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ON THE DISTRIBUTION OF ARGUMENTS OF GAUSS SUMS

Igor E. Shparlinski

Abstract

Let Fq be a finite field of q elements of characteristic p. N. M. Katz and Z.

Zheng have shown the uniformity of distribution of the arguments arg Gða; wÞ of all

ðq� 1Þðq� 2Þ nontrivial Gauss sums

Gða; wÞ ¼
X
x AFq

wðxÞ expð2pi TrðaxÞ=pÞ;

where w is a non-principal multiplicative character of the multiplicative group F�
q and

TrðzÞ is the trace of z A Fq into Fp.

Here we obtain a similar result for the set of arguments arg Gða; wÞ when a and w

run through arbitrary (but su‰ciently large) subsets A and X of F�
q and the set of all

multiplicative characters of F�
q , respectively.

1. Introduction

Let Fq be a finite field of q elements and let F�
q be the multiplicative group

Fq.
For a A F�

q and a non-principal multiplicative character w of the multi-
plicative group F�

q , we consider the Gauss sums

Gða; wÞ ¼
X
x AFq

wðxÞ expð2pi TrðaxÞ=pÞ;

where TrðzÞ is the trace of z A Fq into Fp, we refer to [3, Chapter 3] for a
background on characters and Gauss sums.

Since jGða; wÞj ¼ q1=2, we can define its argument arg Gða; wÞ by the relation

Gða; wÞ ¼ ei arg Gða;wÞq1=2:

N. M. Katz and Z. Zheng [4] have shown that if w runs through all
multiplicative characters of F�

q and a runs through all elements of F�
q , then the

ratio arg Gða; wÞ=2p is asymptotically uniformly distributed in ½0; 1�, see also [3,
Theorem 21.6].
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Here we obtain a similar result for the set of arguments arg Gða; wÞ when a
and w run through arbitrary (but su‰ciently large) subsets A and X of F�

q and of
the set of all multiplicative characters of F�

q , respectively. Namely, our result is
nontrivial if

aAaXb q1þeð1Þ

for some fixed e > 0 provided that q is large enough. We also show that this
condition is tight and for any field Fq with and odd q there are corresponding sets
A and X with

aAaX ¼ ðq� 1Þ=2

for which arg Gða; wÞ for all a A A and w A X is constant and thus is not
uniformly distributed.

Throughout the paper, the implied constants in the symbols ‘O’, and ‘f’ are
absolute. We recall that the notations U ¼ OðVÞ and V fU are both equiv-
alent to the assertion that the inequality jU ja cV holds for some constant c > 0.

2. Discrepancy

To formulate and prove our main result we need to use some notions and
facts from the theory of uniform distribution.

For a sequence of N real numbers g1; . . . ; gN A ½0; 1Þ the discrepancy is
defined by

D ¼ max
0aga1

jTðg;NÞ � gNj;

where Tðg;NÞ is the number of naN such that gn a g, see [1, 5].
We recall that a sequence g1; . . . ; gN A ½0; 1Þ is called uniformly distributed if

for its the discrepancy satisfies D ¼ oðNÞ.
The most common way of estimating the discrepancy is via the following

Erdős–Turán inequality (see [1, 5]), which links the discrepancy with exponential
sums.

Lemma 1. For any integer Hb 1, the discrepancy D of a sequence of N real
numbers g1; . . . ; gN A ½0; 1Þ satisfies the inequality

Df
N

H
þ
XH
h¼1

1

h

XN
n¼1

expð2pihgnÞ
�����

�����:

3. Incomplete power moments of Gauss sums

Lemma 2. Let AJF�
q and let X be a set of nonprincipal multiplicative

characters of F�
q . For any integer hb 1, we have
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X
a AA

X
w AX

Gða; wÞh a qðhþ1Þ=2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
daAaX

p
;

where d ¼ gcdðh; q� 1Þ.

Proof. As in [4], we recall that

Gða; wÞ ¼ wðaÞGð1; wÞ;ð2Þ

where wðaÞ is the complex conjugate character, see [3, Lemma 3.2]. Therefore,

X
a AA

X
w AX

Gða; wÞh f
X
w AX

jGðw; 1Þjh
X
a AA

wðaÞh
�����

����� ¼ qh=2Wh;ð3Þ

where

Wh ¼
X
w AX

X
a AA

wðaÞh
�����

�����:
By the Cauchy inequality we obtain

W 2
h aaX

X
w AX

X
a AA

wðaÞh
�����

�����
2

:ð4Þ

Let Q be a primitive root of Fq. For a A F�
q we define ind a by the relations

a ¼ Q ind a and 0a ind aa q� 2:

Then for every integer s ¼ 0; . . . ; q� 2, the function

wsðaÞ ¼ expð2pis ind a=ðq� 1ÞÞ

is a multiplicative character of F�
q , and every character can be represented in such

a way (where s ¼ 0 corresponds to the principal character w0). Thus, extending
the summation in (4) over all multiplicative characters (including the principal
character), we derive

W 2
h aaX

Xq�2

s¼0

X
a AA

expð2pihs ind a=ðq� 1ÞÞ
�����

�����
2

¼aX
Xq�2

s¼0

X
a;b AA

expð2pihsðind a� ind bÞ=ðq� 1ÞÞ

¼aX
X

a;b AA

Xq�2

s¼0

expð2pihsðind a� ind bÞ=ðq� 1ÞÞ:

Clearly the inner sum vanishes unless

hðind a� ind bÞ1 0 ðmod q� 1Þ;ð5Þ
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in which case it is equal to q� 1. Clearly, the congruence (5) is equivalent to
ind a1 ind b ðmodðq� 1Þ=dÞ. For every b A A we see that ind a is uniquely
defined modulo ðq� 1Þ=d and thus belongs to at most d residue classes modulo
q� 1, after which a is uniquely defined. Thus (5) has at most daA solutions
in a; b A A. Therefore W 2

h a dðq� 1ÞaAaX. Recalling (3), we conclude the
proof. r

4. Main result

Theorem 3. Let AJF�
q and let X be a set of nonprincipal multiplicative

characters of F�
q . For the discrepancy DðA;XÞ of the set

arg Gða; wÞ
2p

: a A A; w A X

� �

we have the following bound:

DðA;XÞa
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aAaX

p
q1=2þoð1Þ:

Proof. Using Lemma 1 we see that for every integer Hb 1

DðA;XÞfaAaX

H
þ
XH
h¼1

1

h

X
a AA

X
w AX

expðih arg Gða; wÞÞ
�����

�����

¼aAaX

H
þ
XH
h¼1

1

hqh=2

X
a AA

X
w AX

Gða; wÞh
�����

�����:
Applying the bound of Lemma 2 we obtain

DðA;XÞfaAaX

H
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qaAaX

p XH
h¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gcdðh; q� 1Þ

p
h

a
aAaX

H
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qaAaX

p X
djq�1

d 1=2
XH
h¼1

h10 ðmod dÞ

1

h

a
aAaX

H
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qaAaX

p X
djq�1

d 1=2
X

1akaH=d

1

kd

f
aAaX

H
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qaAaX log H

p X
djq�1

d�1=2:

Taking H ¼ q and recalling that

X
djq�1

d�1=2
a

X
djq�1

1 ¼ qoð1Þ
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as q ! y, see [3, Bound (12.82)], we obtain

DðA;XÞfaAaXq�1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aAaX

p
q1=2þoð1Þ:

Clearly, aAaXq�1 a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qaAaX

p
, thus the first term can be discarded, which

concludes the proof. r

5. Comments

Clearly the bound of Theorem 3 is nontrivial, that is, of the form oðaAaXÞ,
under the condition (1). Now, for an odd q, we take A to be the set of all
quadratic residues of Fq and X to be the set consisting of just one quadratic
character w2. Since w2ðaÞ ¼ w2ðaÞ ¼ 1, we now see from (2) that Gða; w2Þ takes
just one value. for all a A A. Hence in general (1) cannot be substantially
relaxed. Certainly this is a somewhat pathological example as the set X consists
of just one element. So one may ask whether it is possible to replace (1) with a
weaker condition provided that both sets A and X are not too small, for
example, under the additional assumption that

aAb qe and aXb q e

for some fixed e > 0. We show that this is still impossible, and in fact for any
e > 0 there are infinitely many primes p for which there are sets A and X over
Fp with

aAb p1=2�e; aXb p1=2þe=2 and aAaXb ðp� 1Þ=2
and such that either

arg Gða; wÞ A ½0; 1=2�; a A A; w A X;

or

arg Gða; wÞ A ½1=2; 1�; a A A; w A X:

By a result of K. Ford [2, Theorem 7] there are infinitely many primes p such
that p� 1 has a divisor d with

p1=2�e
a da p1=2�2e=3

(in fact this holds for a set of primes of positive relative density). We take A to
the set of all d elements a A Fp of order d, that is, ad ¼ 1 for a A A. Since for
any a A A there is b A Fp with a ¼ bðp�1Þ=d , the relation (2) implies that for any
character w of order ðp� 1Þ=d, that is, for any character with wðp�1Þ=d ¼ w0, we
have

Gða; wÞ ¼ wðaÞGð1; wÞ ¼ wðbðp�1Þ=dÞGð1; wÞ ¼ wðbÞð p�1Þ=d
Gð1; wÞ ¼ Gð1; wÞ:

Let us separate the ðp� 1Þ=d characters of order ðp� 1Þ=d into two sets X0 and
X1 depending whether arg Gð1; wÞ A ½0; 1=2� or arg Gð1; wÞ A ½1=2; 1�. Taking X as
the largest set out of X0 and X1 we have aXb ðp� 1Þ=ð2dÞ and the desired
assertion follows (provided that p is large enough).
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N. M. Katz and Z. Zheng [4] have also considered a similar question for the
set of all Jacobi sums

Jðw;cÞ ¼
X
x AFq

wðxÞcð1� xÞ;

where w and c are nonprincipal multiplicative characters of F�
q with c0 w and

shown that their arguments are uniformly distributed. It would be interesting to
obtain an analogue of this result in the case where w and c run through arbitrary
su‰ciently large sets of characters.
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