¼ dðTpþ1Þ � dðTpÞ so that from Proposition
3.8(b)

1 > h�1 ¼ nþ 1� dðTpÞ
2N � nþ 1�aTp

¼ LðTp;Tpþ1Þ ¼ 1;

which is absurd. This means that Tp is not maximal. AsaTp < dðTpÞ þN � n,
we have the inequality

h�1 ¼ nþ 1� dðTpÞ
2N � nþ 1�aTp

<
nþ 1� dðTpÞ

2N � nþ 1� ðN � nþ dðTpÞÞ
¼ nþ 1� dðTpÞ

N þ 1� dðTpÞ
:

r
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Definition 3.6. When X is of type II, we put

L2 ¼ min hp;
nþ 1� dðTpÞ
N þ 1� dðTpÞ

� �
:

Corollary 3.2. Suppose that X is of type II. Then,

L2 �
1

h
b

1

Nð2N � nÞ :

Proof. (a) For any S A Fp,

LðTp;SÞ �
1

h
¼ dðSÞ � dðTpÞ

aS �aTp

� nþ 1� dðTpÞ
2N � nþ 1�aTp

b
1

Nð2N � nÞ

as in the case of Proof (a) of Corollary 3.1.
(b) As in Proof (b) of Corollary 3.1

nþ 1� dðTpÞ
N þ 1� dðTpÞ

� 1

h
b

1

Nð2N � nÞ :

From (a) and (b) we have

L2 �
1

h
b

1

Nð2N � nÞ : r

Proposition 3.13. Suppose that X is of type II. Let

w2ðaÞ ¼
wðaÞ if a A Tpþ1;

L2 if a A X � Tpþ1:

�

Then, for any S A O,

X
a AS

w2ðaÞa dðSÞ:ð3:13Þ

Proof. We proceed this proof as in that of Proposition 3.3. Let S A O.
a) When dðS UTpÞ ¼ nþ 1. From Lemma 2.1, we have the inequality

nþ 1� dðTpÞ ¼ dðS UTpÞ � dðTpÞa dðSÞ:ð3:14Þ

As w2ðaÞ ¼ wðaÞa h�1 for a A Tpþ1 and h�1 < L2 by Propositions 3.11 and
3.12, from Lemma 2.2 and (3.14) we have the inequality
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X
a AS

w2ðaÞaL2aSaL2ðdðSÞ þN � nÞ

¼ dðSÞL2 1þN � n

dðSÞ

� �
a dðSÞL2 1þ N � n

nþ 1� dðTpÞ

� �

¼ dðSÞL2
N þ 1� dðTpÞ
nþ 1� dðTpÞ

a dðSÞ

since L2ðN þ 1� dðTpÞÞ=ðnþ 1� dðTpÞÞa 1 by the definition of L2.
b) When dðS UTpÞa n and SHTpþ1. As w2ðaÞ ¼ wðaÞ ða A SÞ, from

Proposition 2.4(d), X
a AS

w2ðaÞ ¼
X
a AS

wðaÞa dðSÞ:

c) When dðS UTpÞa n and S � Tpþ1 0 f. As aðS UTpÞaN, S UTp A O.
We prepare two inequalities.

(c.1) dðTpÞ < dðS UTpÞ.
(Proof.) We suppose to the contrary that

dðTpÞ ¼ dðS UTpÞ:ð3:15Þ
Then, we have from (2.2) that

dðS UTpÞ � dðTp�1Þ ¼ dðTpÞ � dðTp�1Þ > 0ð3:16Þ
and from Proposition 2.3(II)(iii) that

LðTp�1;TpÞ ¼
dðTpÞ � dðTp�1Þ
aTp �aTp�1

<
dðS UTpÞ � dðTp�1Þ
aðS UTpÞ �aTp�1

¼ ð�Þ

since Tp�1 YTp YS UTp and dðTp�1Þ < dðTpÞ ¼ dðS UTpÞ from (3.15) and (3.16).
On the other hand from (3.15)

ð�Þ < dðTpÞ � dðTp�1Þ
aTp �aTp�1

¼ LðTp�1;TpÞ

since aTp <aðS UTpÞ as S � Tpþ1 0 f. This is a contradiction. (c.1) must
hold.

(c.2) ðaS �aðS VTpÞÞhp a dðSÞ � dðS VTpÞ.
(Proof.) Note that aS �aðS VTpÞ > 0. From the facts that
(i) S UTp A O;
(ii) (c.1): dðTpÞ < dðS UTpÞ;
(iii) Tp YS UTp and
(iv) S � Tpþ1 0 f,

we have that S UTp A Fp. Then, by Definition 3.5 we have the inequality

hp a
dðS UTpÞ � dðTpÞ
aðS UTpÞ �aTp

¼ ð��Þ:
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Here, we have the relations

aðS UTpÞ ¼aTp þaS �aðS VTpÞ
and

dðS UTpÞa dðTpÞ þ dðSÞ � dðS VTpÞ
from Lemma 2.1, so that we have

ð��Þa dðSÞ � dðS VTpÞ
aS �aðS VTpÞ

;

which reduces to (c.2). Note that (c.2) holds if S VTp ¼ f.
Now, we prove (3.13) in case c). As S VTp A O if S VTp 0 f and

S VTp HTp, by using (c.2) and Proposition 2.4(d) we have the inequalityX
a AS

w2ðaÞ ¼
X

a ASVTp

wðaÞ þ
X

a AS�SVTp

w2ðaÞ

a dðS VTpÞ þL2aðS � S VTpÞ
a dðS VTpÞ þ hpðaS �aðS VTpÞÞ

a dðS VTpÞ þ ðdðSÞ � dðS VTpÞÞ ¼ dðSÞ:

since w2ðaÞ ¼ wðaÞ ¼ 1=h < L2 for a A Tpþ1 � Tp. r

4. A defect relation

Let f , X , N and n etc. be as in Section 1. Let us remember the definition
of Dþ:

Dþ ¼ fa A X j dnða; f Þ > 0g;
which is at most countable. We use the same notations used in Sections 2 and 3,
such as

l; w; h; O; etc::

The purpose of this section is to generalize Theorem 1.A(I) for later use.
To that end, we consider the following set of weight functions on X :

Definition 4.1. W ¼ ft : X ! ð0; 1� j ES A O;
P

a AS tðaÞa dðSÞg.

Example 4.1. (a) w (in Definition 2.2 and Proposition 2.4), w1 (in Prop-
osition 3.3) and w2 (in Proposition 3.13) are in W.

(b) Let tl : X ! ð0; 1� such that tlðaÞ ¼ l for any a A X . Then tl A W.
In fact, for any S A O,X

a AS

tlðaÞ ¼ laSa ðdðSÞ=aSÞaS ¼ dðSÞ:

First of all, we prepare some lemmas for later use.
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Lemma 4.1 (see [8, Proposition 10]). Let t A W and Q ¼ fa1; . . . ; aqgHX
ðN þ 1a q < yÞ, then the following inequalities hold.

(I)
Xq
j¼1

tðajÞmðr; aj; f Þa ðnþ 1ÞTðr; f Þ �Nðr; 1=WÞ þ Sðr; f Þ;

(II)
Xq
j¼1

tðajÞdðaj; f Þa nþ 1.

For an entire function gðzÞ, let nðc; gÞ be the order of zero of gðzÞ at z ¼ c.

Lemma 4.2 (cf. [3, (3.2.14)]). Let t A W and Q ¼ fa1; . . . ; aqgHX
ðN þ 1a q < yÞ. Then, for c A CX

a AQ

tðaÞðnðc; ða; f ÞÞ � nÞþ a nðc;WÞ;

where xþ ¼ maxðx; 0Þ for a real number x.
In fact, as is seen from the proof of the inequality [3, (3.2.14), p. 102],

among the four properties of o in Lemma 1.A, only the property (1.d) is
necessary to prove it. Therefore, the proof is e¤ective if we change o for our
weight function t A W which has the same property as Lemma 1.A(1.d) and we
have this lemma.

As in [11, Lemmas 2.5 and 2.6], we obtain the following Lemmas 4.3 and 4.4:

Lemma 4.3. Let t A W and a1; . . . ; aq A X ðN þ 1a q < yÞ. Then, we have
the inequalities for rb 0

(I)
Xq
j¼1

tðajÞfnðr; aj; f Þ � nnðr; aj ; f Þga nðr; 1=WÞ.

(II)
Xq
j¼1

tðajÞfðnðr; aj; f Þ � nnðr; aj; f ÞÞ � ðnð0; aj; f Þ � nnð0; aj; f ÞÞg

a nðr; 1=WÞ � nð0; 1=WÞ:

Lemma 4.4 (cf. [3, p. 105]). Let t A W and a1; . . . ; aq A X ðN þ 1a q < yÞ.
Then, we have the inequality

Xq
j¼1

tðajÞfNðr; aj; f Þ �Nnðr; aj; f ÞgaN r;
1

W

� �
ðrb 1Þ:

Theorem 4.1. Let f be as in Section 1. For any t A W we have the
inequality X

a AX

tðaÞdnða; f Þa nþ 1:
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Proof. As is cited in the beginning of this section, we know that the set Dþ

is at most countable. If aDþ aN þ 1, thenX
a ADþ

tðaÞdnða; f Þa
X
a ADþ

tðaÞa dðDþÞa nþ 1

since Dþ A O.
We have only to prove this theorem when aDþ bN þ 2. Let Q ¼

fa1; . . . ; aqg ðN þ 1a q < yÞ be a subset of Dþ. Then, by Lemma 4.1(I),
the first fundamental theorem and Lemma 4.4 we have the inequality

Xq
j¼1

tðajÞðTðr; f Þ �Nnðr; aj; f ÞÞa ðnþ 1ÞTðr; f Þ þ Sðr; f Þ ðrb 1Þ;

from which we easily obtain the inequality

Xq
j¼1

tðajÞdnðaj ; f Þa nþ 1:ð4:1Þ

1) When aDþ < þy. Let Q ¼ Dþ and we haveX
a ADþ

tðaÞdnða; f Þa nþ 1:

2) When aDþ ¼ þy. Let Dþ ¼ faj j j A Ng. Then, from (4.1) we have
the inequality X

a ADþ

tðaÞdnða; f Þ ¼ lim
q!y

Xq
j¼1

tðajÞdnðaj; f Þa nþ 1:

As dnða; f Þ ¼ 0 for a A X �Dþ, we have the inequalityX
a AX

tðaÞdnða; f Þ ¼
X
a ADþ

tðaÞdnða; f Þa nþ 1:

From 1) and 2) we have our theorem. r

Corollary 4.1. (I) (cf. Theorem 1.A(I))
P

a AX wðaÞdnða; f Þa nþ 1.
(II)

P
a AX dnða; f Þa ðnþ 1Þ=l.

We have this corollary from Theorem 4.1 since w and tl are in W.

5. Estimate of the sum of truncated defects

Let f , X , N and n etc. be as in Section 1, 2 or 3. The purpose of this
section is to estimate X

a AX

dnða; f Þ

in several cases. We suppose that N > n throughout this section.
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Lemma 5.1. For S A O, if

nþ 1

2N � nþ 1
<

dðSÞ
aS

;ð5:1Þ

then

aS

dðSÞ a
2N � nþ 1

nþ 1
� 1

nðnþ 1Þ :

Proof. From (5.1) we have the inequality

ðnþ 1ÞaS < ð2N � nþ 1ÞdðSÞ;
which reduces to

ðnþ 1ÞaSa ð2N � nþ 1ÞdðSÞ � 1

since two numbers ðnþ 1ÞaS and ð2N � nþ 1ÞdðSÞ are positive integers. From
this inequality we have the inequality

aS

dðSÞ a
2N � nþ 1

nþ 1
� 1

dðSÞðnþ 1Þ :ð5:2Þ

(a) When dðSÞa n, we easily have that

aS

dðSÞ a
2N � nþ 1

nþ 1
� 1

nðnþ 1Þ :

(b) When dðSÞ ¼ nþ 1, we have the inequality

aS

dðSÞ a
N þ 1

nþ 1
a

2N � nþ 1

nþ 1
� 1

nðnþ 1Þ
since S A O and

2N � nþ 1

nþ 1
� 1

nðnþ 1Þ �
N þ 1

nþ 1
¼ 1

nþ 1
N � n� 1

n

� �
b 0:

We have our lemma. r

Lemma 5.2. We have the equality

2N � nþ 1�
X
a AX

dnða; f Þ ¼
X
a AX

ð1� hwðaÞÞð1� dnða; f ÞÞ

þ h nþ 1�
X
a AX

wðaÞdnða; f Þ
 !

:

Proof. (A) When lb ðnþ 1Þ=ð2N � nþ 1Þ. From Definition 2.2(I) we
have the relations
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ð1� hwðaÞÞð1� dnða; f ÞÞ ¼ 0 ða A X Þ
and

h nþ 1�
X
a AX

wðaÞdnða; f Þ
 !

¼ 2N � nþ 1�
X
a AX

dnða; f Þ

since hwðaÞ ¼ 1 ða A XÞ, so that we have this lemma in this case.
(B) When l < ðnþ 1Þ=ð2N � nþ 1Þ. We note that aX b 2N � nþ 1. Let

Q be any finite subset of X satisfying aQb 2N � nþ 1 and QITp. Then,
as the equality

h
X
a AQ

wðaÞdnða; f Þ þaQ� h
X
a AQ

wðaÞ

¼
X
a AQ

fdnða; f Þ þ ð1� hwðaÞÞð1� dnða; f ÞÞg

holds, from Proposition 2.4(b.1) we have the equality

h
X
a AQ

wðaÞdnða; f Þ � n� 1

 !
ð5:3Þ

¼
X
a AQ

fdnða; f Þ þ ð1� hwðaÞÞð1� dnða; f ÞÞg � ð2N � nþ 1Þ:

We note that

hwðaÞ ¼ 1 ða A X � TpÞ:ð5:4Þ

(a) When aðTp UDþÞ < þy. In (5.3), let QITp UDþ. Then, since
dnða; f Þ ¼ 0 ða A X �QÞ and (5.4) holds, we obtain this lemma from (5.3) in
this case.

(b) When aðTp UDþÞ ¼ þy. Let Dþ ¼ faj j j A Ng and in (5.3) we take
Q ¼ Tp U fa1; . . . ; akg ðkb 2N � nþ 1Þ and then let k tend to infinity. We then
have the equality

h
X

a ATpUDþ

wðaÞdnða; f Þ � n� 1

0
@

1
Að5:5Þ

¼
X

a ATpUDþ

fdnða; f Þ þ ð1� hwðaÞÞð1� dnða; f ÞÞg � ð2N � nþ 1Þ:

As dnða; f Þ ¼ 0 ða A X � Tp UDþÞ and (5.4) holds, we obtain this lemma
from (5.5) in this case.

From (A) and (B) we obtain this lemma. r

(I) The case when l > ðnþ 1Þ=ð2N � nþ 1Þ.
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Theorem 5.1. If l > ðnþ 1Þ=ð2N � nþ 1Þ, thenX
a AX

dnða; f Þa 2N � nþ 1� 1

n
:

Proof. By the definition of l, there exists a set So A O such that

nþ 1

2N � nþ 1
< l ¼ dðSoÞ

aSo

:

From Lemma 5.1, we have the inequality

aSo

dðSoÞ
a

2N � nþ 1

nþ 1
� 1

nðnþ 1Þ :

From this inequality and Corollary 4.1(II), we have the estimateX
a AX

dnða; f Þa
nþ 1

l
a 2N � nþ 1� 1

n
;

which is our theorem. r

When n is even, we obtain a little better result than Theorem 5.1.

Theorem 5.2. Suppose that N > n ¼ 2m ðm A NÞ and we put

d ¼ minf1=m; ðN � nÞ=ðmþ 1Þg:
If l > ðnþ 1Þ=ð2N � nþ 1Þ, thenX

a AX

dnða; f Þa 2N � nþ 1� d:

Proof. Suppose to the contrary thatX
a AX

dnða; f Þ > 2N � nþ 1� d:

Then, from this inequality and Corollary 4.1(II) we have that

l <
nþ 1

2N � nþ 1� d

and by the definition of l, there exists a set So A O such that l ¼ dðSoÞ=aSo so
that

dðSoÞ
aSo

<
nþ 1

2N � nþ 1� d
:ð5:6Þ
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From (5.6) and Lemma 2.2, we have the inequality

dðSoÞ <
nþ 1

2N � nþ 1� d
aSo a

nþ 1

2N � nþ 1� d
ðN � nþ dðSoÞÞ;

so that

dðSoÞ <
ðnþ 1ÞðN � nÞ
2ðN � nÞ � d

¼ nþ 1

2� d=ðN � nÞ :

From this inequality we have the inequality

dðSoÞ �m <
nþ 1

2� d=ðN � nÞ �m ¼ 1þmd=ðN � nÞ
2� d=ðN � nÞ a 1

since da ðN � nÞ=ðmþ 1Þ, so that we have the inequality

dðSoÞam:ð5:7Þ
As ðnþ 1Þ=ð2N � nþ 1Þ< l¼ dðSoÞ=aSo, from (5.7) we obtain the inequality

aSo

dðSoÞ
a

2N � nþ 1

nþ 1
� 1

dðSoÞðnþ 1Þ a
2N � nþ 1

nþ 1
� 1

mðnþ 1Þð5:8Þ

as in the case of (5.2).
On the other hand, from (5.6) and (5.8)

2N � nþ 1� d

nþ 1
<

aSo

dðSoÞ
a

2N � nþ 1

nþ 1
� 1

mðnþ 1Þ ;

from which we have that d > 1=m, which is a contradiction to the choice of d.
This implies that this theorem must hold. r

Note 5.1. d ¼ 1=ðmþ 1Þ when N � n ¼ 1 and d ¼ 1=m otherwise.

(II) The case when l ¼ ðnþ 1Þ=ð2N � nþ 1Þ.

Lemma 5.3. Suppose that N > n¼ 2m ðm ANÞ and l¼ ðnþ 1Þ=ð2N � nþ 1Þ.
Let

OðlÞ ¼ S A O

���� dðSÞaS
¼ l

� �
;

then, we have the followings.
(a) OðlÞ is not empty.
(b) For S A OðlÞ, (i) S is not maximal; (ii) aSaN �m and (iii) dðSÞam.
(c) If S1;S2 A OðlÞ, then S1 US2 A OðlÞ.
(d) aOðlÞ is finite.
(e) Put U1 ¼ 6

S AOðlÞ S. Then, U1 A OðlÞ, and if S A OðlÞ, then SHU1.
(f ) Let

O1ðlÞ ¼ fS A O jS �U1 0 fg:
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Then, O1ðlÞ is not empty and afdðSÞ=aS jS A O1ðlÞg < y.
(g) Let

l1 ¼ min
S AO1ðlÞ

dðSÞ=aS:

Then, l < l1.
(h) Let

t1 ¼
l if a A U1;

l1 if a A X �U1:

�

Then, t1 A W.

Proof. (a) This is tivial from our assumption.
(b) (i) As S A OðlÞ,

aS � dðSÞ ¼aS � nþ 1

2N � nþ 1
aS ¼ 2ðN � nÞ

2N � nþ 1
aS:ð5:9Þ

If S is maximal: aS ¼ dðSÞ þN � n,

aS ¼ ð2N � nþ 1Þ=2 ¼ N �mþ 1=2;

which is absurd. We have (i).
(ii) From (i) and (5.9), aS < N �mþ 1=2, so that aSaN �m.
(iii) As S A OðlÞ,

dðSÞ ¼ nþ 1

2N � nþ 1
aSa

2mþ 1

2ðN �mÞ þ 1
ðN �mÞ < mþ 1

2
;

so that dðSÞam.
(c) From Lemma 2.1 and (b)(iii),

dðS1 US2Þa dðS1Þ þ dðS2Þ � dðS1 VS2Þa dðS1Þ þ dðS2Þa 2m ¼ n;

so that aðS1 US2ÞaN and S1 US2 A O.
On the other hand, by the definition of l

laðS1 VS2Þa dðS1 VS2Þ:
From Lemma 2.1 and this inequality we have the inequality

la
dðS1 US2Þ
aðS1 US2Þ

a
dðS1Þ þ dðS2Þ � dðS1 VS2Þ
aS1 þaS2 �aðS1 VS2Þ

a l;

namely, dðS1 US2Þ=aðS1 US2Þ ¼ l and we have (c).
(d) We have only to prove this proposition whenaX is not finite. Suppose

to the contrary thataOðlÞ is not finite. Then, there are sets S1;S2; . . . such that

OðlÞI fS1;S2; . . . ;Si; . . .g; Si 0Sj if i0 j

and
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a 6
y

i¼1

Si

( )
¼ y:

There exists an integer n satisfying

N þ 1 <a 6
n

i¼1

Si

( )
:

On the other hand, 6n

i¼1
Si A OðlÞ by (c) and so by (b)(ii)

a 6
n

i¼1

Si

( )
aN �m:

From these two inequalities we obtain that mþ 1 < 0, which is absurd.
This implies that aOðlÞ is finite.

(e) From (c) and (d) we easily obtain this assertion.
(f ) A subset S of X such that aS ¼ N þ 1 belongs to O and S �U1 0 f

since aU1 aN �m by (b)(ii). From Lemma 2.3 we obtain that afdðSÞ=aS j
S A O1ðlÞg < y.

(g) By the definitions of l and l1, we have la l1. Suppose that l ¼ l1.
Then, there exists a set S A O1ðlÞ satisfying dðSÞ=aS ¼ l, which means that
S A OðlÞ.

On the other hand, as S A O1ðlÞ, S �U1 0 f and S UU1 A OðlÞ by (c). But,
S UU1 ZU1, which contradicts (e). This means that (g) must hold.

(h) The fact that t1 : X ! ð0; 1� is trivial. For any S A O,
(i) When SHU1, by the definition of l,X

a AS

t1ðaÞ ¼ laSa ðdðSÞ=aSÞaS ¼ dðSÞ:

(ii) When S �U1 0 f, by the definition of l1 and (g)X
a AS

t1ðaÞa l1aSa ðdðSÞ=aSÞaS ¼ dðSÞ:

(i) and (ii) imply that t1 A W. r

Theorem 5.3. Suppose that N > n ¼ 2m. If l ¼ ðnþ 1Þ=ð2N � nþ 1Þ, thenX
a AX

dnða; f Þa 2N � nþ 1� 1

2n
:

Proof. Suppose thatX
a AX

dnða; f Þ > 2N � nþ 1� 1

2n
:ð5:10Þ
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From Lemma 5.3(h), Theorem 4.1 and (5.10), we have the inequalityX
a AX

t1ðaÞdnða; f Þa nþ 1 <
X
a AX

nþ 1

2N � nþ 1
dnða; f Þ þ

nþ 1

2N � nþ 1
� 1
2n

;

so that we have the inequality

l1 �
nþ 1

2N � nþ 1

� � X
a AX�U1

dnða; f Þ ¼
X

a AX�U1

t1ðaÞ �
nþ 1

2N � nþ 1

� �
dnða; f Þð5:11Þ

<
nþ 1

2N � nþ 1
� 1
2n

:

On the other hand, asaU1 aN �m due to Lemma 5.3(b) and (e), we have
the inequality X

a AX�U1

dnða; f Þ > N �mþ 1� 1

2n
ð5:12Þ

from (5.10) and (1.1). Further, by the definition of l1, there is a set S A O1ðlÞ
such that

l1 ¼ dðSÞ=aS > ðnþ 1Þ=ð2N � nþ 1Þ
from Lemma 5.3(g). From Lemma 5.1 we obtain the inequality

aS

dðSÞ a
2N � nþ 1

nþ 1
� 1

nðnþ 1Þ
and we have the inequality

dðSÞ=aSb ðnþ 1Þ=ð2N � nþ 1� 1=nÞ;
so that

l1 �
nþ 1

2N � nþ 1
b

nþ 1

2N � nþ 1� 1=n
� nþ 1

2N � nþ 1
ð5:13Þ

¼ nþ 1

n

1

ð2N � nþ 1� 1=nÞð2N � nþ 1Þ :

From (5.11), (5.12) and (5.13), we have the inequality

nþ 1

n

1

ð2N � nþ 1� 1=nÞð2N � nþ 1Þ N �mþ 1� 1

2n

� �
<

nþ 1

2N � nþ 1
� 1
2n

and so we have the inequality

N �mþ 1� 1

2n
<

1

2
2N � nþ 1� 1

n

� �
¼ N �mþ 1

2
� 1

2n
;

which is absurd. This implies that (5.10) does not hold and we have this
theorem. r
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Corollary 5.1. Suppose that N > n ¼ 2m. If

X
a AX

dnða; f Þ > 2N � nþ 1� 1

2n
;

then l < ðnþ 1Þ=ð2N � nþ 1Þ.

Proof. As 1=ð2nÞaminf1=m; ðN � nÞ=ðmþ 1Þg, we have this corollary
from Theorems 5.2 and 5.3 immediately. r

(III) The case when l < ðnþ 1Þ=ð2N � nþ 1Þ.

Theorem 5.4. Suppose that (i) X is of type I and Tp is not maximal or (ii)
X is of type II. Then, X

a AX

dnða; f Þa 2N � nþ 1� 1

2n
:ð5:14Þ

Proof. When Tp is not maximal, we have

aTp < dðTpÞ þN � n <
nþ 1

2
þN � n ¼ 2N � nþ 1

2
ð5:15Þ

from Proposition 2.3(II)(i).
When X is of type II, we have

aTpþ1 <
2N � nþ 1

2
ð5:16Þ

from Propositions 3.5 and 3.8.
We have only to prove (5.14) whenX

a AX

dnða; f Þb 2N � nþ 1� 1

2
:

Let j ¼ 1 or 2. From (1.1) and (5.15) or (5.16), we have the inequalityX
a AX�Tpþ j�1

dnða; f Þ ¼
X
a AX

dnða; f Þ �
X

a ATpþ j�1

dnða; f Þ

b 2N � nþ 1� 1

2
�aTpþj�1

> 2N � nþ 1� 1

2
� 2N � nþ 1

2

¼ ð2N � nÞ=2;

so that we have the inequality
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X
a AX

wjðaÞdnða; f Þ �
X
a AX

wðaÞdnða; f Þð5:17Þ

¼
X

a AX�Tpþ j�1

ðwjðaÞ � wðaÞÞdnða; f Þ

¼ Lj �
1

h

� � X
a AX�Tpþ j�1

dnða; f Þ

b
1

Nð2N � nÞ �
2N � n

2
¼ 1

2N

from Corollary 3.1 or Corollary 3.2.
On the other hand, we obtain the inequalityX

a AX

wjðaÞdnða; f Þ �
X
a AX

wðaÞdnða; f Þð5:18Þ

a nþ 1�
X
a AX

wðaÞdnða; f Þ

a
1

h
2N � nþ 1�

X
a AX

dnða; f Þ
 !

from Theorem 4.1 and Lemma 5.2. As N=na h (Proposition 2.4(c)), from (5.17)
and (5.18) we have the inequality

1

2N
�N
n

a 2N � nþ 1�
X
a AX

dnða; f Þ;

which reduces to (5.14). r

6. Extremal truncated defect relation

Let f , X , N and n etc. be as in Section 1 or 2. We use notations in
Sections 1 through 4 freely. We consider holomorphic curves extremal for the
truncated defect relation in this section. First of all, we give the following
lemma, which plays a fundamental role in this section.

Lemma 6.1. Suppose that N > n. The truncated defect relation for f is
extremal: X

a AX

dnða; f Þ ¼ 2N � nþ 1ð6:1Þ

if and only if the following two conditions (a) and (b) hold:
(a) ð1� hwðaÞÞð1� dnða; f ÞÞ ¼ 0 ða A X Þ;
(b)

P
a AX wðaÞdnða; f Þ ¼ nþ 1.
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Proof. As ð1� hwðaÞÞð1� dnða; f ÞÞb 0 for any a A X by (1.1) and Prop-
osition 2.4(a), from Corollary 4.1(I) and (1.2), we easily obtain this lemma from
Lemma 5.2. r

From now on throughout this section we suppose that
(i) N > n and that
(ii) (6.1) holds.
As is given in Section 1, let us remember the following set:

D1 ¼ fa A X j dnða; f Þ ¼ 1g:
One of the main purposes of this section is to estimate aD1 under the

conditions (i) and (ii).
First of all, we can rewrite Theorem 1.B as follows.

Proposition 6.1. (I) If dðD1Þ ¼ nþ 1, then, aD1 ¼ 2N � nþ 1.
(II) If dðD1Þ ¼ n, then aD1 ¼ N.

According to this proposition, we have only to estimateaD1 when dðD1Þan.
Then, aD1 aN. We have D1 A O if D1 0 f and aDþ b 2N � nþ 2.

Lemma 6.2. la ðnþ 1Þ=ð2N � nþ 1Þ.

Proof. From Corollary 4.1(II) and (6.1) we have the inequality 2N � nþ 1a
ðnþ 1Þ=l, so that la ðnþ 1Þ=ð2N � nþ 1Þ. r

From this lemma we consider the extremal truncated defect relation in two
cases.

(I) The case when l < ðnþ 1Þ=ð2N � nþ 1Þ.
We note that l < ðnþ 1Þ=ð2N � nþ 1Þ when n is even due to Corollary 5.1

under the conditions (i) and (ii).

Theorem 6.1. Suppose that (i) N > n, (ii) (6.1) holds and (iii) dðD1Þa n. If
l < ðnþ 1Þ=ð2N � nþ 1Þ, in particular, if n is even, then D1 0 f and D1 is
maximal:

aD1 ¼ dðD1Þ þN � n:

Proof. We apply Proposition 2.3(II). (a) We first note that

Tp HD1:ð6:2Þ
In fact, from Note 2.2(b) Tp ¼ fa A X j hwðaÞ < 1g and due to Lemma 6.1,

dnða; f Þ ¼ 1 for a A Tp. This implies that D1 0 f.
(b) X is of type I.
In fact, suppose to the contrary that X is of type II. Then, the truncated

defect relation for f is not extremal from Theorem 5.4. This implies that X
must be of type I.
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(c) Tp is maximal.
In fact, suppose to the contrary that Tp is not maximal. Then, the

truncated defect relation for f is not extremal from Theorem 5.4. This implies
that Tp must be maximal.

From (6.2) and Proposition 3.1, D1 is maximal:

aD1 ¼ dðD1Þ þN � n:

We obtain our theorem. r

(II) The case when l ¼ ðnþ 1Þ=ð2N � nþ 1Þ.
Let

Oþ ¼ fSHDþ j 0 <aSaN þ 1g
and

Wþ ¼ tþ : Dþ ! ð0; 1� j ES A Oþ;
X
a AS

tþðaÞa dðSÞ
( )

:

We apply the results in Sections 2, 3 and 4 to Dþ in place of X .

Proposition 6.2. (a) afdðSÞ=aS jS A Oþg < y.
(b) Let

lþ ¼ min
S AOþ

dðSÞ
aS

and let tþ : Dþ ! ð0; 1� such that tþðaÞ ¼ lþ. Then, tþ A Wþ.
(c) lþ ¼ l.

Proof. (a) As Oþ HO, we have that

fdðSÞ=aS jS A OþgH fdðSÞ=aS jS A Og;
so that from Lemma 2.3 we have (a).

(b) As in Example 4.1(b), we obtain that tþ A Wþ.
(c) By the definitions of l and lþ, we have that la lþ. On the other

hand, by applying Corollary 4.1(II) to Dþ and tþ we obtain the inequality

2N � nþ 1 ¼
X
a ADþ

dnða; f Þa
nþ 1

lþ
;

so that lþ a ðnþ 1Þ=ð2N � nþ 1Þ ¼ l. That is, we obtain (c). r

We note that from Corollary 5.1, n is odd. Let n ¼ 2m� 1 for a positive
integer m. Then lþ ¼ m=ðN �mþ 1Þ.

We put

F0 ¼ fS A Oþ j dðSÞ=aS ¼ m=ðN �mþ 1Þg:
As lþ ¼ m=ðN �mþ 1Þ,
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Proposition 6.3. F0 is not empty.

Proposition 6.4. For any S A F0, (a) dðSÞam; (b) aSaN �mþ 1.

Proof. (a) As dðSÞ=aS ¼ m=ðN �mþ 1Þ, we have

dðSÞ ¼ m

N �mþ 1
aSa

m

N �mþ 1
ðdðSÞ þN � nÞ

by Lemma 2.2, so that

ðN � 2mþ 1ÞdðSÞamðN � 2mþ 1Þ;
which reduces to dðSÞam.

(b) aS ¼ fðN �mþ 1Þ=mgdðSÞaN �mþ 1. r

Proposition 6.5. For any element S0 A F0, fS A F0 jS � S0 0 fg0 f.

Proof. We put

F1 ¼ fS A Oþ jS � S0 0 fg:

(a) F1 is not empty.
(Proof.) Suppose to the contrary that for some S0 A F0;F1 is empty.

Then, any S A Oþ is a subset of S0, so that 6
S AOþ S ¼ S0. Since

2N � nþ 1aaDþ ¼a 6
S AOþ

S

 !
¼aS0 aN �mþ 1;

by Proposition 6.4(b), we have that N þ 1ama n, which is absurd. Therefore,
F1 is not empty.

(b) afdðSÞ=aS jS A F1g is finite.
We have (b) from Lemma 2.3.
(c) We put l1 ¼ minS AF1

dðSÞ=aS. Then, lþ ¼ l1.

(Proof.) By the definitions of lþ and l1, we have lþ a l1. Suppose that
lþ < l1. Let

tðaÞ ¼ lþ if a A S0;

l1 if a A Dþ � S0:

�

Then, t A Wþ.
This is because
1) The fact that t : Dþ ! ð0; 1� is trivial.
2) For any S A Oþ,
(i) When SHS0, by the definition of lþ,X

a AS

tðaÞ ¼ lþaSa ðdðSÞ=aSÞaS ¼ dðSÞ:
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(ii) When S � S0 0 f, by the definition of l1X
a AS

tðaÞa l1aSa ðdðSÞ=aSÞaS ¼ dðSÞ:

1) and 2) imply that t A Wþ. By Theorem 4.1 for Dþ and the assumption
(6.1) we obtain the inequalityX

a ADþ

tðaÞdnða; f Þa nþ 1 ¼
X
a ADþ

lþdnða; f Þ;

from which we obtain the inequality

0 < ðl1 � lþÞ
X

a ADþ�S0

dnða; f Þ ¼
X
a ADþ

ðtðaÞ � lþÞdnða; f Þa 0

since Dþ ZS0 and tðaÞ ¼ l1 > lþ ða A Dþ � S0Þ. This is a contradiction. We
have that lþ ¼ l1.

Now, there exists an element S1 A F1 satisfying

dðS1Þ=aS1 ¼ l1 ¼ lþ:

This S1 belongs to F0 and satisfies that S1 � S0 0 f. r

Proposition 6.6. Let S1 and S2 be in F0. If S1 VS2 0 f, then S1 US2 A F0.

Proof. As S1;S2 A F0,

dðS1Þ
aS1

¼ dðS2Þ
aS2

¼ lþ:ð6:3Þ

From Proposition 6.4(a) and Lemma 2.1 we obtain the inequality

dðS1 US2Þa dðS1Þ þ dðS2Þ � dðS1 VS2Þa 2m� 1 ¼ n

as dðS1 VS2Þb 1 by our assumption, which implies that aðS1 US2ÞaN. This
implies that S1 US2 A Oþ. As aðS1 VS2ÞaaðS1 US2ÞaN, S1 VS2 A Oþ.

Next, by the definition of lþ, we have the inequalities

lþ a
dðS1 US2Þ
aðS1 US2Þ

and lþ a
dðS1 VS2Þ
aðS1 VS2Þ

:

From (6.3), Lemma 2.1 and these inequalities we have the inequality

la
dðS1 US2Þ
aðS1 US2Þ

a
dðS1Þ þ dðS2Þ � dðS1 VS2Þ
aS1 þaS2 �aðS1 VS2Þ

a l;

which implies that dðS1 US2Þ=aðS1 US2Þ ¼ lþ, so that S1 US2 A F0. r

Here we give a definition.
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Definition 6.1 ([10, Definition 2.3]). Let F be a family of non-empty
subsets of Dþ.

We say that two sets S1;S2 A F have a relation S1 @S2 if and only if either
(i) S1 VS2 0 f or
(ii) there exist sets R1; . . . ;Rs A F such that

Rj�1 VRj 0 f ð j ¼ 1; . . . ; sþ 1Þ; R0 ¼ S1; Rsþ1 ¼ S2:

Lemma 6.2 ([10, Lemma 2.6]). The relation ‘‘@’’ in F is an equivalence
relation.

We apply Definition 6.1 and Lemma 6.2 to F ¼ F0 and classify F0 by the
equivalence relation ‘‘@’’. We put

F0=@¼ fP1; . . . ;Ppg; Mk ¼ 6
S APk

S ðk ¼ 1; . . . ; pÞ;

where p is a positive integer or þy.

Proposition 6.7. For each k, aPk is finite.

Proof. We have only to prove this proposition when aDþ is not finite.
(a) Let S0 be any element of Pk and put

A ¼ fS A Pk jS0 VS0 fg:
Then, aA is finite.

(Proof.) Suppose that aA is infinite. Then, there are sets S1;S2; . . . such
that

AI fS1;S2; . . . ;Si; . . .g; Si 0Sj if i0 j

and

a 6
y

i¼1

Si

( )
¼ y:

There exists an integer n satisfying

N þ 1 <a 6
n

i¼1

Si

( )
:ð6:4Þ

On the other hand, 6n

i¼0
Si A F0 by Proposition 6.6 and so by Proposition

6.4(b)

a 6
n

i¼1

Si

( )
aN �mþ 1;

which is a contradiction to (6.4). aA must be finite.
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(b) Suppose that there exist S1; . . . ;Sq A Pk such that Si VSj ¼ f if 1a i0
ja q. Then, qaN �mþ 1.

(Proof.) As S1; . . . ;Sq belong to the same class Pk, from Definition 6.1 and
Proposition 6.6, there exists a set S in F0 such that 6q

i¼1
Si HS, so that due

to Proposition 6.4(b)

qaa 6
q

i¼1

Si

 !
aaSaN �mþ 1;

that is, qaN �mþ 1.
(c) Now, we prove our proposition. Suppose to the contrary that for some

k,aPk is infinite. It is easy to see that there are an infinite number of elements

S1;S2; . . . ;Si; . . . ; Si VSj ¼ f ð1a i0 jÞ
of aPk from (a). This is a contradiction to (b). We have that aPk is finite.

r

Proposition 6.8 (see [10, Lemma 3.2 and Proposition 4.5]). The sets Mk

ðk ¼ 1; . . . ; pÞ have the following properties:
(a) Mk A F0 ð1a ka pÞ;
(b) pb 2;
(c) Mk VMl ¼ f ðk0 lÞ and
(d) dðMkÞ ¼ m, aMk ¼ N �mþ 1 ð1a ka pÞ.

Proof. (a) From Definition 6.1, Propositions 6.6 and 6.7 we have this
assertion.

(b) As M1 belongs to F0, we apply Proposition 6.5 to M1. There exists
an element S A F0 such that S �M1 0 f. In this case, S VM1 ¼ f. In fact, if
S VM1 0 f, then, by the definition of the relation ‘‘@’’, S@M1. This means
that S A P1, and so SHM1 by the definition of M1, which implies that
S �M1 ¼ f. This is a contradiction. We have that pb 2.

(c) This is trivial by the definition of fMk j k ¼ 1; . . . ; pg.
(d) By Proposition 6.4(a), we have dðMkÞam. Suppose to the contrary

that there exists at least one k such that dðMkÞam� 1. For simplicity we
may suppose without loss of generality that k ¼ 1. Then, by Lemma 2.1

dðM1 UM2Þa dðM1Þ þ dðM2Þa 2m� 1 ¼ n;

so that aðM1 UM2ÞaN and M1 UM2 A Oþ. As M1;M2 A F0,

lþ a
dðM1 UM2Þ
aðM1 UM2Þ

a
dðM1Þ þ dðM2Þ
aM1 þaM2

¼ lþ;

and we have that lþ ¼ dðM1 UM2Þ=aðM1 UM2Þ, and so M1 UM2 A F0. Then,
as

M1 @M1 UM2 @M2;
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which is a contradiction since M1 A P1 and M2 A P2. This implies that dðMkÞ
¼ m ðk ¼ 1; . . . ; pÞ and we have aMk ¼ ððN �mþ 1Þ=mÞdðMkÞ ¼ N �mþ 1
ðk ¼ 1; . . . ; pÞ. We have (d). r

We put

X0 ¼ 6
p

k¼1

Mk:

Proposition 6.9 (see [10, Lemma 3.3 and Proposition 4.6]). (a) X0 ¼ Dþ;
(b) When aDþ < y, ðN �mþ 1Þ jaDþ and p ¼aDþ=ðN �mþ 1Þ and

when aDþ ¼ y, then p ¼ y.

Proof. (a) Suppose to the contrary that X0 YDþ. We put

F2 ¼ fS A Oþ jS � X0 0 fg:
1) F2 is not empty.
(Proof.) For example, S ¼ fag, where a A Dþ � X0, belongs to F2.
2) We put l2 ¼ minS AF2

dðSÞ=aS. Then, lþ < l2.

(Proof.) First, we note that afdðSÞ=aS jS A F2g is finite by Lemma 2.3.
Now, by the definition of lþ and l2, we have lþ a l2. Suppose that lþ ¼ l2.
Then, there exists an element S A F2 such that

dðSÞ=aS ¼ lþ ¼ m=ðN �mþ 1Þ;
which implies that S A F0; that is to say, SHX0, which is a contradiction. We
have that lþ < l2.

3) We define

t2ðaÞ ¼
lþ if a A X0;

l2 if a A Dþ � X0:

�

Then, t2 A Wþ. This is because
a) The fact that t2 : D

þ ! ð0; 1� is trivial.
b) For any S A Oþ,
(i) When SHX0, by the definition of lþ,X

a AS

t2ðaÞ ¼ lþaSa ðdðSÞ=aSÞaS ¼ dðSÞ:

(ii) When S � X0 0 f : S A F2, by the definition of l2 and 2) of this proof,X
a AS

t2ðaÞa l2aSa ðdðSÞ=aSÞaS ¼ dðSÞ:

4) By Theorem 4.1 for Dþ and the assumption (6.1) we obtain the inequalityX
a ADþ

t2ðaÞdnða; f Þa nþ 1 ¼
X
a ADþ

lþdnða; f Þ
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from which we obtain the inequality

0 < ðl2 � lþÞ
X

a ADþ�X0

dnða; f Þ ¼
X
a ADþ

ðt2ðaÞ � lþÞdnða; f Þa 0

since Dþ ZX0 and t2ðaÞ ¼ l2 > lþ ða A Dþ � X0Þ. This is a contradiction.
We have that X0 ¼ Dþ.

(b) When aDþ < þy. As ðN �mþ 1Þp ¼aDþ from Proposition 6.8(a)
and (a) of this proposition, ðN �mþ 1Þ jaDþ and p ¼aDþ=ðN �mþ 1Þ.

When aDþ ¼ þy, we easily obtain that p ¼ þy from (a) of this prop-
osition. r

Proposition 6.10 (see [10, Lemma 3.4 and Proposition 4.7]). Any m ele-
ments of Dþ are linearly independent.

Proof. Let b1; . . . ; bm be any m elements of Dþ.

Case 1. Mk V fb1; . . . ; bmg ¼ f for some k ð1a ka pÞ.
We suppose without loss of generality that k ¼ 1. As dðM1Þ ¼ m, there are

m linearly independent vectors c1; . . . ; cm in M1 and as aM1 ¼ N �mþ 1,

aðM1 U fb1; . . . ; bmgÞ ¼ N þ 1:

In addition, Dþ is in N-subgeneral position, there are nþ 1 ¼ 2m linearly
independent vectors in M1 U fb1; . . . ; bmg. This implies that nþ 1 vectors b1; . . . ;
bm c1; . . . ; cm are linearly independent, and so b1; . . . ; bm are linearly independent.

We note that if aDþ ¼ þy, only this case occurs.

Case 2. Mk V fb1; . . . ; bmg0 f for any k ð1a ka pÞ. (This case occurs
only when aDþ < þy.)

(a) First we note that any m elements fu1; . . . ; umg of Mk ð1a ka pÞ are
linearly independent.

In fact, there is an integer l0 k such that Ml VMk ¼ f, so that
fu1; . . . ; umgVMl ¼ f. From Case 1, fu1; . . . ; umg are linearly independent.

(b) Now we suppose without loss of generality that

M1 C b1; . . . ; bl and M1 V fblþ1; . . . ; bmg ¼ f ð1a lam� 1Þ:
Let fclþ1; . . . ; cmg be any m� l vectors in M1 � fb1; . . . ; blg. Then the

vectors fb1; . . . ; bl; clþ1; . . . ; cmg are linearly independent since any m vectors in
M1 are linearly independent from ðaÞ.

Let d1; . . . ; dl be any l vectors in Dþ � ðM1 U fblþ1; . . . ; bmgÞ. Then,

fd1; . . . ; dl; blþ1; . . . ; bmgVM1 ¼ f;ð6:5Þ
and so from Case 1, m vectors d1; . . . ; dl, blþ1; . . . ; bm are linearly independent.
As aM1 ¼ N �mþ 1, (6.5) implies that

aðM1 U fd1; . . . ; dl; blþ1; . . . ; bmgÞ ¼ N þ 1:
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As Dþ is in N-subgeneral position, there are nþ 1 ¼ 2m linearly indepen-
dent vectors in M1 U fd1; . . . ; dl; blþ1; . . . ; bmg. By taking into consideration that
dðM1Þ ¼ m, 2m vectors

b1; . . . ; bl; clþ1; . . . ; cm; d1; . . . ; dl; blþ1; . . . ; bm

are linearly independent, so that the vectors b1; . . . ; bm are linearly independent.
r

Summarizing Propositions 6.3 through 6.10, we have the following theorem
when l ¼ ðnþ 1Þ=ð2N � nþ 1Þ.

Theorem 6.2 (see [10, Theorems 3.1(II) and 4.1(II)]). Suppose that (i)
N > n and that (ii) (6.1) holds:X

a AX

dnða; f Þ ¼ 2N � nþ 1:

If l ¼ ðnþ 1Þ=ð2N � nþ 1Þ, then n is odd (we put n ¼ 2m� 1) and the
following properties of Dþ hold:

There are mutually disjoint subsets M1; . . . ;Mp of Dþ satisfying
(a) Dþ ¼ 6p

k¼1
Mk;

(b) dðMkÞ ¼ m, aMk ¼ N �mþ 1 ð1a ka pÞ;
(c) any m elements of Dþ are linearly independent,

where if aDþ < þy, ðN �mþ 1Þ jaDþ and p ¼aDþ
n =ðN �mþ 1Þ, and if

aDþ ¼ þy, p ¼ þy.

Remark 6.1. By using the inequality (1.1), we are able to obtain the results
for dða; f Þ corresponding to those obtained for dnða; f Þ in Sections 4, 5 and 6.
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