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THE CENTRAL VALUE OF THE TRIPLE SINE FUNCTION
NOBUSHIGE KUROKAWA

Abstract

We study the central value of the triple sine function for a general period. We give
an explicit integral expression and an inequality. As an application we obtain an
expression for {(3).

1. Introduction

The triple sine function

S3(x, (w1, w2, w3)) = H (mor1 + nyws + n3w; + x)

ny,ny,n3 >0
X H (myw1 + mywy + myws — x)
my,my,ms>1

constructed and studied in our previous papers [K] [KK] (cf. Manin [M]) is a
generalization of the usual sine function

Si(x,w) = H(nw+x) H(mw—x)

n=0 m>1

=2 sin (E> ,
w

where we use the regularized product notation [ due to Deninger [D]:

A

];[/I:exp —%;f”

As is well-known, S;(x,w) is invariant under x < w —Xx, and the central

s=0

value of Sj(x,w) is the simple value S| <%,w) = 2. Similarly, the function

S3(x, (w1, m2,w3)) has the symmetry x < o) + @y + w3 — x, so the central value
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2
the simplest case

. W] + wy + w3 . . . .
s S3 (—, (w1,m2,3) ). This value is quite mysterious as seen from

3 - 3((3)
S3 (5) (11 1) 1)) =2 1/8 exp(— 16712)’

where the zeta value ((3) appears; see [KK]. (

m(www)
B , (W1, W2, W3

for general w;,w,,w3; > 0. The first result is the explicit expression:

In this paper we investigate the central value S3

THEOREM 1.

S3 (W, (60176027603)>

-1

(w,2+w§+w§)3/2 l—ﬁ dt
8\/5(010)26031‘3

The second result is the following estimate.

THEOREM 2.

0<5: (LD (o omon)) < 1.

We obtain an application of Theorem 2:

THEOREM 3.
3
w; w; + w;
HS3 l,(w17w27w3)>><HS3( : j,(wl,w27w3)>>2-
i=1 2 i<j 2

Using Theorems 2 and 3 we see the behavior of the triple sine function
S3(x, (w1, w2, w3)) in the fundamental domain 0 < x < w; + wy + ws3:

THEOREM 4. The graph of S3(x, (w1, ws,ws3)) is as in Fig. 1. It is symmetric
W] + wy + 3

> , and it has three extremal values: two

with respect to the line x =
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FIGURE 1. The graph of Si(x, (i, w2, ws)).

maximal values larger than 1 at two points and the local minimal less than 1 at
W + wy + w3
= 5 )

We also obtain the following integral expression for {(3) from Theorem I:

THEOREM 5.

1672 [* 57 s 3 \f 1 3\\dr 2
_ ot /3t =233 . 2 =1 2 @l £ 2
{(3) 3 J (2(8 e ) +16 3(1 t3) S 3" log 2.

0

We remark that the formula

W] +wy+w
53( 1 22 3

H(wy, my,w3) = H ((m +%>w1 + <n2 +%>w2 + (n3 +%)w3)

ny,ny,n3 =0

,(w17w27w3)> = H(o1, w2, 03)°

with

reminds us the phenomenon that central values frequently become “squares”
especially for zeta and L-functions. This is valid also for

Si (%760) = H(w)?

with
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H(w) :f[((n—F%)w) =V2.

n=0

Moreover, these H(w;,w,,w3) and H(w) are considered as determinants of
hamiltonians for harmonic oscillators in dimension 3 and 1 respectively. We
refer to [KO] for studies from this viewpoint.

2. Integral expression: Proof of Theorem 1

We first recall needed facts on multiple Hurwitz zeta functions. The multi-
ple Hurwitz zeta function {,(s,x, (@i, ...,®,)) is defined (for wi,...,®, >0 and
x> 0) as

Co(s, x, (w1, ... 0,)) = Z (moy + -+ mo, +x)"".

This converges absolutely in Re(s) >r, and Barnes [B] shows that
(o (s,x, (w1,...,,)) has an analytic continuation to all s e C as a meromorphic
function. Moreover, it is holomorphic at s = 0. Hence we have the regularized
product

H (moi + - + mo, + x) = exp(=(0,x, (w1, ..., @,))),

where the differentiation concerns the first variable s. In particular, in our case,
we have

w1 + wy + w3
S3 (12,(0)17602,603))

(I (oo o)

—exp( -2 (05T (000 ) ).

Thus we must look at {3(s, x, (w1, w2, w3)) around s =0. We use the Riemann-
Mellin integral expression for the zeta function. Here, we show the analytic
continuation of {3(s,x, (w1, s, w3)) in Re(s) > —1, which is sufficient for our
purpose.

We start from the integral expression in Re(s) > 3:

CS (S7 X, (601, 2, w3)) = T J < Z e<n1w1+n2w2+n3m‘)t> eft"‘[sfl dt
(S) 0 ny,na,n3 >0

1 Jw e 1xps—] p
L(s)Jo (1 —e@t)(1 —e@2t)(1 —e=ost)
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which follows from the integral expression for the gamma function I'(s). Hence
we have

w1 + wr + w3
Gls——F—

in Re(s) > 3 with

) B o
,(601,602,603)> 1—(S)L O(t, (wy, wr, w3))* " dt

e~ (@itor+w3)/2)t
(1= e o) (1 — e @)(1 — e o)

1
(ewlt/Z _ e—wlt/2)(ewzl/2 _ e—wzt/Z)(ewgtﬂ _ e—w;t/Z)

—lﬁ sinh o)\
= 2 '

We remark that O(z, (w1, w2, w3)) is an odd function of 7 with the Laurent
expansion

@(l, (an , 2, 603)) =

a_3 a_q
®(t5 (CO],COQ,CO})) :7+T+alt+
around ¢ = 0, where a; = a;(w1, >, ®3) is a rational function of wi, wy, w3. In

particular

1
a3 = ’
w13
®? + w3 + w?
a, =-2 2 3

240)1 wH3

Now, the integral expression splits into three parts:

W] +wy +w
§3(Sa¥a(wl7w2;w3)>
—S)J O(t, (w1, w2, w3))t*" dt

1 ! N 3
+—J (@(z, (@1, w2, 3)) —2—ﬂ> 1 dr

1 1 a_3 a_q s—1
+mj0<[—3+7)l dt.

Here, the first term is holomorphic for all se C since the integral converges
absolutely. The second term is holomorphic in Re(s) > —1 since

a_
O(t, (wy, wa, w3)) — —=

a
—— =0t
P ; o(1)
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as t — 0. The third term is written as

1 a_3 T a_q
I'(s)\s—3 s—1
and it is meromorphic in se C with possible (simple) poles at s=3,1 only.
w1 + Wy + w3
2,(601,602,0)3))
in Re(s) > —1, and it is holomorphic at s=0; in fact the above calculation

implies that (3 (O,W, (6017(02,603)) =0.

. - ., d -
Hence, remarking that I'(s)"' has a zero at s = 0 with zl"(s) !
see that §

Thus we have shown the analytic continuation of {3 (s,

=1, we
s=0

W) +wy + o
CQ(O,%quwz,ws))

* dt
~ | et w0000 ¢
1

1
a_z a_1\dt a_j
+ L (9(17 (w1, m2,3)) — B T) T T3 T d-n

Here we remark that

cwy + cwr + caws w1 + wr + w3
Cg (07 fa (CCO], ca, Cw3)) = Cg (Oa fv (wl , (02, CU3)>

for ¢ > 0. This is seen as follows. The definition says that

cwy + cwy + cws s w1 + wr + w3
G S7f7(cwhcw2,cw3) =0 sva(wl’w%wﬁ )

so we have

+ cwy + cw3
an 4251
€3 < I 2

W] +wy +w
Cg(O,—l 22 3,(6017602,603))

; (cory, can, Cw3)>

w1 + Wy + w3

— (log ¢)¢3 <0,2, (w1, w2, a)3)>

W] +wy +w
= éé <O,1223,(601,602,603)).

w1 + wr + w3

P 7(60176027603)) =0.

from {3 (07
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Take
2V2
(=—
\ of + 03 + w3
and put

(@1, 0, w3) = (co1, cwn, cw3).
Then using @ + @3 + @3 = 8 we have

g (OW (wl’wz,m))

o +a+ao . . .
C§(07%7(w17w27w3))
1

o0 o dt S S ! c a
= L 01, (601,6027603))7"‘ Jo <®<t’ (@1, @,03)) - W <1 - §>) v

Thus we see that

w1 +wy +w
C:; <07%7(w13w2aw3))

: D1 . G 1 2\ dt
- JO <®(Z7 (a)17w27w3)) _m (1 —§>> 7
<1 2\ dt
—(1-%])==0.
Jl t3< 3) t 0

This proves Theorem 1. ]

since

3. Estimates: Proof of Theorem 2
Let
2\/5601(

/2 2 2
wj +a)2+w3

as in the proof of Theorem 1. To prove Theorem 2 it is sufficient to show that

1 3 2
. - 1 dt
| (TLe oyt (1-5) ) %0
0 \j—1 w13t t

O =

since
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) 3
J% H(e(bkt/Z o efaa,(x/z)—l —— ~1~ ; 1 _ﬁ i[
1\ w1Wr3t 3 t

o 3
— J H(ed)kl/2 _ e—d)kl/2)—1 ﬂ > O
1 =1

t

Now, we prove the inequality

3 2
N s 1 t
ort/2 _ —ayt/2\—1 > 1 ——
(*) g(e ¢ ) @167)267)313 ( 3)
for 0 <t<1. First we show the following two inequalities:
1 w’t?
1 wt/2 _ —wt/2\—1 > [1-
) (e = 24
for 0 <w<2v2 and 0 <1< 1.
(2) (I—au)(l —bu)(1 —cu) >1—u

for a,b,c >0 with a+b+c=1 and O <u< 1.

Proof of (1). Taylor expansion shows that

2n

0
wt/2 7(ut/2 t 2n
¢ - ; 2n—|—1 o

where we used the easy fact

for n=0,1,2,....
Proof of (2). Since
1 1 1
— —_ —_ — — 2 — — -
(1 —au)(1 = bu)(1 —cu) =1 —u+ abcu <a+b+c u),
it is sufficient to check that
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Actually, the stronger inequality
1 1 1
-+-+-=9
a b ¢

follows from the famous inequality

1 1 1
(Cl-‘rb-l—é)(a-‘rz‘f'E) >9

with a+b+c=1.

Proof of (x). By using (1) we have

3 ~ ~ -
H(e(bkt/Z _ e*(Z)kt/Z)—l > 1 1— 6012[2 1— a)gtz 1— 603%1‘2
11 1G53 24 24 24

2
>1—-—
3
since
~2 =2 =0
Wy W W3
Y1, Y
8 '8 8

This proves (x). Thus we have shown Theorem 2.

4. An application: Proof of Theorem 3
We recall the following result proved in [KK]:

for each integer N > 2. Especially, letting N =2 and r =3, we have

ES_g (%, (601,602,603)) HS3 (co, —cho_, ; (6017602,(03))

i<j

w1 +wr+w
X S3 (%7(601;@23603)) =2.

Hence we see that

167
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3

w; W + w;
HS3(7l7(601,602,603))H53( 3 ],(601,602,603)>

i=1 i<j
2

S3 <%7 (w17w27w3))

> 2

from Theorem 2.

5. Proof of Theorem 4

Put f(x) = S3(x,w) for simplicity, and we restrict x to 0 < x < || hereafter.

Since
f(x) = exp (— (% C3> (s, x, ) s—O)

. - (%CS) (S, |(l)| - X, CO)

S=!

we have the following formulas:

)

s=0
)

62
o + Mc3 (S, |(l)‘ - X (D) o
63
- (M)CZC'S) (S7 |(D| - X, (1))
s=0
64
FYrNG Gs,x o) + WQ (s, o] = x, )
s=0

65
250 C3> (s, x, @) - (asax‘;gs) (s, o] — x,0)
s=0

log f(x) = _(%C3)(S’ X, )

o - (%63 (S7 |w| - X, (D)

=~

s=0

=1

~—7~_
—~
¥
I
|

s=0

~—~7~_

=

Il |
|

/_\/_\/Q)_\/_\

172}

S
[\

[T

(98]
~_

2

=

S

N —
~—~_

—

R

Il

|

s=0
Using

0
<x€3> (Sa X, m) = 7SC3(S + la X, (l))

we have

(%Cs) (s,x,0) = s(s+ 1)(s+2)(s+ 3)(3(s + 4, x, w),

so we get
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65
(WC?)) (Sa X, (2))

Thus, we know that

(f;,')/”(x) =-6 (Z(n co+x) ) (meo- x)4>

n>0 m>1

=634, x,0) =6 (m-o+x)*>0.

s=0 n>0

< 0.

Noting

NI
(7) (5)-
f 2
from the symme/t/ry (see the above formula for (f'/f)"), we see the shape of the
graph of (f'/f)" as in Fig. 2:

el &

NG
FIGURE 2. The graph of <7) (x).

We remark a key observation

(7)(5) >0

(oo

In fact, otherwise we see that
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y : S : : y
. . . . do
o] : o] 3 wl
0 7 - I 70 - - 5

I'1f log f f

FIGURE 3.

for 0 < x < |@| from the behavior of (f’/f)”. This implies that the shapes of
the graphs of f’/f, log f and f are as in Fig. 3, since we already know that
log f (g) < 0 from Theorem 2.

Especially, this consideration shows that 0 < f(x) < 1. This consequence

contradicts to Theorem 3, since at least one of six values S3 (%) and S; (wi —; @ )
are larger than 1 from Theorem 3.
||

Thus we know that (f'/f) <7) > 0. Hence we see the true shapes of

(f'/f), f'/f, log f and f as in Fig. 4.

Yy . . Y . . Y . . Yy

| Al | A e Y
S B v 3

f/1 I'f log f f

FIGURE 4.

This shows Theorem 4.
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6. Special case: Proof of Theorem 5

Theorem 1 says in the special case (w1, w;,w;) = (1,1,1) that

-3

3 (1 . 2 3V3 2\ \ dt

2 (111)) =exp| - " sinh( /2 BN R I
S3<27( 1 )) exp L 7 Sin \/;z Wl 3 ;

—exnl = [ 20V — /27y i\ﬂ 1o3Y)
exp Jo 2(e e ) +16 Ve ;
Hence, using the result

3 B 33
S3<§a(17 17 1)) =2 /8 exp(— 16(72:2)>

proved in [KK], we obtain Theorem 5. [ |
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