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ON PROPERTY OF COMPLEMENTS OF AN ALGEBRAIC CURVE

WITH AT LEAST 4 IRREDUCIBLE COMPONENTS IN P2

Yukinobu Adachi

Abstract

For the manifold M :¼ P2 � AðlÞ ðlb 4Þ where AðlÞ is an algebraic curve with l

irreducible components, the notion that M is of log general type, measure hyperbolic

and DM is a curve or empty set, where DM is the degeneracy locus of the Kobayashi

pseudodistance dM on M, coincide with each other.

0. Introduction

In [7] and [10], the little Picard theorem, that is, the holomorphic map of Ck

ðkb 1Þ to above M is algebrically degenerate always, was proved as a special case.
In Theorems 2 and 3 in [4], the Montel theorem was generalized for M, that

is, there are only two cases such as (a): M is tautly imbedded modulo some
curve S in P2 (then M is hyperbolically imbedded modulo S in P2) or (b): there
exists a holomorphic rational function f on M such that all irreducible compo-
nents of every lebel curve of f are holomorphically isomorphic to either C or C�.

In [5] and [3], for an arbitrary complex manifold N, DN (for its definition,
see Proposition 1.2) is a pseudoconcave set of order 1 and the same for SNðX Þ
where SNðXÞ is the degeneracy locus of limiting dN to N, which is compact in the
manifold X (precisely, see Definition 1.1 and 1.3).

So, in the case M ¼ P2 � AðlÞ ðlb 4Þ, if SMðP2Þ or DM is contained in a
curve, it is a curve or empty set because it is a pseudoconcave set (compliment of
the set is a pseudoconvex set) in the two dimensional case. Then we can make
clear the above case (a) to (a) 0, that is, M is hyperbolically imbedded modulo
SMðP2Þ which is a curve or empty set.

In [2], the notion that M is tautly imbeded modulo SMðP2Þ in P2 and M is
hyperbolically imbedded modulo SMðP2Þ in P2 coincide with each other when
SMðP2Þ is a curve or empty set.

In this paper, we prove that the notion that M is of log general type,
measure hyperbolic and hyperbolically imbedded modulo SMðP2Þ in P2 coincide
with each other when SMðP2Þ is a curve or empty set.
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1. Preliminaries

Let X be a connected complex manifold and M a relatively compact domain
in X . We denote by dM the Kobayashi pseudodistance on M. For the precise
definition of dM , see [9, p. 50]. For p; q A M, we define

dMðp; qÞ ¼ lim inf
p 0!p;q 0!q

dMðp 0; q 0Þ; p 0; q 0 A M:

For properties of dM , see [2, p. 386].

Definition 1.1 (Definition 1.1 in [2]). Let SMðXÞ ¼ fp A M such that there
exists some q A M � fpg such as dMðp; qÞ ¼ 0g. We call SMðXÞ the degeneracy
locus of dM in X .

It is easy to see the following:

Proposition 1.2. SMðX ÞVM ¼ DM :¼ fp A M such that there exists some
q A M � fpg such as dMðp; qÞ ¼ 0g.

Definition 1.3 (cf. [13] and [6]). A closed set E of X is called a
pseudoconcave set of order 1, if for any coordinate neighborhood

U : jz1j < 1; . . . ; jznj < 1

of X and psitive numbers r, s with 0 < r < 1, 0 < s < 1 such that U � VE ¼ j,
one obtains U VE ¼ j, where

U � ¼ fp A U ; jz1ðpÞja rgU p A U ; sa max
2aian

jziðpÞj
� �

:

Theorem 1.4 (Theorem 2 in [5] and Theorem 1.12 in [3]). The sets SMðXÞ is
a pseudoconcave set of order 1 in X , and DM is the same in M.

Theorem 1.5 (Theorem 8.1 in [1]). For M ¼ P2 � AðlÞ ðlb 4Þ, there are
only two cases.

(a) SMðP2Þ is a curve of P2 or empty set.
(b) SMðP2Þ ¼ P2.

Definition 1.6 (Definition 6.1 in [1]). We call f a rational holomorphic
function of C-type (resp. C�-type) on P2 � A if f is a rational function on P2 and
normalization of every irreducible component of all level curves of f except finite
number of them is holomorphically isomorphic to C (resp. C�) on P2 � ðAU If Þ,
where A is a curve of P2 or empty set and If is the set of indeterminacy points
of f .

Further, we call f a primitive rational function on P2 � A if almost all level
curves are irreducible except finite ones.
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Proposition 1.7 (see Propositions 6.3, 6.4, 6.5 and 8.2 in [1]). In the case
(b) of Theorem 1.5, there exists a primitive rational holomorphic function f of C or
C�-type on P2 � AðlÞ ðlb 4Þ with lacunary three points. Namely, AðlÞ is the sum
of several irreducible components of level curves of f which is a rational function of
C or C�-type on P2 and of C or C�-type on P2 � ðAðlÞU If Þ, or AðlÞ is the sum of
several irreducible components of the level curves of f which is a rational function
of C-type on P2 and an irreducible curve of genus 0 of P2 such that f is of C�-type
on P2 � ðAðlÞU If Þ.

We shall consider a complex manifold X of dimension n which has a
compactification. According to Hironaka, there is a smooth compactification
X of X . Namely, X is a compact complex manifold of dimension n and
D ¼ X � X is a divisor which has at most normal crossings. According to F.
Sakai [11, p. 245] we can define logarithmic Kodaira dimension kðX Þ of X .

Definition 1.8. If kðXÞ ¼ n, X is called a manifold of log general type.

Proposition 1.9 (Proposition 2.4 in [11]). Let X be a complex manifold with
a smooth compactification X. Let f : X ! Y be a surjective holomorphic map,
where Y is a compact complex manifold. Then for a general point y in f ðXÞ, we
have

kðXÞa kðX V f �1ðyÞÞ þ dim Y :

Proposition 1.10 (Proposition 1.1 in [11]). Let X , Y be complex manifolds
of dimension n such that X HY. Then kðXÞb kðYÞ.

Definition 1.11 (cf. [8, p. 117]). Let X be a complex manifold. Given a
Borel subset X in X , choose holomorphic maps fi : D

n ! X where Dn is the unit
polydisk and Borel subsets Xi in Dn, such that XH6

i
fiðXiÞ. Define

mX ðXÞ ¼ inf
X
i

ð
Xi

V ;

where the infimum is taken over all possible choices of fi, Xi, and V is the
Poincaré volume form on Dn. We say X is measure hyperbolic if mX ðXÞ > 0 for
all non empty open subsets X in X .

Proposition 1.12 (Theorem (7.1.4) in [9]). If there exists a nondegenerate
holomorphic map f : Dn�1 � C ! X , then X is not measure hyperbolic.

2. Main results

Throughout this section, the manifold M ¼ P2 � AðlÞ, where AðlÞ is an
algebraic curve with l ðlb 4Þ irreducible components.
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Proposition 2.1 (cf. Conjecture 4 in [9, p. 80]). If kðMÞ ¼ 2, then M is in
the case (a) of Theorem 1.5.

Proof. We shall prove that if M is in the case (b) of Theorem 1.5, then
kðMÞa 1. By blowing up in finite times, there is a smooth compactification of
M and f of Theorem 1.5 is extended to f : M ! P1 which is a surjective
holomorphic map. For a general point y in P1, X V f �1ðyÞ is an irreducible
curve which is holomorphically isomorphic to C or C�. By Proposition 1.9,
kðMÞa 1. r

Proposition 2.2. If M is in the case (a) of Theorem 1.5, then kðMÞ ¼ 2.

Proof. By blowing up in finite times, there is a smooth compactification M
and M �M ¼ C is a semi-stable curve. For the definition of semi-stable curve,
see [12, p. 90]. By checking the tables 1 and 2 in [12, p. 90] and more pricisely,
Theorem (2.7) and (3.15) in [12], in the case where M is a rational surface, we see
kðMÞa 1 only when M is in the case (b) of Theorem 1.5. Therefore, the above
proposition is proved. r

By Corollary (7.2.12) in [9], we have the following proposition.

Proposition 2.3. If M is in the case (a) of Theorem 1.5, M is measure
hyperbolic.

Proposition 2.4. If M is measure hyperbolic, M is in the case (a) of
Theorem 1.5.

Proof. We shall prove that if M is in the case (b) of Theorem 1.5, then M
is not mesaure hyperbolic. By blowing up in finite times, there is a smooth
compactification M and there is a primitive rational holomorphic function f of C
or C�-type on M. If f is of C-type, we can take a neighborhood d in f ðMÞ
such that f �1ðyÞ is holomorphically isomorphic to C, where y A d. By well
known Nishino’s theorem, f �1ðdÞ is biholomorphic to d� C. So there exists a
nondegenerate holomorphic map g : D� C ! M. By Proposition 1.12, M is not
measure hyperbolic.

If f is of C�-type, there are two cases. The one is that f is a rational
function of C�-type on P2 and A is the sum of level curves of f . The other is
that f is a rational function of C-type on P2 and except A1 such as one of the
irreducible components of A, A is level curves of f and A1 is a curve of genus 0
of P2 such that f is of C�-type on P2 � A.

In the former case, we can take a neighborhood d in f ðMÞ such that f �1ðyÞ
is holomorphically isomorphic to C� for every y A d. By Theorem 3 in [14],
f �1ðdÞ is biholomorphic to d� C�. Since there exists a nondegenerate holo-
morphic map of d� C to d� C�, there exsits a nondegenerate holomorphic map
h : D� C ! M. By Proposition 1.12, M is not measure hyperbolic.
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In the latter case, it is easy to see that there is a neighborhood d in A1 such
that every f �1ðyÞ is holomorphicaly isomorphic mutually to C� for every y A d.
By the same reason of the former case, M is not measure hyperbolic. r

From Propositions 2.1 through 2.4 and Remark on Theorem 4.4 in [2], we
conclude the following

Theorem 2.5. For M ¼ P2 � AðlÞ ðlb 4Þ such that SMðP2Þ is a curve or
empty set, the following notions coincide with each other:

(1) M is hyperbolically imbedded modulo SMðP2Þ in P2.
(2) M is tautly imbedded modulo SMðP2Þ in P2.
(3) M is of log general type.
(4) M is measure hyperbolic.
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