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ON THE DISTRIBUTION OF ARGUMENTS OF GAUSS SUMS
IGor E. SHPARLINSKI

Abstract

Let F, be a finite field of ¢ elements of characteristic p. N. M. Katz and Z.
Zheng have shown the uniformity of distribution of the arguments arg G(a,y) of all
(¢ — 1)(¢ — 2) nontrivial Gauss sums

Gla,z) = 3 7(x) exp(2mi Tr(ax)/p),
xeF,
where y is a non-principal multiplicative character of the multiplicative group F; and
Tr(z) is the trace of z € F, into F,.
Here we obtain a similar result for the set of arguments arg G(a, ) when a and y
run through arbitrary (but sufficiently large) subsets o/ and Z of F; and the set of all
multiplicative characters of Fy, respectively.

1. Introduction

Let F, be a finite field of ¢ elements and let F; be the multiplicative group
F,.

For aeF] and a non-principal multiplicative character y of the multi-
plicative group F;, we consider the Gauss sums

Gla,x) = Y _ x(x) exp(2ni Tr(ax)/p),

xeF,

where Tr(z) is the trace of zeF, into F,, we refer to [3, Chapter 3] for a
background on characters and Gauss sums.
Since |G(a, )| = ¢'/?, we can define its argument arg G(a, x) by the relation

G(a,)() — eiarg G(a,;()ql/2.

N. M. Katz and Z. Zheng [4] have shown that if y runs through all
multiplicative characters of F and a runs through all elements of F, then the
ratio arg G(a, x)/2n is asymptotically uniformly distributed in [0, 1], see also [3,
Theorem 21.6].
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Here we obtain a similar result for the set of arguments arg G(a,y) when a
and y run through arbitrary (but sufficiently large) subsets .o/ and 2" of F; and of
the set of all multiplicative characters of F;, respectively. Namely, our result is
nontrivial if

(1) #A#X > q'

for some fixed ¢ > 0 provided that ¢ is large enough. We also show that this
condition is tight and for any field F, with and odd ¢ there are corresponding sets
o/ and 2 with

#A#T = (q - 1))2

for which arg G(a,y) for all ae.o/ and y e Z is constant and thus is not
uniformly distributed.

Throughout the paper, the implied constants in the symbols ‘O’, and ‘«’ are
absolute. We recall that the notations U = O(V) and V « U are both equiv-
alent to the assertion that the inequality |U| < ¢V holds for some constant ¢ > 0.

2. Discrepancy

To formulate and prove our main result we need to use some notions and
facts from the theory of uniform distribution.

For a sequence of N real numbers y,,...,yy €[0,1) the discrepancy is
defined by

A = max |T(,N) = N|,

0<y<

where T'(y,N) is the number of n < N such that y, <y, see [I, 5].

We recall that a sequence y,...,yy €[0,1) is called uniformly distributed if
for its the discrepancy satisfies A = o(N).

The most common way of estimating the discrepancy is via the following
Erdds—Turdn inequality (see [1, 5]), which links the discrepancy with exponential
sums.

LemMmA 1. For any integer H > 1, the discrepancy A of a sequence of N real
numbers y,,...,yy €[0,1) satisfies the inequality

N L1|d
A<<—+Z—
H h:lh

Z exp(2nihy,)

n=1

3. Incomplete power moments of Gauss sums

LEMMA 2. Let o/ = F; and let X be a set of nomprincipal multiplicative
characters of F;. For any integer h > 1, we have



174 IGOR E. SHPARLINSKI

Z ZG(Q,X)h Sq(h+1)/2 /d#&{#%.,

aed] yed
where d = ged(h,q — 1).
Proof. As in [4], we recall that
2) G(a, ) = 7(a)G(1, %),

where jy(a) is the complex conjugate character, see [3, Lemma 3.2]. Therefore,

(3) S>> Glan" <« ST160x DD @)

acd yel x1ex ae.d

=q"*w,,

where

VVh:Z

XEX

> a@"|.

aedd

By the Cauchy inequality we obtain

4) Wi <#ry

XEX

2

> ia)

ae.dd

Let 9 be a primitive root of F,. For aeF ;‘ we define ind ¢ by the relations
a=9" and 0<inda<q-—2.
Then for every integer s =0,...,¢ — 2, the function

xs(a) = exp(2nisind a/(q — 1))

is a multiplicative character of F, and every character can be represented in such
a way (where s = 0 corresponds to the principal character y,). Thus, extending
the summation in (4) over all multiplicative characters (including the principal
character), we derive

q—2 2

Wi <#2> | exp(2nihsind a/(q — 1))
s=0|ae.o/

-2

#2> Y exp(2nihs(ind a —ind b)/(q — 1))

=

Il
S
AN

s=0 a,be

q

2
4A Z Z exp(2rihs(ind @ — ind b)/(q — 1)).
a,be.of s=0

S=

Clearly the inner sum vanishes unless
(5) h(inda—ind ) =0 (mod g — 1),
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in which case it is equal to ¢ — 1. Clearly, the congruence (5) is equivalent to
inda=ind b (mod(q—1)/d). For every be .o/ we see that ind a is uniquely
defined modulo (¢ — 1)/d and thus belongs to at most d residue classes modulo
g — 1, after which « is uniquely defined. Thus (5) has at most d#.7 solutions
in a,be.o/. Therefore W2 < d(q—1)#/#%. Recalling (3), we conclude the
proof. l

4. Main result

THEOREM 3. Let o/ = ¥ and let I be a set of nonprincipal multiplicative
characters of ¥,. For the discrepancy A(</,Z) of the set

G
{W:ae%,xe%}

we have the following bound.

A(A, X) < N#A#T q"/*V)

Proof. Using Lemma 1 we see that for every integer H > 1

H
AL, ) < #&{#&r Z ZZexpzhargG x)
h= acd yex
#&/#5{ A
Zh 72 Z@/ZZG"X
aeod ye

Applying the bound of Lemma 2 we obtain

A#X . Jecd(h,q — 1
At 2) < 2 H# +\/q#.9/#,%”2%
h=1

H
#”# +/q #Q/#%‘Zdl/z Z %

<
d|g—1 h=1
h=0 (modd)
#&/#
< +apd#X Y d'P Y kd
d|g—1 1<k<H/d
A#X
« # # + v/ #%#%’logHZd 12,
dlg—1

Taking H = ¢g and recalling that

OFRLED SEEPLl
dlg—1 d|g—1
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as ¢ — oo, see [3, Bound (12.82)], we obtain
N A, X) < #A#XG "+ NFA#T ¢,

Clearly, #A#Xq"" < \/Jq#A#Z, thus the first term can be discarded, which
concludes the proof. O

5. Comments

Clearly the bound of Theorem 3 is nontrivial, that is, of the form o(#/#%),
under the condition (1). Now, for an odd ¢, we take ./ to be the set of all
quadratic residues of F, and 2" to be the set consisting of just one quadratic
character y,. Since 7;(a) = y,(a) = 1, we now see from (2) that G(a,y,) takes
just one value. for all e .o/. Hence in general (1) cannot be substantially
relaxed. Certainly this is a somewhat pathological example as the set 2 consists
of just one element. So one may ask whether it is possible to replace (1) with a
weaker condition provided that both sets ./ and 2 are not too small, for
example, under the additional assumption that

#o >q° and #4 = q°

for some fixed ¢ > 0. We show that this is still impossible, and in fact for any
&> 0 there are infinitely many primes p for which there are sets .«/ and 2 over
F, with
#od > p'778 A > p'PH2 and  #A#X > (p—1)/2

and such that either

arg G(a,x) €10,1/2], ae, y e,
or

arg G(a,x) €[1/2,1], aedd, yeX.
By a result of K. Ford [2, Theorem 7] there are infinitely many primes p such
that p — 1 has a divisor d with

P\ < d < pl/s

(in fact this holds for a set of primes of positive relative density). We take .o/ to
the set of all d elements a € F, of order d, that is, a® =1 for ae /. Since for
any a € </ there is b € F, with a = b(P=D/_ the relation (2) implies that for any

character y of order (p —1)/d, that is, for any character with y(P~1/4 = 5, we
have

Gla,z) = 1(@)G(1. 1) = 76"V )G(1,7) = 7(0) "V G(1, 1) = G(1.2).
Let us separate the (p — 1)/d characters of order (p — 1)/d into two sets Z and
Z depending whether arg G(1,y) € [0,1/2] or arg G(1,x) € [1/2,1]. Taking Z as
the largest set out of 2y and 27 we have #Z > (p —1)/(2d) and the desired
assertion follows (provided that p is large enough).
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N. M. Katz and Z. Zheng [4] have also considered a similar question for the
set of all Jacobi sums

J(X7 lﬁ) = Z}{(X)lp(l *X),

xeF,

where y and  are nonprincipal multiplicative characters of F; with  # j and
shown that their arguments are uniformly distributed. It would be interesting to
obtain an analogue of this result in the case where y and ¥ run through arbitrary
sufficiently large sets of characters.
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