T. YAMASE KODAI MATH. J. **32** (2009), 117–129

SEIBERG-WITTEN-FLOER HOMOLOGY AND THE GEOMETRIC STRUCTURE $\mathbf{R} \times H^2$

TAKAHISA YAMASE

Abstract¹

The Seiberg-Witten-Floer homology of an oriented closed 3-manifold M with the geometric structure $\mathbf{R} \times H^2$ is computed.

1. Introduction

In [5], A. Floer constructed a remarkable invariant for an oriented closed 3manifold, so-called Floer homology, whose developments of this work are widely discussed in [4]. Variants of Floer homology are described in [8], [17]. Floer's work is based on Yang-Mills gauge theory. So it is natural to attempt to define a similar homology for Seiberg-Witten gauge theory.

By the efforts of several geometers, one can obtain a notion of Floer homology in the framework of Seiberg-Witten gauge theory, so-called Seiberg-Witten-Floer homology. In several geometric situations, Seiberg-Witten-Floer homology is computed. See [3], [11], [15], for example.

In Seiberg-Witten gauge theory, the monopole class $\alpha = c_1(L)$ plays an essential role in computing the Seiberg-Witten invariant. Also the scalar curvature of a 3-manifold crucially appears in Seiberg-Witten gauge theory as in [10].

In fact, we introduce in [6] a certain equality of the L^2 -norm between the monopole class and the scalar curvature of an oriented closed 3-manifold M, an equality which is closely related to the dual Thurston norm. Moreover in [7], we show that this equality holds if and only if M admits the geometric structure $\mathbf{R} \times H^2$ which is one of the eight model geometries introduced by Thurston. Taking a suitable complex line bundle L associated with a $Spin(3)^c$ structure, we make clear the structure of the moduli space of the solutions to the 3-dimensional Seiberg-Witten equations. These results are stated as follows.

THEOREM 1.1 ([7]). Let M be an oriented closed 3-manifold with a monopole

¹2000 Mathematics Subject Classification. Primary 57R58; Secondary 57R57.

Key words and phrases. Seiberg-Witten-Floer homology, Seiberg-Witten invariant, geometric structure.

Received July 20, 2006; revised June 24, 2008.

class $\alpha = c_1(L)$ associated with the principal $Spin(3)^c$ bundle induced by TM of M. Suppose that M admits a smooth metric h which satisfies

$$\|\alpha_h\|_{(L^2,h)} = \frac{1}{4\pi} \|s_h\|_{(L^2,h)}.$$

Then, (1) *M* carries the geometric structure $\mathbf{R} \times H^2$ and furthermore (2) $L = F \otimes K_M^{\pm 1}$. Here, *F* is a complex line bundle with a flat connection and $K_M^{\pm 1} \to M$ is a complex line bundle naturally induced from the (anti-)canonical line bundle $K_{H^2}^{\pm 1}$ over H^2 by the quotient map: $\mathbf{R} \times H^2 \to M$.

In the above theorem, $\|\alpha_h\|_{(L^2,h)}$ is the L^2 -norm of the harmonic representative of α , and $\|s_h\|_{(L^2,h)}$ is the L^2 -norm of the scalar curvature for the given metric h. The statement (1) is also proved in [6]. The statement (2) follows from comparing the first Chern classe of L with the first Chern class of $F \otimes K_M^{\pm 1}$.

We call $\alpha = c_1(L)$ a monopole class, when corresponding 3-dimensional Seiberg-Witten equations (or monopole equations)

$$\begin{cases} c(*F_A) = \Phi \otimes \Phi^* - \frac{1}{2} |\Phi|^2 \operatorname{Id}_W \\ D_A \Phi = 0 \end{cases}$$

have a solution for all Riemannian metrics h on M. We denote by \mathcal{S} the set of the solutions to the monopole equations, which is invariant under the gauge action

$$(A, \Phi) \mapsto (A + g^{-1} dg, g^{-1}\Phi), \quad g \in \mathscr{G} = \Gamma(M; U(1)).$$

Therefore we can consider the moduli space $\mathcal{M} = \mathcal{G}/\mathcal{G}$. In our case, \mathcal{M} is described as follows.

THEOREM 1.2 ([7]). Let M be an oriented closed 3-manifold carrying the geometric structure $\mathbf{R} \times H^2$ with the (anti-)canonical line bundle $K_M^{\pm 1}$. Suppose $b_1(M) > 1$. It follows then that (1) the moduli space of the solutions to the monopole equations associated with the class $\alpha = c_1(K_M^{\pm 1})$ and the metric h such that $\pi^*h = dt^2 \oplus a^2g_H$ consists of a single point and is transversal at this point and that (2) $\alpha = c_1(K_M^{\pm 1})$ is a monopole class.

In this theorem, π is the quotient map $\pi : \mathbf{R} \times H^2 \to M$, *a* is a positive constant and g_H is a hyperbolic metric. The transversality of the moduli space is equivalent to the surjectivity of the map

$$T_{(A,\Phi)}(a,\varphi) = \left(c(i*da) - \varphi \otimes \Phi^* - \Phi \otimes \varphi^* + \frac{1}{2}(\langle \varphi, \Phi \rangle + \langle \Phi, \varphi \rangle) \operatorname{Id}_W, D_A \varphi + ic(a)\Phi\right)$$

which is the linearization of the 3-dimensional Seiberg-Witten equations. This surjectivity follows from direct computation ([7]).

It is known that \mathcal{M} is a 0-dimensional compact oriented manifold. So the Seiberg-Witten invariant is defined by counting the points of the moduli space with sign ([2]). Therefore Theorem 1.2 implies that

$$SW(M, K_M^{\pm 1}) = \pm 1.$$

Notice that the metric independence of the invariant follows from well-known cobordism argument. In the case that $b_1(M) = 0$ or 1, we need a so-called wall crossing formula ([12]). Since this argument strays from our purpose, we omit it in this article.

As is well known, Seiberg-Witten-Floer homology and Seiberg-Witten invariant are closely related to each other. For example, by Proposition 3.3.12 in [12], we can compute the Seiberg-Witten invariant SW(M,L) as the Euler characteristic of the \mathbb{Z}_{ℓ} -graded Seiberg-Witten-Floer homology $\chi(HF_*(M,L;\mathbb{Z}_{\ell}))$ for an oriented closed 3-manifold with a fixed complex line bundle *L* associated with a *Spin*(3)^{*c*} structure.

Our aim of this article is to compute the Seiberg-Witten-Floer homology of an oriented closed 3-manifold which carries the geometric structure $\mathbf{R} \times H^2$.

We are going to introduce the solutions to the 3-dimensional Seiberg-Witten equations as the critical points of the Chern-Simons-Dirac functional

$$C(A,\Phi) = \frac{1}{2} \int_M (A-A_0) \wedge (F_A + F_{A_0}) + \frac{1}{2} \int_M \langle \Phi, D_A \Phi \rangle \, dv.$$

Since this functional is not invariant under the gauge action, we add a suitable condition. This condition induces $\tilde{\mathcal{M}}$ which is a **Z**-covering of the moduli space \mathcal{M} of the solutions to the 3-dimensional Seiberg-Witten equations. By the observation of the structure of $\tilde{\mathcal{M}}$, we define Seiberg-Witten-Floer homology and compute it for our case as follows.

MAIN THEOREM. Let M be an oriented closed 3-manifold carrying the geometric structure $\mathbf{R} \times H^2$ with the (anti-)canonical line bundle $L = K_M^{\pm 1}$. Suppose $b_1(M) > 1$. Then, the Seiberg-Witten-Floer homology of M is computed as follows.

$$HF_k(M,L) \cong \begin{cases} \mathbf{Z} & (k = dm) \\ \{0\} & (k \neq dm), \end{cases}$$

where $d = \min_{g} |\langle c_1(L) \cup [g], [M] \rangle| (\neq 0)$, [g] is the cohomology class of the form $\frac{1}{2\pi i}g^{-1} dg$ for $g \in \mathscr{G} = \Gamma(M; U(1))$ and $m \in \mathbb{Z}$.

Remark. (1) In Theorem 1.2 and Main Theorem, M has the structure of a Seifert bundle η over a base orbifold B with $e(\eta) = 0$ and $\chi(B) < 0$, where $e(\eta)$ is the orbifold Euler class and $\chi(B)$ is the Euler characteristic ([18]). Notice that B can be not only orientable but also non-orientable although M is oriented ([16]).

(2) Seiberg-Witten-Floer homology for the Seifert fibered homology spheres are computed in [14].

In general, the computation of d is not easy. However, in the case that the structure of M is simple, we can compute d as follows.

PROPOSITION 1.3. Under the assumption of Main Theorem, let $M = S^1 \times \Sigma$, where Σ is a closed Riemann surface whose genus $g_{\Sigma} \ge 2$. Then, $d = 2(g_{\Sigma} - 1)$.

COROLLARY 1.4.

$$HF_k(S^1 \times \Sigma, K_{S^1 \times \Sigma}^{\pm 1}) \cong \begin{cases} \mathbf{Z} & (k = 2(g_{\Sigma} - 1)m) \\ \{0\} & (k \neq 2(g_{\Sigma} - 1)m). \end{cases}$$

Remark. Seiberg-Witten-Floer homology of $S^1 \times \Sigma$ for other $Spin(3)^c$ structures is described with its algebraic aspects in [15].

2. Chern-Simons-Dirac functional

This section is mainly due to [12]. We are going to review the basic properties of the Chern-Simons-Dirac functional.

Let *M* be an oriented closed 3-manifold. Then there exists a $Spin(3)^c$ structure on *M* defining the principal $Spin(3)^c$ -bundle *P* associated with the tangent bundle *TM*. Let *W* be the spinor bundle associated with *P* and $L = \det(W)$ be the determinant line bundle of *W*. For a unitary connection *A* on *L* and a section Φ of *W*, we define the Chern-Simons-Dirac functional as follows.

DEFINITION 2.1. The Chern-Simons-Dirac functional on the space $\mathscr{A} = \mathscr{C} \times \Gamma(W)$, where \mathscr{C} is the space of unitary connections on L and $\Gamma(W)$ is the space of smooth sections of W, is defined as

$$C(A,\Phi) = \frac{1}{2} \int_M (A-A_0) \wedge (F_A + F_{A_0}) + \frac{1}{2} \int_M \langle \Phi, D_A \Phi \rangle \, dv.$$

Here, A_0 is a fixed smooth connection, F_A is the curvature form of A and D_A is the Dirac operator twisted with A, namely,

$$D_A: \Gamma(W) \stackrel{V_A}{\to} \Gamma(T^*M \otimes W) \stackrel{c}{\to} \Gamma(W),$$

where ∇_A is the spin connection on W and $c: T^*M \to End(W)$ denotes the Clifford multiplication.

We can deduce the 3-dimensional Seiberg-Witten equations from the gradient of the functional C.

PROPOSITION 2.2.

$$\nabla C(A,\Phi) = \left(-*F_A + c^{-1}\left(\Phi \otimes \Phi^* - \frac{1}{2}|\Phi|^2 \operatorname{Id}_W\right), D_A\Phi\right),$$

where * is the Hodge star operator.

Proof. Set $A = A_0 + ia$, $a \in \Omega^1(M)$. Computing directly, we obtain

$$\begin{split} \frac{d}{dt} \bigg|_{t=0} C(A + t\dot{A}, \Phi + t\dot{\Phi}) \\ &= \frac{1}{2} \int_{M} i\dot{a} \wedge (F_{A} + F_{A_{0}}) + \frac{1}{2} \int_{M} ia \wedge i \, d\dot{a} \\ &+ \frac{1}{2} \int_{M} \langle \Phi, ic(\dot{a})\Phi \rangle \, dv + \int_{M} \operatorname{Re}\langle \dot{\Phi}, D_{A}\Phi \rangle \, dv \\ &= \frac{1}{2} \int_{M} i\dot{a} \wedge (F_{A} + F_{A_{0}}) + \frac{1}{2} \int_{M} i\dot{a} \wedge i \, da \\ &+ \frac{1}{2} \int_{M} \langle \Phi, ic(\dot{a})\Phi \rangle \, dv + \int_{M} \operatorname{Re}\langle \dot{\Phi}, D_{A}\Phi \rangle \, dv \\ &= \int_{M} i\dot{a} \wedge F_{A} + \frac{1}{2} \int_{M} \langle \Phi, ic(\dot{a})\Phi \rangle \, dv + \int_{M} \operatorname{Re}\langle \dot{\Phi}, D_{A}\Phi \rangle \, dv \\ &= -\int_{M} \langle i\dot{a}, *F_{A} \rangle \, dv + \int_{M} \langle i\dot{a}, c^{-1} \left(\Phi \otimes \Phi^{*} - \frac{1}{2} |\Phi|^{2} \operatorname{Id}_{W} \right) \right\rangle \, dv \\ &+ \int_{M} \operatorname{Re}\langle \dot{\Phi}, D_{A}\Phi \rangle \, dv. \\ &= \int_{M} \langle \dot{A}, - *F_{A} + c^{-1} \left(\Phi \otimes \Phi^{*} - \frac{1}{2} |\Phi|^{2} \operatorname{Id}_{W} \right) \right\rangle \, dv \\ &+ \int_{M} \operatorname{Re}\langle \dot{\Phi}, D_{A}\Phi \rangle \, dv. \quad \Box \end{split}$$

It is clear that the critical points of C are exactly the solutions to the 3dimensional Seiberg-Witten equations. Moreover we can show that the irreducible solution studied in [7] is a non-degenerate critical point. We call a solution (A, Φ) irreducible, when Φ is not identically zero.

PROPOSITION 2.3. Let (A, Φ) be the irreducible solution to the 3-dimensional Seiberg-Witten equations with $\nabla_A \Phi = 0$, namely, a critical point of C, with the (anti-)canonical line bundle $L = K_M^{\pm 1}$. Then, (A, Φ) is a non-degenerate critical point of C.

Proof. Let $H_{(A,\Phi)}$ be the Hessian operator of C at a critical point (A,Φ) . Set $(A_s, \Phi_s) = (A, \Phi) + s(ia, \varphi)$. For

$$C(A_{s}, \Phi_{s}) = \frac{1}{2} \int_{M} (A_{s} - A_{0}) \wedge (F_{A_{s}} + F_{A_{0}}) + \frac{1}{2} \int_{M} \langle \Phi_{s}, D_{A_{s}} \Phi_{s} \rangle \, dv_{s}$$

we may collect the second order terms of s to compute the Hessian operator. The first term includes the term $\frac{s^2}{2} \int_M ia \wedge ida$. The second term includes the terms

$$\frac{s^2}{2} \left(\int_M \langle \varphi, ic(a)\Phi \rangle \, dv + \int_M \langle \Phi, ic(a)\varphi \rangle \, dv + \int_M \langle \varphi, D_A\varphi \rangle \, dv \right).$$

Therefore C includes the terms

$$\frac{s^2}{2} \left(\int_M ia \wedge \left(i \, da - *c^{-1} \left(\varphi \otimes \Phi^* + \Phi \otimes \varphi^* - \frac{1}{2} (\langle \varphi, \Phi \rangle + \langle \Phi, \varphi \rangle) \, \mathrm{Id}_W \right) \right) + \int_M \langle \varphi, D_A \varphi + ic(a) \Phi \rangle \, dv \right).$$

Hence we obtain

$$\begin{split} \langle H_{(A,\Phi)}(a,\varphi), (a,\varphi) \rangle \\ &= \left\langle ia, i \, da - *c^{-1} \bigg(\varphi \otimes \Phi^* + \Phi \otimes \varphi^* - \frac{1}{2} (\langle \varphi, \Phi \rangle + \langle \Phi, \varphi \rangle) \, \mathrm{Id}_W \bigg) \right\rangle \\ &+ \langle \varphi, D_A \varphi + ic(a) \Phi \rangle. \end{split}$$

In [7], we have already shown that the linearization of the 3-dimensional Seiberg-Witten equations at the solution (A, Φ) with $\nabla_A \Phi = 0$, namely,

$$T_{(A,\Phi)}(a,\varphi) = \left(c(i*da) - \varphi \otimes \Phi^* - \Phi \otimes \varphi^* + \frac{1}{2}(\langle \varphi, \Phi \rangle + \langle \Phi, \varphi \rangle) \operatorname{Id}_W, D_A \varphi + ic(a)\Phi\right)$$

is surjective. It is obvious that $H_{(A,\Phi)}(a,\varphi)$ is equivalent to $T_{(A,\Phi)}(a,\varphi)$. Hence the critical point (A,Φ) is non-degenerate.

Next we observe how C changes under the gauge action.

PROPOSITION 2.4.

$$C(A + g^{-1} dg, g^{-1}\Phi) = C(A, \Phi) + 4\pi^2 \langle c_1(L) \cup [g], [M] \rangle,$$

where [g] is the cohomology class of the form $\frac{1}{2\pi i}g^{-1} dg$.

Proof. By definition, we get

$$\begin{split} &C(A+g^{-1}\,dg,g^{-1}\Phi) \\ &= \frac{1}{2} \int_{M} (A+g^{-1}\,dg-A_{0}) \wedge (F_{A+g^{-1}\,dg}+F_{A_{0}}) + \frac{1}{2} \int_{M} \langle g^{-1}\Phi, D_{A+g^{-1}\,dg}(g^{-1}\Phi) \rangle \,dv \\ &= \frac{1}{2} \int_{M} (A-A_{0}) \wedge (F_{A}+F_{A_{0}}) + \frac{1}{2} \int_{M} g^{-1}\,dg \wedge (2F_{A_{0}}+i\,da) + \frac{1}{2} \int_{M} \langle \Phi, D_{A}\Phi \rangle \,dv \\ &= C(A,\Phi) + \int_{M} g^{-1}\,dg \wedge F_{A_{0}} = C(A,\Phi) + 4\pi^{2} \int_{M} \frac{i}{2\pi} F_{A_{0}} \wedge \frac{1}{2\pi i} g^{-1}\,dg \\ &= C(A,\Phi) + 4\pi^{2} \langle c_{1}(L) \cup [g], [M] \rangle. \quad \Box \end{split}$$

To make C invariant under the gauge action, we consider the space $\mathscr{B}_L = \mathscr{A}/\mathscr{G}_L$, where

$$\mathscr{G}_L = \{g \in \mathscr{G} \mid \langle c_1(L) \cup [g], [M] \rangle = 0\}$$

is a subgroup of \mathscr{G} . The next proposition implies that the space \mathscr{B}_L is a covering space of $\mathscr{B} = \mathscr{A}/\mathscr{G}$ with fiber Z.

PROPOSITION 2.5. Let \mathscr{G}_L be a subgroup of \mathscr{G} given by

$$\mathscr{G}_L = \{ g \in \mathscr{G} \mid \langle c_1(L) \cup [g], [M] \rangle = 0 \}$$

Then, $\mathscr{G}/\mathscr{G}_L \cong \{0\}$ or $d\mathbb{Z}$, where $d = \min_g |\langle c_1(L) \cup [g], [M] \rangle|, g \in \mathscr{G}, g \notin \mathscr{G}_L$.

Proof. It is obvious that if $\mathscr{G} = \mathscr{G}_L$, then $\mathscr{G}/\mathscr{G}_L = \{0\}$. So we suppose $\mathscr{G}_L \subseteq \mathscr{G}$ and consider the following sequence:

$$\mathscr{G} \xrightarrow{\lambda} H^1(M; \mathbf{Z}) \xrightarrow{\varphi} \mathbf{Z}, \quad \lambda(g) = \frac{1}{2\pi i} g^{-1} dg, \quad \varphi(\eta) = \langle c_1(L) \cup \eta, [M] \rangle.$$

Composing λ and φ , we obtain a homomorphism $\psi = \varphi \circ \lambda : \mathscr{G} \to \mathbb{Z}$ whose kernel is

$$\operatorname{Ker} \psi = \{g \in \mathscr{G} \mid \langle c_1(L) \cup \lambda(g), [M] \rangle = 0\} = \mathscr{G}_L.$$

Therefore we get $\mathscr{G}/\mathscr{G}_L \cong \operatorname{Im} \psi \subset \mathbb{Z}$. Since $\operatorname{Im} \psi$ is a nontrivial subgroup of \mathbb{Z} , we easily see that $\operatorname{Im} \psi = \{ dm \mid m \in \mathbb{Z} \}$, where $d = \min_g |\langle c_1(L) \cup \lambda(g), [M] \rangle|$, $g \in \mathscr{G}, g \notin \mathscr{G}_L$. \Box

Remark. Since $L = \det(W)$, $W = W_0 \otimes L_1$, $W_0 = M \times \mathbb{C}^2$, we obtain $L = L_1^2$ so that $c_1(L) = c_1(L_1^2) = 2c_1(L_1)$. Therefore $\langle c_1(L) \cup \eta, [M] \rangle = 2\langle c_1(L_1) \cup \eta, [M] \rangle$, $\eta \in H^1(M; \mathbb{Z})$, which implies that d is an even number. We are going to examine this number in Section 4.

By the above proposition, we can consider a Z-covering space $\tilde{\mathcal{M}} = \mathscr{G}/\mathscr{G}_L$ of $\mathcal{M} = \mathscr{G}/\mathscr{G}$. In the infinite dimensional Morse theory, we cannot always define Morse index. So we define relative Morse index

$$\mu(\tilde{a}) - \mu(\tilde{b}) \quad \tilde{a}, \tilde{b} \in \tilde{\mathcal{M}}$$

as the spectral flow of H along a path which connects two critical points $\tilde{a} = [A_{\tilde{a}}, \Phi_{\tilde{a}}]$ and $\tilde{b} = [A_{\tilde{b}}, \Phi_{\tilde{b}}]$. This is well defined as follows.

PROPOSITION 2.6. The spectral flow of the Hessian operator H of C around a loop in \mathcal{B}_L is zero.

Proof. For the proof of the statement, it is sufficient to consider a loop in \mathscr{B}_L , but we consider a loop in \mathscr{B} for the later use.

Let $[A(t), \Phi(t)]_{t \in [0,1]}$ be a loop in \mathscr{B} such that $(A(1), \Phi(1)) = (A(0) + g^{-1} dg, g^{-1}\Phi(0)), g \in \mathscr{G}$. Therefore we identify $(A(0), \Phi(0))$ with $(A(1), \Phi(1))$ and glue $M \times \{0\}$ to $M \times \{1\}$ so that we regard $M \times [0,1]$ as $M \times S^1$. Let \hat{L} be a complex line bundle over $M \times S^1$ such that $\hat{L}|_{M \times \{t\}} = L$ and \hat{A} be a unitary connection on \hat{L} such that $\hat{A}|_{M \times \{t\}} = A(t)$. We assume that \hat{A} satisfies so-called temporal gauge condition, namely, it has no dt component.

To compute the spectral flow of $H_{[A(t),\Phi(t)]}$ on the space $\mathscr{B} = \mathscr{A}/\mathscr{G}$, we consider the following \mathscr{G} -equivariant extention $\tilde{H}_{(A(t),\Phi(t))}$ on the space \mathscr{A} :

$$\tilde{H}_{(A,\Phi)} = \begin{pmatrix} H_{(A,\Phi)} & G_{(A,\Phi)} \\ G^*_{(A,\Phi)} & 0 \end{pmatrix},$$

where G and G^* are the infinitesimal gauge transformation and its adjoint with respect to the L^2 -inner product:

$$G_{(A,\Phi)}(u) = (du, -iu\Phi), \quad G^*_{(A,\Phi)}(a,\varphi) = \delta a - i \operatorname{Im}\langle \Phi, \varphi \rangle.$$

Therefore we get

$$SF(H_{[A(t),\Phi(t)]})_{t\in[0,1]} = SF(\tilde{H}_{(A(t),\Phi(t))})_{t\in[0,1]}$$

According to Theorem 7.4 in [1], the spectral flow along $(A(t), \Phi(t))_{t \in [0,1]}$ is computed as follows:

$$\mathrm{SF}(\tilde{H}_{(A(t),\Phi(t))})_{t\in[0,1]} = \mathrm{Index}\left(\frac{\partial}{\partial t} + \tilde{H}_{(A(t),\Phi(t))}\right).$$

Taking notice the forms of H and G^* , we obtain

$$\operatorname{Index}\left(\frac{\partial}{\partial t} + \tilde{H}_{(A(t),\Phi(t))}\right) = \operatorname{Index}\left(\left(\frac{\partial}{\partial t} + *d\right) + \left(\frac{\partial}{\partial t} + D_A\right) + \delta\right)$$
$$= \operatorname{Index}(d^+ + D_{\hat{A}} + \delta),$$

where $d^+: \Omega^1(M \times S^1) \to \Omega^{2+}(M \times S^1)$ and $D_{\hat{A}}$ is the twisted Dirac operator for $\Gamma(M \times S^1; \pi^*W)$. Notice that the natural projection $\pi: M \times S^1 \to M$ induces $\pi^*W \cong W^+ \cong W^-$, where W^{\pm} are positive and negative spinor bundles over $M \times S^1$. For the 4-dimensional Seiberg-Witten theory, see [9], [13].

Since the Euler number $\chi(M) = 0$ and the first Pontrjagin class $p_1(M \times S^1) = 0$, the Euler number and the signature of $M \times S^1$ are

$$\chi(M \times S^1) = \chi(M) \cdot \chi(S^1) = 0, \quad \sigma(M \times S^1) = \frac{1}{3} \int_{M \times S^1} p_1(M \times S^1) = 0$$

so that $\operatorname{Index}(d^+ + \delta) = \frac{1}{2}(\chi + \sigma) = 0$. Finally, we compute

$$\operatorname{Index}(D_{\hat{A}}) = \int_{M \times S^1} \hat{\mathscr{A}}(M \times S^1) \cdot ch(\pi^* W) \bigg|_{Vol} = \frac{1}{2} \int_{M \times S^1} c_1(\hat{L}) \wedge c_1(\hat{L}).$$

The first equality is due to Atiyah-Singer index theorem. Here, $\hat{\mathscr{A}}$ is the $\hat{\mathscr{A}}$ -class and *ch* is the Chern character. Since $F_{\hat{A}} = \frac{dA}{dt} \wedge dt + F_{A(t)}$, we obtain $F_{\hat{A}} \wedge F_{\hat{A}} = 2F_{A(t)} \wedge \frac{dA}{dt} \wedge dt$. Therefore we get

$$\begin{split} \frac{1}{2} \int_{M \times S^1} c_1(\hat{L}) \wedge c_1(\hat{L}) &= \frac{-1}{8\pi^2} \int_{M \times S^1} F_{\hat{A}} \wedge F_{\hat{A}} = \frac{-1}{4\pi^2} \int_{M \times S^1} F_{A(t)} \wedge \frac{dA}{dt} \wedge dt \\ &= \frac{-1}{4\pi^2} \int_M \left(F_{A(t)} \wedge \int_{S^1} dA(t) \right) = \frac{-1}{2\pi i} \int_M c_1(L) \wedge g^{-1} \, dg \\ &= -\int_M c_1(L) \wedge \frac{1}{2\pi i} g^{-1} \, dg = -\langle c_1(L) \cup [g], [M] \rangle. \end{split}$$

If $g \in \mathscr{G}_L$, then $\langle c_1(L) \cup [g], [M] \rangle = 0$, namely, $SF(H_{[\mathcal{A}(t), \Phi(t)]})_{t \in [0, 1]} = 0$. This implies that relative Morse index $\mu(\tilde{a}) - \mu(\tilde{b})$ is independent of the choice of paths connectiong \tilde{a} and \tilde{b} . Hence the spectral flow is well defined in \mathscr{B}_L . \Box

Remark. In case $g \in \mathscr{G}$ and $g \notin \mathscr{G}_L$, we consider

$$-\langle c_1(L) \cup [g], [M] \rangle \equiv 0 \pmod{\ell}$$
, where $\ell = g.c.d. |\langle c_1(L) \cup [g], [M] \rangle|$.

Hence we can define relative Morse index by mod ℓ in \mathcal{B} .

3. Seiberg-Witten-Floer homology

By Proposition 2.6, for $\tilde{a}, \tilde{b} \in \tilde{\mathcal{M}}$, we can define relative Morse index $\mu(\tilde{a}) - \mu(\tilde{b})$ so that Floer complex is defined as follows.

DEFINITION 3.1. For a fixed $\tilde{a}_0 \in \tilde{\mathcal{M}}$, we define Floer complex FC_{*} as follows:

$$FC_k = \{ \tilde{a} \in \mathcal{M} \mid \mu(\tilde{a}) - \mu(\tilde{a}_0) = k \}$$

DEFINITION 3.2. The boundary operator ∂_k is defined as follows:

$$\partial_k : FC_k \to FC_{k-1}, \quad \partial_k \tilde{a} = \sum_{\mu(\tilde{b}) = \mu(\tilde{a}) - 1} n_{\tilde{a}\tilde{b}} \tilde{b}, \quad \tilde{b} \in \tilde{\mathcal{M}},$$

where $n_{\tilde{a}\tilde{b}}$ is given by counting the number of paths connecting \tilde{a} and \tilde{b} with sign.

It is shown that $\partial_k \circ \partial_{k+1} = 0$ in [3]. So we can define Seiberg-Witten-Floer homology as follows.

DEFINITION 3.3. For (FC_*, ∂_*) and the fixed complex line bundle L associated with a $Spin(3)^c$ -structure on M, we define Seiberg-Witten-Floer homology of M as follows:

$$HF_k(M,L) = \operatorname{Ker} \partial_k / \operatorname{Im} \partial_{k+1}$$

Now we are in a position to prove Main Theorem.

Proof of Main Theorem. Let $\tilde{a} = [A_{\tilde{a}}, \Phi_{\tilde{a}}]$ be any point different from $\tilde{a}_0 = [A_{\tilde{a}_0}, \Phi_{\tilde{a}_0}]$ in $\tilde{\mathcal{M}}$. Since \mathcal{M} consists of a single point by Theorem 1.2, we obtain $(A_{\tilde{a}}, \Phi_{\tilde{a}}) = (A_{\tilde{a}_0} + g^{-1} dg, g^{-1} \Phi_{\tilde{a}_0}), g \in \mathcal{G}, g \notin \mathcal{G}_L$. By the same argument of Proposition 2.5 and Proposition 2.6, we can compute the relative Morse index as follows.

$$\mu(\tilde{a}) - \mu(\tilde{a}_0) = \operatorname{SF}(H_{[A(t), \Phi(t)]})_{t \in [0, 1]} = \operatorname{Index}\left(\frac{\partial}{\partial t} + \tilde{H}_{(A(t), \Phi(t))}\right)$$
$$= -\langle c_1(L) \cup [g], [M] \rangle = dm,$$

where $(A(0), \Phi(0)) = (A_{\tilde{a}_0}, \Phi_{\tilde{a}_0}), \quad (A(1), \Phi(1)) = (A_{\tilde{a}}, \Phi_{\tilde{a}}), \quad d = \min_g |\langle c_1(L) \cup [g], [M] \rangle|, \quad m \in \mathbb{Z} \setminus \{0\}.$ Hence the Floer complex is given by

$$FC_k = \begin{cases} \mathbf{Z}\langle \tilde{\boldsymbol{a}} \rangle & (k = dm) \\ \mathbf{Z}\langle \tilde{\boldsymbol{a}}_0 \rangle & (k = 0) \\ \{0\} & (k \neq 0, dm). \end{cases}$$

By the remark of Proposition 2.5, d is an even number, hence we obtain the sequence

$$\cdots \longrightarrow 0 \xrightarrow{\partial_{dm+1}} FC_{dm} \xrightarrow{\partial_{dm}} 0 \longrightarrow \cdots$$

so that

$$HF_{dm}(M,L) = \text{Ker } \partial_{dm}/\text{Im } \partial_{dm+1} \cong \mathbb{Z}, \quad HF_k(M,L) \cong \{0\} \quad (k \neq dm).$$

Notice that this result also holds for the case m = 0.

Remark. As stated in the remark of Proposition 2.6, we can define relative Morse index by mod ℓ in \mathcal{B} . Consequently, we can define the \mathbb{Z}_{ℓ} -graded Seiberg-

Witten-Floer homology $HF_k(M, L; \mathbb{Z}_\ell)$. In our case, it is easily computed because the moduli space \mathcal{M} consists of a single point a_0 . Hence we obtain

$$FC_k = \begin{cases} \mathbf{Z}_{\ell} \langle a_0 \rangle & (k=0) \\ \{0\} & (k \neq 0) \end{cases}$$

so that

$$HF_0(M,L;\mathbf{Z}_\ell) = \text{Ker } \partial_0/\text{Im } \partial_1 \cong \mathbf{Z}_\ell, \quad HF_k(M,L;\mathbf{Z}_\ell) = \{0\} \quad (k \neq 0)$$

This implies

$$\chi(HF_*(M,L;\mathbf{Z}_\ell)) = \sum_k (-1)^k \dim HF_k = (-1)^0 \dim HF_0 = 1.$$

On the other hand, we have already shown that $SW(M,L) = \pm 1$ in [7]. Taking the suitable orientation of the moduli space, we get SW(M,L) = 1. These values give the special case that the formula

$$\chi(HF_*(M,L;\mathbf{Z}_\ell)) = SW(M,L)$$

stated in [12] holds.

4. The computation of d

Suppose that $M = (\mathbf{R} \times H^2)/\Gamma$. To compute

$$d = \min_{g} |\langle c_1(L) \cup [g], [M] \rangle| = \min_{g} \left| \int_M c_1(L) \wedge \frac{1}{2\pi i} g^{-1} dg \right|, \quad g \in \mathcal{G}, \ g \notin \mathcal{G}_L,$$

we consider $\tilde{g} \in \tilde{\mathscr{G}} = \Gamma(\mathbb{R} \times H^2; U(1))$ such that $\tilde{g} = g \circ \pi$, where π is the quotient map $\pi : \mathbb{R} \times H^2 \to M$. Therefore we get $g(\pi(\gamma(p))) = g(\pi(p))$, namely, $\tilde{g}(\gamma(p)) = \tilde{g}(p)$, for any $p = (t, z) \in \mathbb{R} \times H^2$ and $\gamma \in \Gamma$. This implies that \tilde{g} is Γ -invariant. Conversely, the Γ -invariant \tilde{g} induces $g \in \mathscr{G} = \Gamma(M; U(1))$.

On the other hand, from the exact sequence

$$0 \longrightarrow 2\pi \mathbb{Z} \longrightarrow \mathbb{R} \xrightarrow{e^{i(\cdot)}} U(1) \longrightarrow 0,$$

we obtain the cohomology exact sequence

$$\cdots \longrightarrow H^0(\mathbf{R} \times H^2; \mathbf{R}) \xrightarrow{e^{\iota(\cdot)}} H^0(\mathbf{R} \times H^2; U(1)) \longrightarrow H^1(\mathbf{R} \times H^2; 2\pi \mathbf{Z}) \longrightarrow \cdots$$

Since $\mathbf{R} \times H^2$ is contractible, $H^1(\mathbf{R} \times H^2; 2\pi \mathbf{Z}) = \{0\}$ so that $e^{i(\cdot)}$ is surjective. Therefore for any $\tilde{g} \in \tilde{\mathcal{G}} = \Gamma(\mathbf{R} \times H^2; U(1))$, there exists $\tilde{u} \in \Gamma(\mathbf{R} \times H^2; \mathbf{R})$ such that $\tilde{g} = e^{i\tilde{u}}$. Since \tilde{g} is Γ -invariant, we get $e^{i\tilde{u}(\gamma(t,z))} = e^{i\tilde{u}(t,z)}$, namely, $\tilde{u}(\gamma(t,z)) = \tilde{u}(t,z) + 2\pi k_{\tilde{u},\gamma}$ for some $k_{\tilde{u},\gamma} \in \mathbf{Z}$.

Now we are ready to prove Proposition 1.3 and Corollary 1.4.

Proof of Proposition 1.3 and Corollary 1.4. For $M = S^1 \times \Sigma$ with the geometric structure $\mathbf{R} \times H^2$, let $S^1 = \mathbf{R}/\Gamma_{\mathbf{R}}$ where $\Gamma_{\mathbf{R}} = \langle \gamma_1^n | \gamma_1 : t \mapsto t+1 \rangle \cong \mathbf{Z}$ and

 $\Sigma = H^2/\Gamma_{H^2}$ where $\Gamma_{H^2} \subset PSL(2, \mathbf{R})$ acts properly discontinuously and without fixed points on H^2 and Σ is compact. From the compactness of Σ , as for H^2 component, it is sufficient to consider \tilde{u} on a fundamental domain. Therefore for $\gamma_1 \in \Gamma_{\mathbf{R}}$ and $\gamma_2 \in \Gamma_{H^2}$, we assume that $\tilde{u}(\gamma(t,z)) = \tilde{u}(\gamma_1^n(t), \gamma_2(z)) = \tilde{u}(t+n,z)$. Hence we obtain that $\tilde{u}(t+n,z) - \tilde{u}(t,z) = 2n\pi k_{\tilde{u}}$, namely, $\tilde{u}(n,z) - \tilde{u}(0,z) =$ $2n\pi k_{\tilde{u}}$ which is independent of z. Here, for simplicity, we denote by $k_{\tilde{u}}$ the integer $k_{\tilde{u},\gamma}$. As a result, by using $\frac{1}{2\pi i}\tilde{g}^{-1} d\tilde{g} = \frac{1}{2\pi} d\tilde{u}$ instead of $\frac{1}{2\pi i}g^{-1} dg$, we obtain

$$d = \min_{\tilde{u}} \left| \int_{S^1 \times \Sigma} \pm c_1(K_{\Sigma}) \wedge \frac{1}{2\pi} d\tilde{u} \right|$$

= $\min_{\tilde{u}} \left| \int_{S^1} \frac{1}{2\pi} d\tilde{u} \int_{\Sigma} c_1(K_{\Sigma}) \right| = \min_{\tilde{u}} \left| \frac{1}{2\pi} \int_0^1 d\tilde{u} \cdot \chi(\Sigma) \right|$
= $\min_{\tilde{u}} \left| \frac{1}{2\pi} (\tilde{u}(1,z) - \tilde{u}(0,z))(2 - 2g_{\Sigma}) \right| = \min_{\tilde{u}} 2(g_{\Sigma} - 1) |k_{\tilde{u}}|$

If $k_{\tilde{u}} = 0$, then d = 0 which contradicts that $g \notin \mathscr{G}_L$. Hence $\min_{\tilde{u}} |k_{\tilde{u}}| \neq 0$. Moreover we can take $\min_{\tilde{u}} |k_{\tilde{u}}| = 1$ as follows. Define $\tilde{u}(t, z) = 2\pi t$. It is obvious that

$$\tilde{u}(t+1,z) = 2\pi(t+1) = 2\pi t + 2\pi = \tilde{u}(t,z) + 2\pi \cdot 1,$$

namely, $k_{\tilde{u}} = 1$. Therefore we obtain that $d = \min_{\tilde{u}} 2(g_{\Sigma} - 1)|k_{\tilde{u}}| = 2(g_{\Sigma} - 1)$ and the following representation:

$$HF_k(S^1 \times \Sigma, K_{S^1 \times \Sigma}^{\pm 1}) \cong \begin{cases} \mathbf{Z} & (k = 2(g_{\Sigma} - 1)m) \\ \{0\} & (k \neq 2(g_{\Sigma} - 1)m). \end{cases} \square$$

Acknowledgement. The author would like to thank Professor M. Itoh for his valuable comment and encouragement, and also thank referee for his/her valuable suggestions.

REFERENCES

- M. F. ATIYAH, V. K. PATODI AND I. M. SINGER, Spectral asymmetry and Riemannian geometry, III, Math. Proc. Camb. Phil. Soc. 79 (1976), 71–99.
- [2] D. AUCKLY, The Thurston norm and three-dimensional Seiberg-Witten theory, Osaka J. Math. 33 (1996), 737–750.
- [3] A. L. CAREY AND B. L. WANG, Seiberg-Witten-Floer homology and gluing formulae, Acta Math. Sin., English Series 19 (2003), 245–296.
- [4] S. K. DONALDSON, Floer homology groups in Yang-Mills theory, Cambridge University Press, 2002.
- [5] A. FLOER, An instanton-invariant for 3-manifolds, Commun. Math. Phys. 118 (1988), 215– 240.

- [6] M. ITOH AND T. YAMASE, The dual Thurston norm and the geometry of closed 3-manifolds, Osaka J. Math. 43 (2006), 121–129.
- [7] M. ITOH AND T. YAMASE, Seiberg-Witten theory and the geometric structure $\mathbf{R} \times H^2$, to appear in Hokkaido Math. J..
- [8] S. JABUKA AND T. MARK, Heegaard Floer homology of certain mapping tori, Algebraic and Geometric Topology 4 (2004), 685–719.
- [9] P. B. KRONHEIMER AND T. S. MROWKA, The genus of embedded surfaces in the projective plane, Math. Res. Lett. 1 (1994), 797–808.
- [10] P. B. KRONHEIMER AND T. S. MROWKA, Scalar curvature and the Thurston norm, Math. Res. Lett. 4 (1997), 931–937.
- M. MARCOLLI, Seiberg-Witten-Floer homology and Heegaard splittings, Inter. J. Math. 7 (1996), 671–696.
- [12] M. MARCOLLI, Seiberg-Witten Gauge Theory, Hindustan Book Agency, 1999.
- [13] J. W. MORGAN, The Seiberg-Witten equations and applications to the topology of smooth four-manifolds, Princeton University Press, 1996.
- [14] T. MROWKA, P. OZSVÁTH AND B. YU, Seiberg-Witten monopoles on Seifert fibered spaces, Comm. in Analysis and Geometry 5 (1997), 685–793.
- [15] V. MUÑOZ AND B. L. WANG, Seiberg-Witten-Floer homology of a surface times a circle for non-torsion spin^C structures, Math. Nachr. 278 (2005), 844–863.
- [16] P. ORLIK, Seifert manifolds, Lecture notes in mathematics 291, Springer, Berlin, 1972.
- [17] P. OZSVÁTH AND Z. SZABÓ, Holomorphic triangle invariants and the topology of symplectic four-manifolds, Duke Math. J. 121 (2004), 1–34.
- [18] P. SCOTT, The geometries of 3-manifolds, Bull. London Math. Soc. 15 (1983), 401-487.

Takahisa Yamase GRADUATE SCHOOL OF PURE AND APPLIED SCIENCES UNIVERSITY OF TSUKUBA 305-8571, TSUKUBA JAPAN E-mail: swf-hom@yahoo.co.jp