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ON CONIC-BUNDLE AND BLOWING-DOWN

Eiichi Sato

1. Introduction

We work over the complex number field.
ðaÞ Let N1 be an nð> 3Þ-dimensional projective variety which is a locally

complete intersection and A a smooth ample Cartier divisor. Moreover let A be
a blowing-up of a smooth projective variety B along a smooth subvariety C.

Under the condition ðaÞ we consider the following

Problem 1.0. Under which condition there exists an n-dimensional com-
plete Moishezon space N2 containing B as a divisor where N2 is a locally
complete intersection, N1 the blowing-up of N2 along the subvariety C and where
A a strict transform of B on N1.

Let r ¼ dim B� dim C > 1 and E in A the exceptional locus via the blowing-
up of B along the subvariety C. It is already known that there exists N2 in
Problem 1.0 under each condition:

1) (Fu80) r > 2 and N1 is smooth.
2) (Fa84, Fa86) r ¼ 2, N1 is a smooth 4-fold with kðN1Þb 0 and

E0P1 � P1.
Thus we can pose a

Conjecture 1.1. Let us maintain the notations and the condition ðaÞ as
above. Assume kðN1Þb 0 and nb 5. Then there exists N2 in Problem 1.0 and
n ¼ dim N1 a 5, if E is not isomorphic to Pn�3 � P1. When E is isomorphic to
Pn�3 � P1, there is a birational morphism g : N1 ! N3 whose exceptional locus D
is contracted to P1 via g.

In this paper we show

Theorem 1.2. Under the condition ðaÞ we assume that r ¼ 2 and kðN1Þb 0.
Then the conclusion of above conjecture 1.1 holds if n ¼ 5 and E is not isomorphic
to Pn�3 � P1.

See an example in Remark 4.4 for Thereom 1.2.

307

Received February 27, 2006; revised February 26, 2008.



Remark 1.3. (1) We need a condition: kðN1Þb 0. If otherwise we have a
counterexample: In fact for a smooth ðn� 1Þ-fold Bðn > 3Þ, we have only to
consider a P1-bundle N1 over B in the Zariski topology and a smooth ample
Cartier divisor A in N1 which yields a tautological line bundle. (see introduction
[Fa86])

(2) As a matter of fact even if we replace kðN1Þb 0 by the condition: a fiber
P1 in the exceptional locus E via the blowing-up h : A ! B does not deform to
fill up N1, we have the conclusion of Theorem 1.2.

In order to show Theorem 1.2, we take the locus D which is shown to be a
divisor in N1 where DVA ¼ E. Next we show that D has a P2-bundle structure
over C which is the extension of P1-bundle E ! C and finally that D in N1

collapses to C in N2. Thus we pose more general problem on the extension of a
morphism.

In the following, setting r ¼ 2, we change the notation by the following
way: D to M, E to A, C to S, and n� 1 to n.

Problem 1.4. Let M be a projective nðb 4Þ-fold which is a locally complete
intersection, A a smooth ample Cartier divisor and p : A ! S a conic bundle over
a smooth projective ðn� 2Þ-fold S. (see below as for the definition of conic
bundle) Assume that rðAÞ ¼ rðSÞ þ 1 and that A is not isomorphic to
Pn�2 � P1. Then p is extended to a morphism f : M ! S. Particularly assume
that p : A ! S is a P1-bundle over a smooth projective ðn� 2Þ-fold S. Then the
morphism f : M ! S is a P2-bundle with OMðAÞjf�1ðsÞ GOPn�2ð1Þ and dim Sa 2.

Definition 1.4.1. A non-singular projective variety X is called a quadric
bundle over a smooth projective variety Y if there exists a surjective morphism
f : X ! Y such that every fiber Xy is isomorphic to a possibly singular hyper-
quadric of the same dimension m. When m ¼ 1, it is called a conic bundle. See
Proposition 3.4 due to Mori and Mukai [MoMu85] and Proposition 3.5 in [Mi83]
about the property of conic bundles with rðX Þ ¼ rðYÞ þ 1.

(1.4.2) Remark in case of dim X ¼ 2 that a conic bundle f : X ! Y with
rðX Þ ¼ rðYÞ þ 1 is a geomerically ruled surface over Y and therefore Problem
1.4 for n ¼ 3 holds due to Badescu [Ba80] (see Theorem 5.5.3 [BS95] also). The
latter part in Problem 1.4 is called Sommese’s conjecture.

In the section 2 and 3 we show

Theorem 1.5. Let M be a projective 4-fold which is a locally complete
intersection, A a smooth ample Cartier divisor and p : A ! S a conic bundle over a
smooth projective surface S. Assume that kðSÞb 0 and rðAÞ ¼ rðSÞ þ 1. Then
p is extended to a morphism f : M ! S which is one of the following:

i) P2-bundle over S with OMðAÞjf�1ðsÞ GOP2ð1Þ (Case 3 (b.2)).

ii) P2-bundle over S with OMðAÞjf�1ðsÞ GOP2ð2Þ (Case 4 (b.2)).

iii) Quadric-bundle over S (Case 4 (b.2)), namely which is contained in a
P3-bundle g : V ! S over S with OV ðMÞjg�1ðsÞ GOP3ð2Þ.
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Thus combining Main theorem in [FaSaSo87] and [SaSp86], we get

Corollary 1.6 (Sommese’s conjecture in case of n ¼ 4). Let M be a
projective 4-fold which is a locally complete intersection, A an ample Cartier divisor
and p : A ! S a P1-bundle over a smooth projective surface S. If A is not
isomorphic to P2 � P1, then p is extended to a morphism f : M ! S which is a
P2-bundle with OMðAÞjf�1ðsÞ GOP2ð1Þ.

Remark 1.7. 1) In [SaZh00] Corollary 1.6 is shown under the assumption
of smoothness of M. Thus in this paper the investigations in the singular case
are made carefully.

2) Under the assumption: H 0ðS;KSÞ0 0 Sommese conjecture holds. It
is obtained by modifying some part in the proof in Theorem III (4.29) [Sa87]
slightly. Thus under the same one Theorem 1.2 holds if dim N1 b 5.

Remark 1.8. For a variety B N1ðBÞ denotes SZf1-cycle of B=numerical
equivalencegnR. Assume dim Mb 4. Then an embedding i : A ,! M in-
duces an isomorphism i� : N1ðAÞGN1ðMÞ. Thus Theorem 1.5 and Corollary
1.6 say that an extremal ray R in N1ðAÞ induced by p goes to the one i�ðRÞ in
N1ðMÞ induced by f.

This paper is organized as follows. In section 2 and section 3 we study
basic facts and show Proposition 2.1. Using this Proposition we prove Theorem
1.2 and Theorem 1.5 in section 4.

Acknowledgements. The author would like to thank the referee for pointing
out several mistakes and errors and particularly for giving him an essential
suggestion in order to improve the incompleteness of the proof of Proposition 3.2.

2. Preliminary

In this section we state Proposition 2.1 which is necessary to get Theorem
1.5. We give the setup for the proof, divide the proof into cases (from case 1) to
4)) and state the proof in Case 1), 2) and 3). The main case Case 4) will be dealt
in the next section.

The method of the proof is basically the same as the one in [SaZh00]. Es-
pecially we need to check three cases: (b2) in Case 3, (a1), (b2) and (b3) in Case 4
[SaZh00] carefully.

Hereafter we assume that
(2.0) the Kodaira dimension of a smooth projective surface S is non-

negative.
We begin with a well-known fact related with the above assumption (2.0)

which is used hereafter.
(Kod) Let f : T ! S be a morphism from a projective ruled surface T to a

smooth projective surface S. Then if the morphism f is surjective, then S is
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ruled. Equivalently if the Kodaira dimension of S is non-negative, then the
image f ðTÞ is a point or a curve.

Proposition 2.1. Let M be a projective 4-fold which is a locally complete
intersection, A a smooth ample Cartier divisor and p : A ! S a conic bundle over
a smooth surface S. Assume kðSÞb 0 and rðAÞ ¼ rðSÞ þ 1. Then we have the
following two possibilities:

1) p : A ! S is extended to a morphism f : M ! S which is one of the
following:

i) P2-bundle over S with OMðAÞjf�1ðsÞ GOP2ð1Þ (Case 3 (b.2)).

ii) P2-bundle over S with OMðAÞjf�1ðsÞ GOP2ð2Þ (Case 4 (b.2)).

iii) Quadric-bundle over S (Case 4 (b.2)).
2) There is a birational morphism f : M ! W onto a projective variety W

where W is a locally complete intersection and M is the blowing-up of W along a
smooth subvariety F contained in the smooth part of W.

Moreover f ðAÞ has the following properties:
1. f ðAÞ is a smooth ample Cartier divisor contained in the smooth part of W

and f jA : A ! f ðAÞ is the blowing-up of f ðAÞ along the subvariety F ðH f ðAÞÞ.
2. f ðAÞ has a conic-bundle structure p 0 : f ðAÞ ! S 0 over a smooth projective

surface S 0.
3. There is a birational morphism f 0 : S ! S 0 with the commutativity

ð f jAÞp 0 ¼ pf 0. Here the Picard number rðSÞ of S is equal to rðS 0Þ þ 1.
(Case 4 (a.1))

Remark 2.1.1. 1) The case 2) in Proposition 2.1 does not occur, which is
shown in the proof in Theorem 1.5.

2) In 1) of Proposition 2.1 the conic bundle p : A ! S of the subcase i) turns

out to be P1-bundle in the Zariski topology and the one of ii) with singular fibers.
We first consider a su‰cient condition for a variety to have rational

singularities.
Remark 2.2. (1) Grothendieck [Gro68] showed the following:
Let ðR;mÞ be a regular local ring, p a prime ideal of R and A ¼ R=p. As-

sume that p is generated by R-sequence. If Aq is UFD for each prime ideal q in
Spec A with htqa 3, then A is UFD. This says that

(2) Let X be an nðb 4Þ-dimensional variety which is a locally complete
intersection with at most isolated singularities. Then X is locally-factorial. In
particular M in Problem 1.4 is locally-factorial. In fact since A is a smooth
ample Cartier divisor in M, M has at most isolated singularities.

From now on we state a property which makes it possible to use the
contraction theorem by extremal ray.

Proposition 2.3. Let X be a locally-factorial and Gorenstein projective
variety and Y an irreducible divisor of X. Assume that there is a surjective
morphism b : Y ! Z to projective variety Z so that a general fiber l of b is
P1. Moreover assume ðY :lÞX b 0. Then H 0ðX ;KX Þ ¼ 0.

310 eiichi sato



Proof. From the first assumption we see that ðKY :lÞY ¼ �2 for a smooth
general fiber l of b. Assume H 0ðX ;KX Þ0 0. If KX is not isomorphic to OX ,
we have an e¤ective divisor D with OX ðDÞGKX . For such a general fiber l of b
we have ðl:DÞa�2 by ðKX þ Y :lÞX ¼ ðKY :lÞY ¼ �2. Thus noting X is locally-
factorial, we can take an irreducible component D 0 of D with ðl:D 0Þa�1 which
implies lHD 0. Hence D 0 contains a smooth general fiber l of b and therefore D 0

coincides Y , contradicting the assumption ðY :lÞX b 0. When KX GOX , we get
ðKX þ Y :lÞX ¼ ðY :lÞX ¼ �2, a contradiction. q.e.d.

Corollary 2.4. Let M be a projective nðb 4Þ-fold which is a locally
complete intersection, A an ample Cartier divisor. Assume that A is smooth
and that there is a surjective morphism p : A ! S to a projective ðn� 2Þ-fold S
where a general fiber l of p is P1. Then M has at most isolated rational
Gorenstein singularities.

Proof. Since A is a smooth ample divisor in M, M has at most isolated
singularities which is Gorenstein by Remark 2.2 (2). On the other hand when
M has irrational singular points IrrðMÞ which is finite, it is shown that
h0ðKMÞ þ h0ðKAÞb h0ðKM þ AÞbaðIrr MÞ by virtue of Corollary 0.2.2 [So86]
and by the following exact sequence: 0 ! KM ! KM þ A ! KA ! 0. From
the structure of A we see ðl:KAÞ ¼ �2 where l is a fiber of p. Thus we get
h0ðKAÞ ¼ 0. Moreover we have H 0ðM;KMÞ ¼ 0 by Proposition 2.3 which yields
that M has no irrational singular points. Thus we complete the proof. q.e.d.

From now on we begin with the proof of Proposition 2.1.
Since A is a conic bundle over S, KA is not nef and therefore KM þ A is not

nef. Let us set L ¼ OMðAÞ and K ¼ KM . Since M has rational Gorenstein
singularities by Corollary 2.4, we apply our ðM;LÞ to [Fu87]. Since L is ample,
there is a positive integer j with 2a ja 5 so that K þ jL is nef and K þ ð j � 1ÞL
is not nef. Thus we study the following four cases separately:

Case k) K þ ð6� kÞL is nef and K þ ð5� kÞL is not nef where k runs over
1, 2, 3, 4.

First we begin with
(2.6) Case 1 and Case 2
The arguments of case 1 and case 2 stated in [SaZh00] work well in these

cases. In fact we infer that S is ruled, a contradiction to the assumption
kðSÞb 0. As a consequence these two cases do not happen.

Next we study
(2.7) Case 3 (K þ 3L is nef and K þ 2L is not nef )
We begin with a reformed version of Theorem 3 0 [Fu87] under the weaker

following assumption. The proof is given with few changes of Fujita’s argument.

Proposition 2.8. Let U be an nð> 3Þ-dimensional projective normal variety
with only rational Gorenstein isolated singularities. Let L be an ample line bundle
on U. Assume that KU þ ðn� 1ÞL is nef and that KU þ ðn� 2ÞL is not nef.
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Moreover assume that U is a locally complete intersection. If Picard number of
U , rðUÞb 2, then we have

(a) There is a birational morphism f : U ! W and the exceptional locus E is
Pn�1 with ðE;LEÞG ðPn�1;Oð1ÞÞ.

(b) There is a surjective morphism f : U ! W to a smooth projective variety
W. Let F be a general fiber of f .

(b.1) dim W ¼ 1 and ðF ;LF Þ is ððn� 1Þ-dimensional hyperquadric, Oð1ÞÞ.
(b.2) dim W ¼ 2, f makes ðU ;LÞ a scroll over a smooth surface W and

ðF ;LF ÞG ðPn�2;Oð1ÞÞ.

Proof. First since nb 4 and rðUÞb 2, (b.1) follows immediately from
[Fu87, Theorem 3 b1]. Next remark that every Weil divisor in U is Cartier by
Remark 2.2 (2). As for (a), taking general ðn� 2Þ hyperplane sections H1; . . . ;
Hn�2 in U , we see that H1 V ; . . . ; VHn�2 is a smooth surface, noting that U has
at most isolated singularities. Since the exceptional locus E of U is Cartier, the
proof of the case (a) in [Fu87] works well.

(b.2) follows from the following (2.9). Fujita actually showed (2.9) in (2.12)
[Fu87], although he assumed U is smooth.

(2.9) Let f : U ! S be a surjective morphism between normal projective
varieties U , S and L an ample line bundle on U . Suppose that U is a locally
complete intersection and that dim U � dim S > dimSing U . Moreover assume
that dim Z ¼ r for every fiber Z of f and that ðF ;LF ÞG ðP r;Oð1ÞÞ for every
general fiber F of f . Then S is smooth and f makes ðU ;LÞ a scroll over S.

As for (2.9) see Proposition 3.2.1 in [BS95]. q.e.d.

To finish the case 3) we return to the observation of case 3 in (2.7). Applying
two subcases (a), (b.1) of Proposition 2.8, we infer that S is ruled (Kod in (2.0)),
contradicting the assumption of non-negative kðSÞ as shown in [SaZha00]. Thus
(a), (b.1) do not occur and only the subcase (b.2) does. In this case AV f �1ðwÞ
is P1 for a general point w in W . First by kðSÞb 0, pðAV f �1ðwÞÞ is one
point. Let h ¼ ðp; f jAÞ : A ! S �W . Since rðAÞ > rðhðAÞÞ, we get rðSÞ ¼
rðhðAÞÞ ¼ rðWÞ. Hence an induced morphism hðAÞ ! S is a finite birational
morphism and therefore an isomorphism. Similarly an induced morphism
hðAÞ ! W is an isomorphism, which is a case 1) i) of Proposition 2.1.

3. Proof of Proposition 2.1 in Case 4)

In this section we investigate Case 4 to complete the proof of Proposition
2.1.

First we begin with
(3.1) Case 4. (K þ 2L is nef and K þ L is not nef )
First we begin with

Proposition 3.2. Let U be an nð> 3Þ-dimensional projective normal variety
with only rational Gorenstein isolated singularities and L an ample line bundle on
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U. Assume that KU þ ðn� 2ÞL is nef and KU þ ðn� 3ÞL is not nef. Moreover
assume that jLj contains a smooth divisor A. Then if f : U ! W is a birational
elememtary contraction induced by a curve R with ðR:KU þ ðn� 3ÞLÞ < 0, it is
divisorial.

Proof. Let X ¼ fw A W j dim f �1ðwÞ > 0g and E ¼ f �1ðXÞ. Then by
virtue of (2.5) in [Fu87], dim f �1ðwÞb n� 2b 2ðw A WÞ and therefore
dimð f �1ðwÞVAÞb 1. Thus we can take an irreducible rational curve C on
A so that ðKA þ ðn� 4ÞAjA:CÞ ¼ ðKU þ ðn� 3ÞA:CÞ < 0. Note KA þ ðn� 3ÞAjA
is nef on A. Hence letting g : A ! A 0 be an elementary contraction induced by
the curve C on A and noting A is smooth, we infer that g is a birational
contraction and that the exceptional locus EðgÞ of g is a divisor in A namely,
dim EðgÞ ¼ n� 2, by virtue of Theorem (0.4) Ionescu [Io86]. Thus we see that
EðgÞHE and that EðgÞ is contained in the smooth locus of U . Now if f would
be small, EðgÞ would be an irreducible component of E. Therefore since the
irreducible component EðgÞ is contained in the smooth locus of U , the argument
in Theorem (1.1) due to Wisniewski [Wi91] works and the following inequality of
the conclusion holds:

dim F þ dimðlocus of RÞb dim X þ lðRÞ � 1. (Here F is an ireducible of a
non-trivial fiber f .) The curve C above applies to R. However this contradicts
the assumption ðR:KU þ ðn� 3ÞLÞ < 0. Thus we complete the proof. q.e.d.

Thus by virtue of Proposition 3.2 and Remark 2.2 (2) we have the conse-
quence of theorem 4 [Fu87] under the weaker condition as the one. Note that
the case of small contraction does not occur.

Proposition 3.3. Let U be an nð> 3Þ-dimensional projective normal variety
with only rational Gorenstein isolated singularities and L an ample line bundle on
U. Assume that jLj contains a smooth divisor A and that U is a locally complete
intersection. If K þ ðn� 2ÞL is nef and K þ ðn� 3ÞL is not nef, then we have the
following cases under the condition rðUÞ > 1:

(a) There is a birational morphism f : U ! W onto a normal projective
variety W with rðWÞ ¼ rðUÞ � 1. Let X ¼ fx A W j dim f �1ðxÞ > 0g. Then
E ¼ f �1ðX Þ is an irreducible divisor and we have two cases:

(a.1) dim X ¼ 1 and for any smooth point x in X ðEx;LxÞG ðPn�2;Oð1ÞÞ
where Ex is the fiber of f : E ! X over x and Lx ¼ LjEx

. In this case the
restriction OUðEÞ to Ex is Oð�1Þ.

(a.234) X is a point. ðE;LjEÞ is ðP3;Oð2ÞÞ or ðPn�1;Oð1ÞÞ or ðQ;OQð1ÞÞ.
Here Q denotes a hyperquadric.

(b) There is a surjecive morphism f : U ! W onto a normal projective variety
W and dim W < 4. Let F be a general fiber of f .

(b.1) dim W ¼ 1 and ðF ;LF ÞG ðP3;Oð jÞÞ with j ¼ 2; 3, ðP4;Oð2ÞÞ,
ðQðHP4Þ;OQð2ÞÞ or (del Pezzo manifold, Oð1ÞÞ.

(b.2) dim W ¼ 2 and ðF ;LF ÞG ðP2;Oð2ÞÞ or ðQðHPn�1Þ;OQð1ÞÞ.
(b.3) dim W ¼ 3 and ðF ;LF ÞG ðPn�3;Oð1ÞÞ.
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Before studying the case 4, we state two facts on conic bundle.

Proposition 3.4 (Proposition 4.8 in [MoMu85]). Let f : X ! Y be a conic
bundle from a projective smooth 3-fold X to a smooth projective surface Y. Then
the following conditions are equivalent to each other.

(1) A general fiber Xy of f is an extremal rational curve.
(2) rðX Þ ¼ rðYÞ þ 1
(3) For every irreducible curve C on Y , f �1ðCÞ is irreducible.

Proposition 3.5 (Lemma 4.7 in [Mi83]). Let f : X ! Y be a conic bundle
from a projective smooth 3-fold X to a smooth projective surface Y with rðXÞ ¼
rðY Þ þ 1. Then the following conditions are equivalemt to each other.

(1) f : X ! Y is not a standard conic bundle,
Here a conic bundle f : X ! Y is said to be standard if Pic X G

f � Pic Y lZKX.
(2) f : X ! Y is a P1-bundle in the Zariski topology.

Remark 3.5.1. We denote Dp as a closed set fs A S j p�1ðsÞ is singularg
(possibly empty) and remark that Dp has only normal crossing as singularities
where Dp is of 1-dimension with dim Sing Dp a 0 and that p�1ðsÞ is a smooth
conic, a reducible conic or a double line according as s B Dp, s A Dp or,
s A Sing Dp by [Be77].

Hereafter till the end of this section a conic bundle p : A ! S means the
one from a projective smooth 3-fold A to a smooth projective surface S with
rðAÞ ¼ rðSÞ þ 1.

Next we state a property about a birational contraction of a conic bundle
which is necessary to study subcases (a.1) and (b.3).

Proposition 3.6. Let p : A ! S be a conic bundle (3.5.1) and g : A ! A 0

an elementary contraction by an extremal rational curve R. Assume that g is
birational and the Kodaira dimension of S is non-negative. Then the exceptional
divisor E via g is isomorphic to P1 � P1 where two morphisms gjE : E ! gðEÞ,
pjE : E ! pðEÞ correspond to one of two projections: P1 � P1 ! P1 respectively
and there is an open set U containing pðEÞ in S where p : A ! S is P1-bundle over
U , namely Dp VU ¼ j. Moreover there is a birational morphism g 0 : S ! S 0

which is blowing down pðEÞ of S to a smooth surface S 0 where p 0 : A 0 ! S 0 is a
conic bundle over S 0 wuth the commutativity g 0p ¼ p 0g.

Proof. Mori Theory says that the exceptional locus E is one of P1-bundle
over a smooth curve C, P2, P1 � P1 and an irreducible singular quadric surface
where E in only the first case goes to a curve C via g. Hence from Kod in (2.0)
pðEÞ is an irreducible curve by non-negative Kodaira dimension of S, p�1ðpðEÞÞ
is irreducible by virtue of (3) in Proposition 3.4 and therefore p�1ðpðEÞÞ ¼ E.
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Particularly the third case that gðP1 � P1Þ is a point is ruled out in view of the
property of g and p. Consequently we have only to study the first case. Thus
gjE is a P1-bundle over gðEÞGP1 and pðEÞ is a rational curve. Noting that
every fiber of p is connected, we see that E is isomorphic to P1 � P1 where the
first projection is gjE and where pjE is the composite of the second projection and
the normalization h : P1 ! pðEÞ. Particularly a general fiber of pjE : E ! pðEÞ
is a smooth rational curve. Hence each fiber of pjE is a smooth rational curve or
a double line. Thus we conclude that if pðEÞ intersects with Dp then pðEÞVDp

is contained in the singular part of Dp. Now we have a
Sublemma: pðEÞ does not intersects with Dp. Therefore pðEÞ is smooth

and p : A ! S is P1-bundle over an open set around p�1ðEÞ.
In fact if otherwise, we take a point s in pðEÞVDp and let l be the

reduced part ðGP1Þ of p�1ðsÞ. For subvarieties lHEHA we have an exact
sequence:

0 ! Nl=E ! Nl=A ! NE=Ajl ! 0.

Since l is a fiber of the second projection of P1 � P1, Nl=E is a trivial line
bundle on P1. Moreover NE=Ajl is trivial since ðE:lÞ ¼ 0 by p�1ðpðEÞÞ ¼ E.
Thus we infer that Nl=A ¼ OlO. On the other hand we have a

Claim. For a smooth conic bundle h : B ! T over a smooth surface T let l
be a reduced part of non-reduced fiber. Then det Nl=B ¼ �1.

In fact for a smooth fiber C of the conic bundle we have ðKB:CÞ ¼ �2.
Since C is numerically equivalent to 2l. Thus we get ðKB:lÞ ¼ �1 and conse-
quently det Nl=B ¼ �1. We get a claim.

Thus we have a contradiction and that pðEÞVDp is empty. Thus we get
sublemma.

Noting ðOEðEÞ:lÞ ¼ �1 for a fiber l of a P1-bundle gjE : E ! gðEÞ, we get
pðEÞ2 ¼ �1, which yields the remainder. Thus we complete the proof. q.e.d.

(3.7) Let us return the proof of Proposition 2.1 and first show that the
subcase (a.234) does not occur.

(3.7.1) Subcase (a.234) in case 4)
Let E be the exceptional locus of f with a point P :¼ f ðEÞ. Then E VA is

one of P2, a singular quadric surface and P1 � P1. By kðSÞb 0 and Kod we
infer that the first two cases are ruled out and pðE VAÞ is a curve. Moreover we
get p�1ðpðE VAÞÞ ¼ E VA by (3) in Proposition 3.4. Since f collapses a fiber of
p to the point P, we see dim f ðAÞ < 3, which contradicts to the ampleness of A
(see (a1) in p. 317 [SaZa00]). Thus this subcase does not occur.

Subcase (a.1) in case 4).
(1) Let f : M ! W be a birational morphism induced by an extremal

rational curve C in A where ðK þ 2A;CÞ ¼ 0, and f ðCÞ is a point. Let X ¼
fx A W j dim f �1ðxÞ > 0g and E ¼ f �1ðX Þ an irreducible divisor. Thus since
KM þ 2AjA is nef and not ample, we see that the morphism f jA : A ! f ðAÞ
factors h : A ! A 0 ¼ hðAÞ and h 0 : A 0 ! f ðAÞ where h is a contraction by an
extremal rational curve in A. On the other hand since f is birational and A is
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ample, h is birational and the exceptional locus ExcðhÞ via h is contained in
AVE.

We show
(2) ExcðhÞ ¼ AVE and h can be identified as the morphism g in Proposition

3.6.
For a point x in X let us set Ex :¼ f �1ðxÞ and lx :¼ Ex VA. Then recalling

that E is irreducible and dim Ex ¼ 2, we infer by the same argument as in (a.234)
that for each point x in X Ex is not contained in A, dim lx ¼ 1 and f ðAVEÞ is a
curve X , since Ex is P2 for each smooth point x in X and therefore each
component of Ex is a ruled surface for each point x in X [Ma68]. Noting that
AVE ¼ 6

x AX lx and that lx GP1 for each point x of an open set X0 in X , we
see that AVE is irreducible. In fact if othewise, we could find an irreducible
component D of AVE which is contained in 6

x AX�X0
lx and get dim D ¼ 1. It

is absurd. Hence since ExcðhÞ is in AVE these two coincide. Thus we get (2).
(3) By Proposition 3.6, we see AVEGP1 � P1. Since M is a locally

complete intersection, E is Cohen-Macauley. Hence E is normal. Thus letting
p : X 0 GP1 ! X be the normalization of X , we have a morphism f 0 : E ! X 0

induced by f jE : E ! f ðEÞ with f jE ¼ pf 0. Then f 0 is P2-bundle over X 0 and
the restriction of two morphisms p, f 0 to AVE corresponds to two canonical
projections of P1 � P1 respectively. Thus Sing M VE is empty and OMðEÞjF ¼
OP2ð�1Þ with a fiber F of f 0 : E ! X 0. Note that both Sing M VA and
p�1ðDpÞVE are empty.

Thus we get
(4) M can be blown down along the direction f 0 : E ! X 0 to an algebraic

space N [Na71][Ar70]. Set the morphism as f : M ! N. Then f jA can be
identified as h : A ! hðAÞ by Proposition 3.6. f ðAÞ is ample in N and N is
a projective variety by Step 5 [SaZh00]. Moreover it is a locally complete
intersection, BHReg N and B is a conic bundle over a smooth surface S 0 where
S 0 is a blowing-down of S along an exceptional curve pðAVEÞ.

(5) f : M ! W can be identified as f : M ! N. Hence since p : X 0 GP1

! X is an isomorphism, f jE : E ! X is P2-bundle over P1.
In fact we have rðMÞ ¼ rðNÞ þ 1 and rðMÞ ¼ rðWÞ þ 1. Define a mor-

phism h ¼ ðf; f Þ : M ! W �N and set the image of h as M. Since rðMÞb
rðMÞ þ 1 and therefore rðMÞ ¼ rðWÞ ¼ rðNÞ, two natural projections M ! W
and M ! N are isomophisms by Zariski Main Theorem. Thus we get (5).

We finish the subcase (a.1).
We consider subcase (b).
Subcase (b.1). This case does not occur by the proof in [SaZh00].
Subcase (b.2). We show that the case occurs that only p : A ! S has a

standard conic bundle structure. First pðAVFÞ is a point. If otherwise, S
is ruled, a contradicton since pðAVFÞ is a rational curve. Thus the morphism

f jA : A ! W factors A !p S !j W where j : S ! W is a surjective morphism.
Note that a general fiber AVF of f jA : A ! W is irreducible, since AVF is an
ample divisor in F . Consequently we see that the morphism j is birational.
Moreover by rðMÞ ¼ rðWÞ þ 1 and rðAÞ ¼ rðSÞ þ 1, we get rðSÞ ¼ rðWÞ.
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Hence j is an isomorphism. Since A is ample in M, f : M ! S is of equi-
dimension and therefore flat.

First consider the case that for a general fiber F of f , ðF ;LF ÞG ðQðHP3Þ;
OQð1ÞÞ. Then we see easily that M is a quadric-bundle over S.

In case of F GP2 taking a line bundle L 0 ¼ �KM � A on M, we see that
L 0jF GOP2ð1Þ. Note that L 0 is relatively ample with respect to f . Hence M is
P2-bundle over S by (2.9). Consequently the case does not happen that A ! S
is a P1-bundle over S, as stated in [SaZh00], [Ba80] and (1.4.2) but the one does
that p : A ! S is a standard conic bundle over S with ‘‘singular fibers’’.

Next to get Corollary 1.6 shown after, we state

Remark 3.7.1.1. Under the conditions and assumptions in Theorem 1.5,
we assume, moreover, that a conic bundle p : A ! S is a P1-bundle over a
smooth projective surface S as in Corollary 1.6. Then the subcase (b.2) does not
occur.

It is proved just before that the case does not occur that M ! S is a P2-
bundle over S. Hence let F be a fiber of the quadric bundle f : M ! S. Since
AVF is a smooth conic in F by assumption, F is a smooth quadric surface or a
possibly singular quadric surface with one vertex. Thus we remark that each line
l on F is not contained in A where l VA is scheme-theoretically one point. Now
take a line l on a smooth quadric surface F and consider the Hilbert scheme R 0

of l in M. Then we have the following exact sequence:

0 ! Nl=F ! Nl=M ! NF jM jl ! 0

Since Nl=M ¼ Ol3

P1 , and therefore H 1ðl;Nl=MÞ ¼ 0, we can take a 3-

dimensional irreducible component R of R 0 containing the line l. Let Q be the
universal scheme of R and p : Q ! M, q : Q ! R two canonical morphisms.
Note that the degree of p is 2. From ðl:AÞ ¼ 1 the Cartier divisor p�1ðAÞ yields
a section of q : Q ! R and Q is a proj of rank-2 vector bundle E on 3-fold R
with the following exact sequence on R:

0 ! O ! E ! G ! 0.

Here G is a line bundle on R where PðGÞ corresponds to a section p�1ðAÞ
in Q ¼ PðEÞ. Now SingðM=SÞf denotes a closed set fm A M j f �1ð f ðmÞÞ is a
singular quadric surface with the vertex mg. Then we have

Claim: SingðM=SÞf consists of at most finite subset in M.

In fact A is o¤ SingðM=SÞf since A is a smooth ample Cartier divisor.
Now take a very ample smooth curve C in S where C does not intersect with

f ðSingðM=SÞf Þ. Let us set MC ¼ f �1ðCÞ. Moreover let pC : p�1ðMCÞ ! MC

be a canonical morphism between 3-folds obtained by taking the base change of
p : Q ! M over MC . Hence pC : p�1ðMCÞ ! MC is a double covering. Since
A is an ample divisor in M, so is p�1

C ðAVMCÞ in p�1ðMCÞ. Here remark there
is a surface RC in R with p�1ðMCÞ ¼ q�1ðRCÞ from the constraction of Q, R.
Consequently both EjRC

and GjRC
are ample vector bundles over a surface RC .
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If necessary, taking the base change of above exact sequence by the normalzation
h : R 0

C ! RC of RC , we see that the above sequence splits over RC by the
vanishing theorem H 1ðRC ;�GjRC

Þ ¼ 0 due to Mumford [Mu67]. This contra-
dicts to the ampleness of EjRC

.
Subcase (b.3). We show this case does not occur.
First f jA : A ! W is a birational morphism. Since rðMÞ ¼ rðWÞ þ 1, f jA

is not finite. Take a curve C in A with a point f ðCÞ. By assumption we see
ðKM þ A:CÞ < 0 and therefore ðKA:CÞ < 0. Hence we can find an extremal
rational curve C1 in A such that f ðC1Þ is a point. By rðAÞ ¼ rðWÞ þ 1 we infer
that f jA : A ! W is an elementary contraction induced by a smooth rational
curve C1 on A. Moreover we see by Proposition 3.6 that p�1ðpðC1ÞÞ ¼ P1 � P1

and that W is a smooth 3-fold. Here note that the morphism f jA : A ! W
corresponds to the one g : A ! A 0 in Proposition 3.6. Let Excð f jAÞ be the
image of the exceptional locus fw A W j dimð f jAÞ

�1ðwÞ ¼ 1g of f jA : A ! W .
Then it coincides with f ðp�1ðpðC1ÞÞÞð¼ P1Þ in W . Moreover since A is ample
in M, dim f �1ðwÞ ¼ 1 for each point w in W � Excð f jAÞ. Now remark that
f �1ðwÞ is a smooth rational curve for a general point w in W � Excð f jAÞ.
f : M ! W is P1-bundle over a smooth open subscheme W � Excð f jAÞ in W
since f is flat over there. Hence we can take a smooth curve C2 in S which
does not intersect with the exceptional curve pðC1Þ on S via the blowing-
down g 0 : S ! S 0. Then f �1ð f ðp�1ðC2ÞÞÞ ! f ðp�1ðC2ÞÞ is a P1-bundle over
f ðp�1ðC2ÞÞð¼ F HWÞ with a section f �1ðFÞVA. In case of P1-bundle there
are a rank-2 vector bundle E and a quotient line bundle G over F enjoying
an exact sequence on F : 0 ! O ! E ! G ! 0 with f �1ðF ÞGPðEÞ and
f �1ðFÞVAGPðGÞ. Since A is an ample divisor, E and G are ample vector
bundles. On the other hand the exact sequence splits from H 1ðF ;�GÞ ¼ 0 by
Kodaira vanishing Theorem, a contradiction to the ampleness of E. Thus the
case (b.3) does not happen. q.e.d.

Thus we have finished the proof of Proposition 2.1.

4. Proof of Theorem 1.2 and Theorem 1.5

(4.1) Proof of Thereom 1.5.
We use induction on rðSÞ. When rðSÞ ¼ 1, ðM;AÞ is in case 1) of

Proposition 2.1. Next assume rðSÞ > 1.
Hereafter we assume that ðM;AÞ is in case 2) of Proposition 2.1 and study

ðW ; f ðAÞÞ. Since rðSÞ ¼ rðS 0Þ þ 1, by induction assumption we have a mor-
phism h 0 : W ! S 0 in one of the case 1). By the argument below we will get a
contradiction and show that case 2) of Proposition 2.1 does not occur. Conse-
quently we complete the proof of Theorem 1.5.

Let s 00 :¼ h 0ðF Þ be a point in S 0 and W0 ¼ h 0�1ðs 00Þ a fiber in W . Note that
in case i) and case ii) W0 is isomorphic to P2 and in case iii) it a quadric surface
with at most one singularity. Similarly F is a line in W0 in case i) and a smooth
conic in the other cases.
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Thus in each case take a line C 0ð0FÞ in the fiber W0 where in case ii)
C 0 VF consists of two points. Moreover let us take an irreducible and re-
duced curve C in M with f ðCÞ ¼ C 0. Then the intersection number ðC:EÞ in
M is 1, 2 and 1 in each case respectively. On the other hand we have an
equality ðC 0:F ÞW0

¼ ðC 0:A 0Þ ¼ ðC: f �A 0Þ ¼ ðC:Aþ EÞ ¼ ðC:AÞ þ ðC:EÞ. But the
direct calculation yields the inequality since ðC:AÞ is positive by the ample-
ness of A, a contradiction. Consequently the case 2) of Proposition 2.1 does not
occur.

Thus we finish the proof of Theorem 1.5. q.e.d.

(4.2) Proof of Corollary 1.6.
First let us consider the case of kðSÞb 0. Then from Remark 3.7.1.1

only the case i) happens and two cases ii) and iii) in Theorem 1.5 are ruled
out.

Next let us consider the case of kðSÞ ¼ �y. In [FaSaSo87] it is shown in
Thoerem 2.0 when S ¼ P2 and in Theorem when there is a surjective holomor-
phic map from S to a curve except the special case. The remainder is proved in
[SaSp86]. q.e.d.

(4.3) Proof of Theorem 1.2
Let f : A ! B be the blow-up of B along C and E the exceptional locus via

the blow-up. Then E is a P1-bundle over C and let Ec be a fiber P1 of a point
c A C via the f : A ! B. Then we have the following exact sequence:

0 ! NEc=E ! NEc=A ! NE=AjEc
! 0

Since NEc=E GOl2

P1 and NE=AjEc
GOP1ð�1Þ, we have

NEc=A GOl2

P1 lOP1ð�1Þ.

Moreover by the assumption kðN1Þb 0 and the following exact sequence:

0 ! NEc=A ! NEc=N1
! NA=N1jEc

! 0

we get the following with b ¼ Ec:Að> 0Þ

NEc=N1
GOP1ða1ÞlOP1ða2ÞlOP1ða3ÞlOP1ð�1Þ;

with a1 b a2 b a3 b 0 and Sai ¼ b.
Thus the deformation of Ec in N1 provides us with an irreducible divisor D

in N1. We get the following property:
1. DVA ¼ E,

(for the proof see the proof of (1.2) Theorem [So81] for example)
2. A is an ample divisor in N1, so is E in D. Therefore D has at most

isolated singularities.
By virtue of Corollary 1.6 D is a P2-bundle over a smooth surface C and
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E is a tautological line bundle. Thus we get 1 ¼ ðEc:EÞD ¼ ðEc:AÞN1
¼ b and

therefore ðD:EcÞ ¼ �1. Thus Theorem 1.2 follows. q.e.d.

Remark 4.4. We state an example on Theorem 1.2.

Let N 0
2 be a hypersurface of degree d þ 1 defined by F ¼ X0X

d
3 þ X1X

d
4 þ

X2X
d
5 þ X dþ1

6 ¼ 0 and V1 the one of degree eþ 1 by G ¼ X0X
e
4 þ X1X

e
5 þ

X2X
e
3 þ X6X

e
3 þ X eþ1

6 ¼ 0 in P6 with d; e > 0. Let C be a plane in P6 defined
by X0 ¼ X1 ¼ X2 ¼ X6 ¼ 0.

We have the following properties:
1) N 0

2, V1 and N 0
2 VV1 are smooth around C.

2) A hypersurface of degree b defined by ðX3 þ X0Þb � ðX3 � X0Þb þ
ðX4 þ X1Þb � ðX4 � X1Þb þ ðX5 þ X2Þb � ðX5 � X2Þb þ ðX6Þb ¼ 0 is a smooth va-
riety containing the C.

Let us take N2 as a hypersurface of degree d þ 1 defined by X0A0 þ X1A1 þ
X2A2 þ X6A3 ¼ 0 where Ai ð0a ia 3Þ are homegenous polynomials of degree d
with generic coe‰cients and V as the one of degree eþ 1 similarly. Noting that
the property of smoothness is an open condition in the set of subschemes
containing the C, we see easily that N2, V and N2 VV are smooth varieties in P6

containing C.

Let f : P ! P6 be the blowing-up of P6 with the center of C. Moreover let
us set N1 the proper transform of N2 and A of B :¼ N2 VV respectively. We see

that P has a P3-bundle structure: g : P ! P3. Letting D be the exceptional
divisor of P via f , we see that D is isomorphic to P2 � P3 and f jD is the first
projection and gjD the second one. Let us set two morphisms f :¼ f jN1

: N1 !
N2 and g :¼ gjN1

: N1 ! P3. Then f is a birational morphism whose exceptional
locus Dð:¼ DVN1Þ has a P2-bundle structure over C ¼ f ðDÞ ¼ P2. A fiber of
the morphism g is a surface of degree d. Let C1 be a line in a fiber of f jD and
C2 a curve in a fiber of g. Thus we get

Proposition 4.5. 1) NEðN1Þ ¼ R>0C1 þ R>0C2

2) f jA : A ! B is a birational morphism whose exceptional locus Eð:¼ DVAÞ
is a P1-bundle structure over C.

3) ðA:C1ÞN1
¼ 1 and ðA:C2ÞN1

¼ ðdeg C2Þe. Here the degree ð¼ deg C2Þ of
C2 denotes the one in a fiber ð¼ P3Þ of g.

Thus if e > 0, A is a smooth, ample divisor in N1. Consequently these yield a
desired example.

Note f �B ¼ AþD in N1 and each fiber of g is embedded in P6 via f as a
linear space. Thus deg C2 is equal to the degree of f ðC2Þ in P6. We show only
the latter part of 3). In N1 take a curve C2 in a fiber of g, not contained in
D. Then f ðC2Þ is a space curve in P6, not contained in the plane C. Thus we
get ðD:C2ÞN1

¼ deg C2 and ðB: f ðC2ÞÞN2
¼ ðON2

ðeþ 1Þ; f ðC2ÞÞ ¼ ðeþ 1Þ deg C2.
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[Wi91] JarosŁaw A. Wiśniewski, On contractions of extremal rays of Fano manifolds, J. Reine

Angew. Math. 417 (1991), 141–157.

Eiichi Sato

Graduate School of Mathematics

Kyushu University

Hakozaki, Higashi-ku

Fukuoka 812

Japan

E-mail: esato@math.Kyushu-u.ac.jp

322 eiichi sato


