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Abstract

We consider Mn, nb 3, a complete, connected submanifold of a space form
~MMnþpð~ccÞ, whose non vanishing mean curvature vector H is parallel in the normal

bundle. Assuming the second fundamental form h of M satisfies the inequality hhi2
a

n2jHj2=ðn� 1Þ, we show that for ~ccb 0 the codimension reduces to 1. When M is a

submanifold of the unit sphere, then Mn is totally umbilic. For the case ~cc < 0, one

imposes an additional condition that is trivially satisfied when ~ccb 0. When M is

compact and has non-negative Ricci curvature then it is a geodesic hypersphere in the

hyperbolic space. An alternative additional condition, when ~cc < 0, reduces the codi-

mension to 3.

1. Introduction

Submanifolds of space forms with parallel mean curvature vector have been
investigated, in recent years, by several authors such as Alencar-do Carmo [AdC],
Bérard-Santos [BS], Cheng-Nonaka [CN], Cheung-Leung-Leung [CLL], de Barros-
Brasil-de Souza [BdBdS], do Carmo-Cheung-Santos [dCCS], Li [L], Mo [M],
Santos [Sa], Sun [Su], Wang-Li [WL].

The main results of this paper extend to submanifolds of the sphere and of
the hyperbolic space, a result proved by Cheng-Nonaka in [CN], for submani-
folds of the Euclidean space.

We consider Mn, nb 3, a complete, connected submanifold of a space form
~MMnþpð~ccÞ, whose mean curvature vector H does not vanish and it is parallel in
the normal bundle. Assuming the second fundamental form h of M satisfies the
inequality hhi2

a n2jHj2=ðn� 1Þ, we show (Theorem 3.2) that whenever ~ccb 0
then the codimension reduces to 1. As a consequence, we show that when M is
a submanifold of the unit sphere, then Mn is totally umbilic (Corollary 3.3). We
remark that, when ~cc ¼ 0, Theorem 3.2 was proved by Cheng and Nonaka [CN].

A result analogous to Theorem 3.2, when ~cc < 0, is proved by imposing an
additional condition (see Theorem 3.4) that is trivially satisfied when ~ccb 0.
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Under these conditions we prove (Theorem 3.5) that when the submanifold M is
compact and has non-negative Ricci curvature then it is a geodesic hypersphere in
the hyperbolic space Hnþ1ð�1Þ and therefore it is totally umbilic.

We also consider an alternative additional condition (see (Theorem 3.6)), for
submanifolds Mn, nb 4, of the hyperbolic space, which implies that in this case
the codimension reduces to 3.

One should mention that Santos [Sa], Sun [Su] and Wang [W] considered
submanifolds of the sphere, with parallel mean cuvature, assuming di¤erent
inequalities.

2. Preliminaries

This section contains preliminary results that will be necessary for the proofs
of our main results. Let F : Mn ! ~MMnþpð~ccÞ be an isometric immersion of an
n-dimensional di¤erential manifold M in an ðnþ pÞ-dimensional space form ~MM
with constant sectional curvature ~cc. Locally we can consider F as being an
embedding and we identify x A M with FðxÞ A ~MM. In this context, the tangent
space TxM is identified with a subspace of Tx

~MM. The normal space T?
x M is the

subspace of Tx
~MM of all x A Tx

~MM that are orthogonal to TxM with respect to the

metric ~gg of ~MM. We denote by wðMÞ and wðMÞ?, the sets of the Cy vector fields,
tangent and normal to M, respectively. Let ‘ and ~‘‘ be the Riemannian
connections of M and ~MM, respectively. We denote by D? the connection of the
normal bundle. For each x A T?

x M we have a linear transformation Ax on TxM
defined by

~‘‘Xx ¼ �AxðX Þ þD?
Xx:ð1Þ

Given orthonormal vector fields x1; . . . ; xp normal to M, we denote Aa ¼ Axa ,
a ¼ 1; . . . ;Ap and we say that Aa, is the second fundamental forms associated to
xa. We define the normal connection forms Sab by

D?
Xxa ¼

Xp
b¼1

SabðXÞxb;ð2Þ

where X A wðMÞ. For all a and b, Sab þ Sba ¼ 0. A vector field x normal to M
is parallel on the normal bundle, or simply parallel, if D?

Xx ¼ 0, EX A wðMÞ.
The second fundamental form h of M is defined by

hðX ;YÞ ¼ ~‘‘XY � ‘XY :

Therefore,

~ggðhðX ;Y Þ; xÞ ¼ gðAxðX Þ;YÞ

where X ;Y A wðMÞ and x A wðMÞ?.
Let E1; . . . ;En be orthonormal vectors tangent to M at x A M and x1; . . . ; xp

be orthonormal vectors normal to M at x. Then,
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H ¼ 1

n

Xp
a¼1

ðtr AaÞxa

is called the mean curvature vector of the immersion F. We observe that if H is
parallel then jHj is constant.

The length of the second fundamental form is defined to be

hhi2 ¼
Xp
a¼1

tr A2
a :ð3Þ

Erbacher [E1] proved that if the mean curvature vector H is parallel in the
normal bundle, then the laplacian D of hhi2 is given by

1

2
Dhhi2 ¼ ~ccnhhi2 � ~cc

Xp
a¼1

ðtr AaÞ2 þ
Xp
a;b¼1

tr½Aa;Ab�2ð4Þ

þ
Xp
a;b¼1

ðtr AaÞðtr AaA
2
bÞ �

Xp
a;b¼1

ðtr AaAbÞ2 þ
Xp
a¼1

k‘�Aak2;

where ‘� denotes the sum of the normal and tangent connections,

‘�
XAa ¼ ‘XAa �

Xp
b¼1

SabðXÞAb:ð5Þ

We now choose orthonormal vector fields, normal to M, in such a way
that the first one is in the direction of H. Suppose, the mean curvature vector
does not vanish at any point of M, i.e. jHj0 0 in M. Then, we can choose
orthonormal vector fields x1; . . . ; xp normal to M such that

H ¼ jHjx1:
We then have the following relations:

tr A1 ¼ njHjð6Þ
tr Aa ¼ 0; a ¼ 2; 3; . . . ; p:ð7Þ

Considering the normal connection forms Sab, as defined in (2), we have

S1b ¼ 0 b ¼ 1; . . . ; p:ð8Þ
We observe that if the mean curvature vector is parallel, then

A1Aa ¼ AaA1; for all a:ð9Þ

In fact, this follows from the Ricci equation

hR?ðX ;Y Þx1; xai ¼ h½A1;Aa�X ;Yi:

Since the left hand side vanishes, we conclude that ½A1;Aa� ¼ 0 for all a.
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Consider the function

jT j2 ¼
Xp
a¼2

tr A2
a ;ð10Þ

globally defined on M. Our first lemma describes an expression for the laplacian

of jT j2, that will be extremely important to prove our main results in the next
section.

For the proof of the lemma, we need the following remark. If B is a tensor
of type 1� 1 in Mn, then we have

1

2
Dðtr B2Þ ¼ trððD0BÞBÞ þ k‘Bk2ð11Þ

where

ðD0BÞðxÞ ¼
Xn
i¼1

‘Ei
ð‘Ei

BÞ � ‘‘Ei
Ei
B

and E1; . . . ;En are orthonormal tangent vector fields.

Lemma 2.1. Let F : Mn ! ~MMnþpð~ccÞ be an isometric immersion. Suppose the
mean curvature vector H does not vanish at any point of M, and it is parallel in
the normal bundle. Let x1; . . . ; xp be an orthonormal frame in T?M, such that
H ¼ jHjx1. Considering jT j2, as defined by (10), we have

1

2
DjT j2 ¼

Xp
a¼2

fðtr A1Þðtr A1A
2
aÞ � ðtr A1AaÞ2gð12Þ

�
Xp
a;b¼2

ftr½Aa;Ab� t½Aa;Ab� þ ðtr AaAbÞ2g þ ~ccnjT j2 þ
Xp
a¼2

k‘�Aak2:

Proof. Initially we note, from (10), that

hhi2 ¼
Xp
a¼1

tr A2
a ¼ tr A2

1 þ jT j2:ð13Þ

Hence, from (4), we have

1

2
DjT j2 ¼ ~ccnhhi2 � ~cc

Xp
a¼1

ðtr AaÞ2 þ
Xp
a;b¼1

tr½Aa;Ab�2 þ
Xp
a;b¼1

ðtr AaÞðtr AaA
2
bÞ

�
Xp
a;b¼1

ðtr AaAbÞ2 þ
Xp
a¼1

k‘�Aak2 �
1

2
Dðtr A2

1Þ:

Using (9), (7) and the fact that ½Aa;Ab� t ¼ �½Aa;Ab�, we have
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1

2
DjT j2 ¼ ~ccnhhi2 � ~ccðtr A1Þ2 þ

Xp
a¼2

fðtr A1Þðtr A1A
2
aÞ � 2ðtr A1AaÞ2gð14Þ

�
Xp
a;b¼2

ftr½Aa;Ab� t½Aa;Ab� þ ðtr AaAbÞ2g þ ðtr A1Þðtr A1A
2
1Þ

� ðtr A1A1Þ2 þ
Xp
a¼1

k‘�Aak2 �
1

2
Dðtr A2

1Þ:

We now establish the expression for Dðtr A2
1Þ. It follows from (11), that

1

2
Dðtr A2

aÞ ¼ trððD0AaÞAaÞ þ k‘Aak2:ð15Þ

Erbacher [E1] obtained the following expression for D0Aa:

D0Aa ¼ n~ccAa � ~ccðtr AaÞI þ
X
b

ðtr AbÞAaAb �
X
b

ðtr AbAaÞAbð16Þ

þ
X
b

½Ab;AaAb� þ
X
b

Ab½Aa;Ab� þ
X
i;b

ð‘Ei
SabÞðEiÞAb

þ 2
X
i;b

SabðEiÞ‘Ei
Ab �

X
i;b; g

SabðEiÞSbgðEiÞAg:

Substituting (16) in (15) and using the properties of the trace function, we obtain

1

2
Dfa ¼ n~cc tr A2

a � ~ccðtr AaÞ2 þ
X
b

ðtr AbÞ trðAaAbAaÞð17Þ

�
X
b

ðtr AbAaÞ2
X
b

tr½Ab;AaAb�Aa þ
X
b

tr Ab½Aa;Ab�Aa

þ
X
i;b

ð‘Ei
SabÞðEiÞ tr AbAa þ 2

X
i;b

SabðEiÞ trð‘Ei
AbÞAa

�
X
i;b; g

SabðEiÞSbgðEiÞ tr AgAa þ k‘Aak2:

Now, consider a ¼ 1 in (17). It follows from (7), (8), (9), and the relation

½Ab;A1Ab�A1 ¼ AbA1AbA1 � A1AbAbA1 ¼ 0;

that

1

2
Dðtr A2

1Þ ¼ n~cc tr A2
1 � ~ccðtr A1Þ2 þ ðtr A1Þðtr A1A1A1Þ � ðtr A1A1Þ2ð18Þ

�
Xp
b¼2

ðtr AbA1Þ2 þ k‘A1k2:
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Substituting (18) in (14) and using (9) and (13), we have that

1

2
DjT j2 ¼ ~ccnjT j2 þ

Xp
a¼2

fðtr A1Þðtr A1A
2
aÞ � ðtr A1AaÞ2g

�
Xp
a;b¼2

ftr½Aa;Ab� t½Aa;Ab� þ ðtr AaAbÞ2g þ k‘�A1k2

þ
Xp
a¼2

k‘�Aak2 � k‘A1k2:

Then, it follows from (5) that (12) holds. This completes the proof of Lemma
1.1. r

Introducing the following notation

NðAaÞ ¼ tr At
aAa; Zab ¼ tr AaAb;ð19Þ

we can rewrite (12) as follows

1

2
DjT j2 ¼

Xp
a¼2

fðtr A1Þðtr A1A
2
aÞ � ðtr A1AaÞ2g

�
Xp
a;b¼2

fNðAaAb � AbAaÞ þ Z2
abg þ ~ccnjT j2 þ

Xp
a¼2

k‘�Aak2:

The following two algebraic results will be very useful for the proof of our
main results.

Lemma 2.2 [LL]. Let A1; . . . ;Al be symmetric n� n matrices. Then,

Xl

a;b¼1

fNðAaAb � AbAaÞ þ Z2
abga

3

2

Xl

a¼1

NðAaÞ
 !2

;ð20Þ

where N and Z are defined by (19). Equality holds if, and only if, one of the
following conditions hold:

1. A1 ¼ � � � ¼ Al ¼ 0;
2. Only two of the matrices A1; . . . ;Al are nonzero matrices. Moreover,

assuming A1 0 0 and A2 0 0, then NðA1Þ ¼ NðA2Þ :¼ L and there exists
an orthogonal matrix T such that

T tA1T ¼
ffiffiffiffi
L

2

r 1 0 0 � � � 0

0 �1 0 � � � 0

0 0 0 � � � 0

..

. ..
. ..

. . .
. ..

.

0 0 0 � � � 0

0
BBBBBB@

1
CCCCCCA
; T tA2T ¼

ffiffiffiffi
L

2

r 0 1 0 � � � 0

1 0 0 � � � 0

0 0 0 � � � 0

..

. ..
. ..

. . .
. ..

.

0 0 0 � � � 0

0
BBBBBB@

1
CCCCCCA
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Lemma 2.3 (Chen [C]). Let a1; . . . ; an and b be nþ 1 real numbers, n > 1,
which satisfy the following

Xn
i¼1

ai

 !2

b ðn� 1Þ
Xn
i¼1

a2i þ b ðresp: >Þ:

Then, for all i0 j,

2aiaj b
b

n� 1
ðresp: >Þ

3. Proof of the main results

We begin this section proving the following lemma:

Lemma 3.1. Let Mn be a submanifold ðnb 3Þ in ~MMnþp. Suppose the mean
curvature vector H does not vanish and it is parallel in the normal bundle. Let
x1; . . . ; xp be orthonormal vector fields in T?M such that H ¼ jHjx1. If the
second fundamental form h of M satisfies

hhi2
a

n2jHj2

n� 1
;ð21Þ

then

Xp
a¼2

fðtr A1Þðtr A1A
2
aÞ � ðtr A1AaÞ2gb n

jT j4

2
ð22Þ

Xp
a;b¼2

fNðAaAb � AbAaÞ þ Z2
abga

3

2

Xp
a¼2

NðAaÞ
 !2

¼ 3

2
jT j4;ð23Þ

where N, Z and T are defined by (19) and (10). Moreover, the Ricci curvature of
Mn has a lower bound.

Proof. It follows from the hypothesis that (6), (7) and (9) hold. Therefore,
for each ab 2, A1 and Aa can be simultaneously diagonalized. Let r1; . . . ; rn
and ra

1 ; . . . ; r
a
n be the eigenvalues of A1 and Aa, respectively. We observe that

for each fixed ab 2,

ðtr A1Þðtr A1A
2
aÞ � ðtr A1AaÞ2 ¼

Xn
i¼1

ri

 ! Xn
j¼1

rjðra
j Þ

2

 !
�

Xn
i¼1

rir
a
i

 ! Xn
j¼1

rjr
a
j

 !
:

Therefore,

ðtr A1Þðtr A1A
2
aÞ � ðtr A1AaÞ2 ¼

1

2

Xn
i; j¼1

rirjðra
i � ra

j Þ
2:ð24Þ
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On the other hand, the hypothesis (21) is equivalent to

ðnjHjÞ2 b ðn� 1Þ tr A2
1 þ ðn� 1ÞjT j2:

Since (6) holds, we obtain the inequality

Xn
i¼1

ri

 !2

b ðn� 1Þ
Xn
i¼1

ðriÞ
2 þ ðn� 1ÞjT j2:ð25Þ

It follows from Lemma 2.3 that

rirj b
jT j2

2
; i0 j:ð26Þ

Substituting the inequality (26) in (24), we obtain

ðtr A1Þðtr A1A
2
aÞ � ðtr A1A

2
aÞb

1

4
jT j2

Xn
i; j¼1

ðra
i � ra

j Þ
2

¼ 1

2
jT j2

Xn
i; j¼1

ðra
i Þ

2 �
Xn
i; j¼1

ra
i r

a
j

( )

¼ jT j2

2
n
Xn
i¼1

ðra
i Þ

2 � 1

2
jT j2

Xn
i¼1

ra
i

 !2
:

Therefore, for each ab 2, since (7) holds, we have

ðtr A1Þðtr A1A
2
aÞ � ðtr A1A

2
aÞb

jT j2

2
n tr A2

a :ð27Þ

Summing over a, we obtain the inequality (22). The proof of (23) follows from
Lemma 2.2.

We will now show that the Ricci curvature has a lower bound. For each
fixed ab 2, using (21) and the fact that jT j2 a hhi2, we have

ðn� 1Þ tr A2
a � n2jHj2 a ðn� 1ÞjT j2 � n2jHj2 a 0 ¼ ðtr AaÞ2:

This can be written as

0 ¼
Xn
i¼1

rai

 !2
b ðn� 1Þ

Xn
i¼1

ðrai Þ
2 � n2jHj2:

Hence, it follows from Lemma 2.3 that

rai r
a
j b

�n2jHj2

2ðn� 1Þ ; i0 j:

This inequality together with (26) implies that the sectional curvature of Mn has
a lower bound. Consequently, the Ricci curvature of Mn has a lower bound.

r
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In the next result we treat the case ~ccb 0. We remark that, when ~cc ¼ 0, we
obtain the result proved by Cheng and Nonaka [CN].

Theorem 3.2. Let Mn, nb 3, be a complete connected submanifold of
~MMnþpð~ccÞ, ~ccb 0. Suppose the mean curvature vector H does not vanish and it
is parallel in the normal bundle. If the second fundamental form h of M satisfies

hhi2
a

n2jHj2

n� 1
;ð28Þ

then the codimension reduces to 1.

Proof. Since H does not vanish, we can choose orthonormal vector fields
x1; . . . ; xp, normal to M, such that x1 ¼ H=jHj. Hence, (6) and (7) hold. We
consider jT j2 defined by (10). It follows from Lemma 2.1 that (12) holds. Using
the notation introduced in (19), we have that

1

2
DjT j2 ¼

Xp
a¼2

fðtr A1Þðtr A1A
2
aÞ � ðtr A1AaÞ2g

�
Xp
a;b¼2

fNðAaAb � AbAaÞ þ Z2
abg þ ~ccnjT j2 þ

Xp
a¼2

k‘�Aak2:

Motivated by (22) and (23), we now define P1 and P2, as

P1 ¼
Xp
a¼2

fðtr A1Þðtr A1A
2
aÞ � ðtr A1AaÞ2g;ð29Þ

P2 ¼
Xp
a;b¼2

fNðAaAb � AbAaÞ þ Z2
abg:ð30Þ

Then

1

2
DjT j2 ¼ P1 � P2 þ ~ccnjT j2 þ

Xp
a¼2

k‘�Aak2:ð31Þ

It follows from Lemma 3.1 that P1 b njT j4=2, and P2 a 3jT j4=2. Hence,

P1 � P2 b
ðn� 3Þ

2
jT j4:ð32Þ

Therefore, since ~ccb 0, it follows that

1

2
DjT j2 bP1 � P2 b

ðn� 3Þ
2

jT j4:ð33Þ
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From Lemma 3.1, the Ricci curvature of Mn has a lower bound and by
hypothesis jT j2, is bounded from above by n2jHj2=ðn� 1Þ. Therefore, the
Generalized Maximum Principle (see [O], [Y]), applied to the function jT j2,
implies that there is a sequence fxkg of points on M, such that

lim
k!y

jT j2ðxkÞ ¼ supjT j2;ð34Þ

lim
k!y

sup DjT j2ðxkÞa 0:ð35Þ

Then, using (35), (33) and (34), we obtain

0b lim
k!y

sup DjT j2ðxkÞb ðn� 3Þ lim
k!y

jT j2ðxkÞ
� �2

¼ ðn� 3ÞðsupjT j2Þ2 b 0:

Therefore,

ðn� 3ÞðsupjT j2Þ2 ¼ 0:

If nb 4, then we must have jT j2 ¼ 0 on M. Hence, for each ab 2, Aa ¼ 0
and consequently, the first normal space is generated x1ðxÞ. We conclude from
Erbacher’s theorem [E2], that the codimension of the immersion reduces to 1.

Now, suppose n ¼ 3. From (33) we have DjT j2 b 0. So, it follows from
(35) that

lim
k!y

sup DjT j2ðxkÞ ¼ 0:ð36Þ

Observe that the hypothesis (28) implies that the sequence fha
jiðxkÞg

y
k¼1 is bounded

for each j, i and a. Therefore there is a convergent subsequence fha
jiðxkrÞg

y
kr¼1.

Define

Aa ¼ lim
kr!y

AaðxkrÞ:

Restricting the inequality (33) to the sequence fxkrg
y
kr¼1, taking the limit and

denoting by P1 and P2 the limits taken in P1 and P2, respectively, we obtain
using (35) and (34) that

0b lim
kr!y

sup DjT j2ðxkrÞb 2ðP1 � P2Þb ðn� 3ÞðsupjT j2Þ2 b 0:

This implies P1 ¼ P2. Hence, when we take the limit in (22) and (23), we have
the following equalities

Xp
a¼2

ftr A1 tr A1A
2
a � ðtr A1AaÞ2g ¼ 3

2
supjT j2

Xp
a¼2

tr A2
að37Þ

Xp
a;b¼2

fNðAaAb � AbAaÞ þ Z2
abg ¼ 3

2

Xp
a¼2

NðAaÞ
 !2

:ð38Þ
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From Lemma 2.2, applied to (38), we have either
a) A2 ¼ � � � ¼ Ap ¼ 0; or
b) Only two matrices among A2; . . . ;Ap are not zero. In this case, we may

assume, without loss of generality, A2 0 0 and A3 0 0. Moreover, there
is an orthogonal matrix T such that

T tA2T ¼

ffiffiffiffi
L

2

s
1 0 0

0 �1 0

0 0 0

0
B@

1
CA and T tA3T ¼

ffiffiffiffi
L

2

s
0 1 0

1 0 0

0 0 0

0
B@

1
CAð39Þ

where L ¼ tr A2
2 ¼ NðA2Þ ¼ NðA3Þ.

If a) occurs, then we have

supjT j2 ¼
Xp
a¼2

tr A2
a ¼ 0:

Therefore, jT j2 ¼ 0 on M and the codimension reduces to 1.
We will now prove that b) cannot occur. Suppose, by contradiction, that b)

occurs. For each a ¼ 2; . . . ; p, as we saw in (24), we have

tr A1 tr A1A
2
a � ðtr A1AaÞ2 ¼

1

2

Xn
i; j¼1

rirjðra
i � ra

j Þ
2
b

1

4
jT j2

Xn
i; j¼1

ðra
i � ra

j Þ
2

¼ 3

2
jT j2 tr A2

a

where we used (26) and (27). Hence, restricting this inequality to the sequence
fxkrg and taking the limit, we get from (37) that

Xn
i; j¼1

rirjðra
i � ra

j Þ
2 ¼ 1

2
supjT j2

Xn
i; j¼1

ðra
i � ra

j Þ
2;ð40Þ

where ri ¼ limkr!y riðxkrÞ e ra
i ¼ limkr!y ra

i ðxkrÞ. Moreover, from (39) we have
r2i 0 r2j , for i0 j. Then, from (26) and (40) we obtain

rirj ¼
1

2
supjT j2; for i0 j:ð41Þ

Now, we observe that

tr A2
1 � njHj2 ¼ tr A2

1 � 2njHj2 þ njHj2

¼
X3
i¼1

ðriÞ
2 � 2jHj

X3
i¼1

ri þ
X3
i¼1

jHj2

¼
X3
i¼1

ðri � jHjÞ2 b 0:
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Then, we define

jU j2 :¼ tr A2
1 � njHj2 b 0:ð42Þ

One can check that X
i0j

rirj ¼ ½tr A1�2 � tr A2
1 :

Since, for n ¼ 3 we have

½tr A1�2 � tr A2
1 ¼ 6jHj2 � ½tr A2

1 � 3jHj2�

¼ 6jHj2 � jU j2:

Therefore, we have the equality

X
i0j

rirj ¼ 6jHj2 � jU j2:ð43Þ

Restricting to the sequence fxkrg, taking the limit and using (41), we obtain

6jHj2 ¼ lim
kr!y

jU j2ðxkrÞ þ
X
i0j

rirj

¼ lim
kr!y

jU j2ðxkrÞ þ
X
i0j

1

2
supjT j2:

Hence,

lim
kr!y

jU j2ðxkrÞ þ 3 supjT j2 ¼ 6jHj2:ð44Þ

On the other hand, applying the limit to the inequality (25), using (41) and
Lemma 2.3, we have

Xn
i¼1

ri

 !2
¼ ðn� 1Þ

Xn
i¼1

ðriÞ
2 þ ðn� 1Þ supjT j2:ð45Þ

We observe that,

Xn
i¼1

ri ¼ tr A1 ¼ njHj;
Xn
i¼1

ðriÞ
2 ¼ tr A2

1 e supjT j2 ¼
Xp
a¼2

tr A2
a :

So (45) for n ¼ 3 reduces to

ð3jHjÞ2 ¼ 2 tr A2
1 þ 2

Xp
a¼2

tr A2
a ¼ 2 lim

kr!y
hhi2ðxkrÞ;
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that becomes

lim
kr!y

hhi2ðxkrÞ ¼
9

2
jHj2:ð46Þ

From (42), we have hhi2 ¼ jU j2 þ jT j2 þ njHj2. Hence, it follows from
(46) that

lim
kr!y

jU j2ðxkrÞ þ supjT j2 þ 3jHj2 ¼ 9

2
jHj2;

that is,

supjT j2 ¼ 3

2
jHj2 � lim

kr!y
jU j2ðxkrÞ:ð47Þ

Substituting (47) in (44), we have

6jHj2 ¼ lim
kr!y

jU j2ðxkrÞ þ 3
3

2
jHj2 � lim

kr!y
jU j2ðxkrÞ

� �

¼ �2 lim
kr!y

jU j2ðxkrÞ þ
9

2
jHj2:

Whence it follows that

lim
kr!y

jU j2ðxkrÞ ¼ � 3

4
jHj2 < 0:

This is a contradiction. Therefore, b) cannot occur. This concludes the proof
of the theorem. r

Corollary 3.3. Let Mn be a complete connected submanifold ðnb 3Þ of the
sphere Snþpð1Þ. Suppose the mean curvature vector H does not vanish and it is
parallel in the normal bundle. If the second fundamental form h of M satisfies

hhi2
a

n2jHj2

n� 1
;

then Mn is totally umbilic in Snþ1ð1Þ.

Proof. If ~cc ¼ 1 in Theorem 3.2, then Mn is contained in the sphere Snþ1ð1Þ
and it has constant mean curvature. Let fE1; . . . ;Eng be an orthonormal basis
of TpM for which the second fundamental form A is diagonal. Denote by
r1; r2; . . . ; rn the eigenalues of A. Then, Gauss equation can be written

KðEi;EjÞ � 1 ¼ rirj; i0 j

where KðEi;EjÞ denotes the secctional curvature. It follows from (26) that Mn

has secctional curvature greater than or equal to 1. We conclude, using Theorem
2 proved by Nomizu and Smyth in [NS], that Mn is totally umbilic in Snþ1ð1Þ.

r
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A result analogous to Theorem 3.2, when ~cc < 0, needs an additional
condition (see (48)) that is trivially satisfied when ~ccb 0.

Theorem 3.4. Let Mn, nb 3, be a complete and connected submanifold of
the hyperbolic space Hnþpð~ccÞ, ~cc < 0. Suppose the mean curvature vector does not
vanish and it is parallel in the normal bundle. Let x1; x2; . . . ; xp be orthonormal
vector fields normal to M such that H ¼ jHjx1. If the second fundamental form h
of M satisfies

hhi2
a

n2jHj2

n� 1

and

~ccnjT j2 þ
Xp
a¼2

k‘�Aak2 b 0;ð48Þ

where Aa is the second fundamental form associated to xa, jT j2 and ‘� are defined
by (10) and (5), then the codimension reduces to 1.

Proof. The proof starts with the same arguments used in the proof of
Theorem 3.2. We obtain as in (31) that

1

2
DjT j2 ¼ P1 � P2 þ ~ccnjT j2 þ

Xp
a¼2

k‘�Aak2

where P1 and P2 where defined in (29) and (30) and moreover the inequality (32)
holds. Using the hypothesis (48) and (32), we have

1

2
DjT j2 bP1 � P2 b

ðn� 3Þ
2

jT j4:

Now the proof follows with the arguments used in Theorem 3.2 for the case
~ccb 0. r

We will now prove, that a compact submanifold with non-negative Ricci
curvature and satisfying the hypothesis of Theorem 3.4 is a geodesic sphere in
Hnþ1ð�1Þ. This is a submanifold, whose points are at a fixed distance, from a
given point. Such hipersurfaces are totally umbilic [MB].

Theorem 3.5. Let Mn be a compact connected submanifold of Hnþpð�1Þ.
Suppose that the mean curvature vector H does not vanish and it is parallel in the
normal bundle and that the Ricci curvature is non-negative. Let x1; . . . ; xp be
orthonormal vector fields normal to M such that H ¼ jHjx1. If the second
fundamental form h of M satisfies

hhi2
a

n2jHj2

n� 1
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and

~ccnjT j2 þ
Xp
a¼2

k‘�Aak2 b 0;

then Mn is a geodesic sphere.

Proof. It follows from Theorem 3.4 that Mn is a hypersurface of Hnþ1ð�1Þ.
The Ricci curvature of Mn is non-negative by hypothesis. Since the mean
curvature vector is parallel in the normal bundle, we have that the mean curvature
of Mn in Hnþ1ð�1Þ is constant. We conclude the proof by using a theorem,
proved by Morvan and Bao-Qiang [MB] that any compact hypersurface of
Hnþ1ð�1Þ with non-negative Ricci curvature and constant mean curvature is a
geodesic sphere. r

We conclude this section with our next result, where we consider an alter-
native hypothesis (see (50)), to the condition (48) of Theorem 3.4, that also allows
us to controll the sign of the laplacian of jT j2. In this case, as we will see, the
codimension is reduced to 3.

Theorem 3.6. Let Mn, nb 4, be a complete connected submanifold of
Hnþpð~ccÞ, with ~cc < 0 and pb 3. Suppose that the mean curvature vector H
does not vanish and it is parallel in the normal bundle. Let x1; . . . ; xp orthonormal
vector fields normal to M such that H ¼ jHjx1. Furthermore, suppose that the
first normal space is invariant by parallel translation with respect to the normal
connection. If the second fundamental form h of M satisfies

hhi2
a

n2jHj2

n� 1
ð49Þ

and

jT j2 b� 2~ccn

n� 3
;ð50Þ

where jT j2 is defined by (10), then the codimension reduces to 3.

Proof. With the same arguments used in the proof of Theorem 3.2. We
obtain as in (31) that

1

2
DjT j2 ¼ P1 � P2 þ ~ccnjT j2 þ

Xp
a¼2

k‘�Aak2

where P1 and P2 where defined in (29) and (30). Moreover, it follows from (22)
and (23) that
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P1b n
jT j4

2
; P2a

3

2

Xp
a¼2

NðAaÞ
 !2

¼ 3

2
jT j4;ð51Þ

and the inequality (32) holds. Using (32), we have

1

2
DjT j2 b ðn� 3Þ

2
jT j2 þ ~ccn

� �
jT j2:ð52Þ

On the other hand, since (49) holds, by the Generalized Maximum Principle
applied to jT j2, we have the existence of a sequence fzkg of points of M such
that

lim
k!y

jT j2ðzkÞ ¼ supjT j2 lim
k!y

sup DjT j2ðzkÞa 0:ð53Þ

Then, it follows from (52), (53) and the hypothesis (50), that

0b lim
k!y

sup DjT j2ðzkÞb 2 lim
k!y

ðn� 3Þ
2

jT j2ðzkÞ þ ~ccn

� �
jT j2ðzkÞ

¼ 2
ðn� 3Þ

2
supjT j2 þ ~ccn

� �
supjT j2 b 0:

Therefore,

ðn� 3Þ
2

supjT j2 þ ~ccn

� �
supjT j2 ¼ 0:

From (50), we have that supjT j2 > 0. Hence, supjT j2 ¼ �2~ccn=ðn� 3Þ, and it
follows from (50) that

jT j2 � � 2~ccn

n� 3
:ð54Þ

Therefore, we have

0 ¼ 1

2
DjT j2 bP1 � P2 þ ~ccnjT j2 b ðn� 3Þ

2
jT j2 þ ~ccn

� �
jT j2 ¼ 0:

Hence, we have the equalities

P1 � P2 þ ~ccnjT j2 ¼ 0

and

ðn� 3Þ
2

jT j4 þ ~ccnjT j2 ¼ 0;

that imply

P1 � P2 ¼
ðn� 3Þ

2
jT j4:ð55Þ
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From (51), we have P2 a 3jT j4=2. We claim that equality holds. In fact,
otherwise from (51), we would contradict (55). Therefore,

P2 ¼ 3jT j4=2 ¼ 3

2

Xp
a¼2

NðAaÞ
 !2

:

Therefore, at a given point y0 A M, Lemma 2.2 implies, that either a)
Aaðy0Þ ¼ 0, for all ab 2 or b) only two among the matrices Aaðy0Þ are not
zero. In this case, we may assume wihout loss of generality, that A2ðy0Þ0 0 and
A3ðy0Þ0 0.

We observe that a) cannot occur, since otherwise, we would have jT j2ðy0Þ
¼ 0, which contradicts (54). Then, b) must occur. Hence, the first normal
space is generated by x1ðy0Þ, x2ðy0Þ and x3ðy0Þ and by hypothesis, it is invariant
by parallel translation of the normal connection. Therefore, it follows from
Erbacher’s theorem [E2], that the codimension reduces to 3. r
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