TOPOLOGY OF POLAR WEIGHTED HOMOGENEOUS HYPERSURFACES

Mutsuo Oka

Abstract

Polar weighted homogeneous polynomials are special polynomials of real variables $x_{i}, y_{i}, i=1, \ldots, n$ with $z_{i}=x_{i}+\sqrt{-1} y_{i}$ which enjoy a "polar action". In many aspects, their behavior looks like that of complex weighted homogeneous polynomials. We study basic properties of hypersurfaces which are defined by polar weighted homogeneous polynomials.

1. Introduction

We consider a polynomial $f(\mathbf{z}, \overline{\mathbf{z}})=\sum_{v, \mu} c_{v / \mu} \mathbf{z}^{\nu} \overline{\mathbf{z}}^{\mu}$ where $\mathbf{z}=\left(z_{1}, \ldots, z_{n}\right), \overline{\mathbf{z}}=$ $\left(\bar{z}_{1}, \ldots, \bar{z}_{n}\right), \mathbf{z}^{v}=z_{1}^{v_{1}} \cdots z_{n}^{v_{n}}$ for $v=\left(v_{1}, \ldots, v_{n}\right)$ (respectively $\overline{\mathbf{z}}^{\mu}=\bar{z}_{1}^{\mu_{1}} \cdots \bar{z}_{n}^{\mu_{n}}$ for $\left.\mu=\left(\mu_{1}, \ldots, \mu_{n}\right)\right)$ as usual. Here \bar{z}_{i} is the complex conjugate of z_{i}. Writing $z_{i}=x_{i}+\sqrt{-1} y_{i}$, it is easy to see that f is a polynomial of $2 n$-variables $x_{1}, y_{1}, \ldots, x_{n}, y_{n}$. Thus f can be understood as a real analytic function $f: \mathbf{C}^{n} \rightarrow \mathbf{C}$. We call f a mixed polynomial of z_{1}, \ldots, z_{n}.

A mixed polynomial $f(\mathbf{z}, \overline{\mathbf{z}})$ is called polar weighted homogeneous if there exist integers q_{1}, \ldots, q_{n} and p_{1}, \ldots, p_{n} and positive integers m_{r}, m_{p} such that

$$
\begin{aligned}
& \operatorname{gcd}\left(q_{1}, \ldots, q_{n}\right)=1, \quad \operatorname{gcd}\left(p_{1}, \ldots, p_{n}\right)=1, \\
& \sum_{j=1}^{n} q_{j}\left(v_{j}+\mu_{j}\right)=m_{r}, \quad \sum_{j=1}^{n} p_{j}\left(v_{j}-\mu_{j}\right)=m_{p}, \quad \text { if } c_{v, \mu} \neq 0
\end{aligned}
$$

We say $f(\mathbf{z}, \overline{\mathbf{z}})$ is a polar weighted homogeneous of radial weight type $\left(q_{1}, \ldots, q_{n} ; m_{r}\right)$ and of polar weight type $\left(p_{1}, \ldots, p_{n} ; m_{p}\right)$. We define vectors of rational numbers $\left(u_{1}, \ldots, u_{n}\right)$ and $\left(v_{1}, \ldots, v_{n}\right)$ by $u_{i}=q_{i} / m_{r}, v_{i}=p_{i} / m_{p}$ and we call them the normalized radial (respectively polar) weights. Using a polar coordinate (r, η) of \mathbf{C}^{*} where $r>0$ and $\eta \in S^{1}$ with $S^{1}=\{\eta \in \mathbf{C}| | \eta \mid=1\}$, we define a polar \mathbf{C}^{*}-action on \mathbf{C}^{n} by

[^0]\[

$$
\begin{gathered}
(r, \eta) \circ \mathbf{z}=\left(r^{q_{1}} \eta^{p_{1}} z_{1}, \ldots, r^{q_{n}} \eta^{p_{n}} z_{n}\right), \quad(r, \eta) \in \mathbf{R}^{+} \times S^{1} \\
(r, \eta) \circ \overline{\mathbf{z}}=\overline{(r, \eta) \circ \mathbf{z}}=\left(r^{q_{1}} \eta^{-p_{1}} \bar{z}_{1}, \ldots, r^{q_{n}} \eta^{-p_{n}} \bar{z}_{n}\right) .
\end{gathered}
$$
\]

Then f satisfies the functional equality

$$
\begin{equation*}
f((r, \eta) \circ(\mathbf{z}, \overline{\mathbf{z}}))=r^{m_{r}} \eta^{m_{p}} f(\mathbf{z}, \overline{\mathbf{z}}) . \tag{1}
\end{equation*}
$$

This notion was introduced by Ruas-Seade-Verjovsky [12] implicitly and then by Cisneros-Molina [2].

It is easy to see that such a polynomial defines a global fibration

$$
f: \mathbf{C}^{n}-f^{-1}(0) \rightarrow \mathbf{C}^{*}
$$

The purpose of this paper is to study the topology of the hypersurface $F=f^{-1}(1)$ for a given polar weighted homogeneous polynomial, which is a fiber of the above fibration. Note that F has a canonical stratification

$$
F=\amalg_{I \subset\{1,2, \ldots, n\}} F^{* I}, \quad F^{* I}=F \cap \mathbf{C}^{* I}
$$

Our main result is Theorem 10, which describes the topology of $F^{* I}$ for a simplicial polar weighted polynomial.

2. Polar weighted homogeneous hypersurface

This section is the preparation for the later sections. Proposition 2 and Proposition 3 are added for consistency but they are essentially known from the series of works by J. Seade and coauthors [12, 13, 10, 11, 14].
2.1. Smoothness of a mixed hypersurface. Let $f(\mathbf{z}, \overline{\mathbf{z}})$ be a mixed polynomial and we consider a hypersurface $V=\left\{\mathbf{z} \in \mathbf{C}^{n} ; f(\mathbf{z}, \overline{\mathbf{z}})=0\right\}$. Put $z_{j}=x_{j}+i y_{j}$. Then $f(\mathbf{z}, \overline{\mathbf{z}})$ is a real analytic function of $2 n$ variables (\mathbf{x}, \mathbf{y}) with $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ and $\mathbf{y}=\left(y_{1}, \ldots, y_{n}\right)$. Put $f(\mathbf{z}, \overline{\mathbf{z}})=g(\mathbf{x}, \mathbf{y})+i h(\mathbf{x}, \mathbf{y})$ where g, h are real analytic functions. Recall that

$$
\frac{\partial}{\partial z_{j}}=\frac{1}{2}\left(\frac{\partial}{\partial x_{j}}-i \frac{\partial}{\partial y_{j}}\right), \quad \frac{\partial}{\partial \bar{z}_{j}}=\frac{1}{2}\left(\frac{\partial}{\partial x_{j}}+i \frac{\partial}{\partial y_{j}}\right)
$$

Thus

$$
\frac{\partial k}{\partial z_{j}}=\frac{1}{2}\left(\frac{\partial k}{\partial x_{j}}-i \frac{\partial k}{\partial y_{j}}\right), \quad \frac{\partial k}{\partial \bar{z}_{j}}=\frac{1}{2}\left(\frac{\partial k}{\partial x_{j}}+i \frac{\partial k}{\partial y_{j}}\right)
$$

for any analytic function $k(\mathbf{x}, \mathbf{y})$. Thus for a complex valued function f, we define

$$
\frac{\partial f}{\partial z_{j}}=\frac{\partial g}{\partial z_{j}}+i \frac{\partial h}{\partial z_{j}}, \quad \frac{\partial f}{\partial \bar{z}_{j}}=\frac{\partial g}{\partial \bar{z}_{j}}+i \frac{\partial g}{\partial \bar{z}_{j}}
$$

We assume that g, h are non-constant polynomials. Then V is a real codimension two subvariety. Put

$$
\begin{aligned}
& d_{\mathbf{R}} g(\mathbf{x}, \mathbf{y})=\left(\frac{\partial g}{\partial x_{1}}, \ldots, \frac{\partial g}{\partial x_{n}}, \frac{\partial g}{\partial y_{1}}, \ldots, \frac{\partial g}{\partial y_{n}}\right) \in \mathbf{R}^{2 n} \\
& d_{\mathbf{R}} h(\mathbf{x}, \mathbf{y})=\left(\frac{\partial h}{\partial x_{1}}, \ldots, \frac{\partial h}{\partial x_{n}}, \frac{\partial h}{\partial y_{1}}, \ldots, \frac{\partial h}{\partial y_{n}}\right) \in \mathbf{R}^{2 n}
\end{aligned}
$$

For a complex valued mixed polynomial, we use the notation:

$$
d f(\mathbf{z}, \overline{\mathbf{z}})=\left(\frac{\partial f}{\partial z_{1}}, \ldots, \frac{\partial f}{\partial z_{n}}\right) \in \mathbf{C}^{n}, \quad \bar{d} f(\mathbf{z}, \overline{\mathbf{z}})=\left(\frac{\partial f}{\partial \bar{z}_{1}}, \ldots, \frac{\partial f}{\partial \bar{z}_{n}}\right) \in \mathbf{C}^{n}
$$

Recall that a point $\mathbf{z} \in V$ is a singular point of V if and only if the two vectors $d g(\mathbf{x}, \mathbf{y}), d h(\mathbf{x}, \mathbf{y})$ are linearly dependent over \mathbf{R} (see Milnor [4]). This condition is not so easy to be checked, as the calculation of $g(\mathbf{x}, \mathbf{y}), h(\mathbf{x}, \mathbf{y})$ from a given $f(\mathbf{z}, \overline{\mathbf{z}})$ is not immediate. However we have

Proposition 1. The following two conditions are equivalent.
(1) $\mathbf{z} \in V$ is a singular point of V and $\operatorname{dim}_{\mathbf{R}}(V, \mathbf{z})=2 n-2$.
(2) There exists a complex number $\alpha,|\alpha|=1$ such that $\overline{d f(\mathbf{z}, \overline{\mathbf{z}})}=\alpha \bar{d} f(\mathbf{z}, \overline{\mathbf{z}})$.

Proof. First assume that $d_{\mathbf{R}} g, d_{\mathbf{R}} h$ are linearly dependent at \mathbf{z}. Suppose for example that $d g(\mathbf{x}, \mathbf{y}) \neq 0$ and write $d h(\mathbf{x}, \mathbf{y})=t d g(\mathbf{x}, \mathbf{y})$ for some $t \in \mathbf{R}$. This implies that

$$
\begin{gathered}
\frac{\partial f}{\partial x_{j}}=(1+t i) \frac{\partial g}{\partial x_{j}}, \quad \frac{\partial f}{\partial y_{j}}=(1+t i) \frac{\partial g}{\partial y_{j}}, \quad \text { thus } \\
\frac{\partial f}{\partial z_{j}}=(1+t i)\left(\frac{\partial g}{\partial x_{j}}-i \frac{\partial g}{\partial y_{j}}\right), \quad \frac{\partial f}{\partial \bar{z}_{j}}=(1+t i)\left(\frac{\partial g}{\partial x_{j}}+i \frac{\partial g}{\partial y_{j}}\right) .
\end{gathered}
$$

Thus

$$
\begin{aligned}
& d f(\mathbf{z}, \overline{\mathbf{z}})=(1+t i)\left(\frac{\partial g}{\partial x_{1}}-i \frac{\partial g}{\partial y_{1}}, \ldots, \frac{\partial g}{\partial x_{n}}-i \frac{\partial g}{\partial y_{n}}\right)=2(1+t i) d_{\mathbf{z}} g(\mathbf{z}, \overline{\mathbf{z}}) \\
& \bar{d} f(\mathbf{z}, \overline{\mathbf{z}})=(1+t i)\left(\frac{\partial g}{\partial x_{1}}+i \frac{\partial g}{\partial y_{1}}, \ldots, \frac{\partial g}{\partial x_{n}}+i \frac{\partial g}{\partial y_{n}}\right)=2(1+t i) d_{\overline{\mathbf{z}}} g(\mathbf{z}, \overline{\mathbf{z}})
\end{aligned}
$$

Here $d_{\mathbf{z}} g=\left(\frac{\partial g}{\partial z_{1}}, \ldots, \frac{\partial g}{\partial z_{n}}\right)$ and $d_{\overline{\mathbf{z}}} g=\left(\frac{\partial g}{\partial \bar{z}_{1}}, \ldots, \frac{\partial g}{\partial \bar{z}_{n}}\right)$. As g is a real valued polynomial, using the equality $\overline{d_{\mathbf{z}} g(\mathbf{x}, \mathbf{y})}=d_{\overline{\mathbf{z}}} g(\mathbf{x}, \mathbf{y})$ we get

$$
\overline{d f(\mathbf{z}, \overline{\mathbf{z}})}=\frac{1-t i}{1+t i} \bar{d} f(\mathbf{z}, \overline{\mathbf{z}})
$$

Thus it is enough to take $\alpha=\frac{1-t i}{\frac{1+t i}{d(z 2)}}$.
Conversely assume that $\overline{d f(\mathbf{z}, \overline{\mathbf{z}})}=\alpha \bar{d} f(\mathbf{z}, \overline{\mathbf{z}})$ for some $\alpha=a+b i$ with $a^{2}+b^{2}=1$. Using the notations

$$
d_{x} g=\left(\frac{\partial g}{\partial x_{1}}, \ldots, \frac{\partial g}{\partial x_{n}}\right), \quad d_{y} g=\left(\frac{\partial g}{\partial y_{1}}, \ldots, \frac{\partial g}{\partial y_{n}}\right), \text { etc, }
$$

we get

$$
\begin{aligned}
& (1-a) d_{x} g+b d_{y} g=-b d_{x} h-(1+a) d_{y} h \\
& -b d_{x} g+(1-a) d_{y} g=(a+1) d_{x} h-b d_{y} h .
\end{aligned}
$$

Solving these equations assuming $a \neq 1$, we get

$$
d_{\mathbf{R}} g=\left(d_{x} g, d_{y} g\right)=\frac{-2 b}{(1-a)^{2}+b^{2}} d_{\mathbf{R}} h
$$

which proves the assertion. If $a=1$, the above equations implies that $d h_{\mathbf{R}}=0$ and the linear dependence is obvious.
2.2. Polar weighted homogeneous hypersurfaces. Let f be a polar weighted homogeneous polynomial of radial weight type $\left(q_{1}, \ldots, q_{n} ; m_{r}\right)$ and of polar weight type $\left(p_{1}, \ldots, p_{n} ; m_{p}\right)$. By differentiating (1) in $\S 1$, we get

$$
\begin{align*}
& m_{r} f(\mathbf{z}, \overline{\mathbf{z}})=\sum_{i=1}^{n} q_{i}\left(\frac{\partial f}{\partial z_{i}} z_{i}+\frac{\partial f}{\partial \bar{z}_{i}} \bar{z}_{i}\right) \tag{2}\\
& m_{p} f(\mathbf{z}, \overline{\mathbf{z}})=\sum_{i=1}^{n} p_{i}\left(\frac{\partial f}{\partial z_{i}} z_{i}-\frac{\partial f}{\partial \bar{z}_{i}} \bar{z}_{i}\right) .
\end{align*}
$$

We call these equalities Euler equalities. Recall that \mathbf{C}^{n} has the canonical hermitian inner product defined by

$$
(\mathbf{z}, \mathbf{w})=z_{1} \bar{w}_{1}+\cdots+z_{n} \bar{w}_{n} .
$$

Identifying \mathbf{C}^{n} with $\mathbf{R}^{2 n}$ by $\mathbf{z} \leftrightarrow(\mathbf{x}, \mathbf{y})$, the Euclidean inner product of $\mathbf{R}^{2 n}$ is given as $(\mathbf{z}, \mathbf{w})_{\mathbf{R}}=\Re(\mathbf{z}, \mathbf{w})$. Or we can also write as

$$
(\mathbf{z}, \mathbf{w})_{\mathbf{R}}=\frac{1}{2}((\mathbf{z}, \mathbf{w})+(\overline{\mathbf{z}}, \overline{\mathbf{w}}))
$$

Proposition 2. For any $\alpha \neq 0$, the fiber $F_{\alpha}:=f^{-1}(\alpha)$ is a smooth $2(n-1)$ real-dimensional manifold and it is canonically diffeomorphic to $F_{1}=f^{-1}(1)$.

Proof. Take a point $\mathbf{z} \in F_{\alpha}$. We consider two particular vectors $\mathbf{v}_{r}, \mathbf{v}_{\theta} \in T_{\mathbf{z}} \mathbf{C}^{n}$ which are the tangent vectors of the respective orbits of \mathbf{R} and S^{1} :

$$
\begin{aligned}
& \mathbf{v}_{r}=\left.\frac{d(r \circ \mathbf{z})}{d r}\right|_{r=1}=\left(q_{1} z_{1}, \ldots, q_{n} z_{n}\right), \\
& \mathbf{v}_{\theta}=\left.\frac{d\left(e^{i \theta} \circ \mathbf{z}\right)}{d \theta}\right|_{\theta=0}=\left(i p_{1} z_{1}, \ldots, i p_{n} z_{n}\right) .
\end{aligned}
$$

Taking the differential of the equality

$$
f((r, \exp (i \theta)) \circ \mathbf{z}))=r^{m_{r}} \exp \left(m_{p} \theta i\right) f(\mathbf{z}, \overline{\mathbf{z}}),
$$

we see that $d f_{z}: T_{\mathbf{z}} \mathbf{C}^{n} \rightarrow T_{\alpha} \mathbf{C}^{*}$ satisfies

$$
d f_{z}\left(\mathbf{v}_{r}\right)=m_{r}|\alpha| \frac{\partial}{\partial r}, \quad d f_{z}\left(\mathbf{v}_{\theta}\right)=m_{p} \frac{\partial}{\partial \theta}
$$

where (r, θ) is the polar coordinate of \mathbf{C}^{*}. This implies that $f: \mathbf{C}^{n} \rightarrow \mathbf{C}$ is a submersion at \mathbf{z}. Thus F_{α} is a smooth codimension 2 submanifold. A diffeomorphism $\varphi_{\alpha}: F_{1} \rightarrow F_{\alpha}$ is simply given as $\varphi(\mathbf{z})=\left(r^{1 / m_{r}}, \exp ^{i \theta / m_{p}}\right) \circ \mathbf{z}$ where $\alpha=r \exp (i \theta)$.

The above proof does not work for $\alpha=0$. Recall that the polar \mathbf{R}^{+}-action along the radial direction is written in real coordinates as

$$
r \circ(\mathbf{x}, \mathbf{y})=\left(r^{q_{1}} x_{1}, \ldots, r^{q_{n}} x_{n}, r^{q_{1}} y_{1}, \ldots, r^{q_{n}} y_{n}\right), \quad r \in \mathbf{R}^{+} .
$$

Proposition 3. Let $V=f^{-1}(0)$. Assume that $q_{j}>0$ for any j. Then V is contractible to the origin O. If further O is an isolated singularity of $V, V \backslash\{O\}$ is smooth.

Proof. A canonical deformation retract $\beta_{t}: V \rightarrow V$ is given as $\beta_{t}(\mathbf{z})=t \circ \mathbf{z}$, $0 \leq t \leq 1$. (More precisely $\beta_{0}(\mathbf{z})=\lim _{t \rightarrow 0} \beta_{t}(\mathbf{z})$.) Then $\beta_{1}=\operatorname{id}_{V}$ and β_{0} is the contraction to O. Assume that $\mathbf{z} \in V \backslash\{O\}$ is a singular point. Consider the decomposition into real analytic functions $f(z)=g(\mathbf{x}, \mathbf{y})+i h(\mathbf{x}, \mathbf{y})$. Using the radial \mathbf{R}^{+}-action, we see that

$$
\begin{equation*}
g(r \circ(\mathbf{x}, \mathbf{y}))=r^{m_{r}} g(\mathbf{x}, \mathbf{y}), \quad h(r \circ(\mathbf{x}, \mathbf{y}))=r^{m_{r}} h(\mathbf{x}, \mathbf{y}) . \tag{4}
\end{equation*}
$$

This implies that $g(\mathbf{x}, \mathbf{y}), h(\mathbf{x}, \mathbf{y})$ are weighted homogeneous polynomials of (\mathbf{x}, \mathbf{y}) and the Euler equality can be restated as

$$
\begin{aligned}
& m_{r} g(\mathbf{x}, \mathbf{y})=\sum_{j=1}^{n} p_{j}\left(x_{j} \frac{\partial g}{\partial x_{j}}(\mathbf{x}, \mathbf{y})+y_{j} \frac{\partial g}{\partial y_{j}}(\mathbf{x}, \mathbf{y})\right) \\
& m_{r} h(\mathbf{x}, \mathbf{y})=\sum_{j=1}^{n} p_{j}\left(x_{j} \frac{\partial h}{\partial x_{j}}(\mathbf{x}, \mathbf{y})+y_{j} \frac{\partial h}{\partial y_{j}}(\mathbf{x}, \mathbf{y})\right) .
\end{aligned}
$$

Differentiating the equalities (4) in r, we get

$$
\frac{\partial g}{\partial x_{j}}(r \circ(\mathbf{x}, \mathbf{y}))=r^{m_{r}-q_{j}} \frac{\partial g}{\partial x_{j}}(\mathbf{x}, \mathbf{y}), \quad \frac{\partial h}{\partial x_{j}}(r \circ(\mathbf{x}, \mathbf{y}))=r^{m_{r}-q_{j}} \frac{\partial h}{\partial x_{j}}(\mathbf{x}, \mathbf{y}) .
$$

This implies that these differentials are also weighted homogeneous polynomials of degree $m_{r}-q_{j}$. Thus the jacobian matrix

$$
\left(\frac{\partial(g, h)}{\partial\left(x_{i}, y_{i}\right)}(r \circ(\mathbf{x}, \mathbf{y}))\right)
$$

is the same with the jacobian matrix at $\mathbf{z}=(\mathbf{x}, \mathbf{y})$ up to scalar multiplications in the column vectors by $r^{m_{r}-q_{1}}, \ldots, r^{m_{r}-q_{n}}, r^{m_{r}-q_{1}}, \ldots, r^{m_{r}-q_{n}}$ respectively. Thus any points of the orbit $r \circ(\mathbf{x}, \mathbf{y}), r>0$ are singular points of V. This is a contradiction to the assumption that O is an isolated singular point of V, as $\lim _{r \rightarrow 0} r \circ(\mathbf{x}, \mathbf{y})=O$.

Proposition 4. (Transversality) Under the same assumption as in Proposition 3, the sphere $S_{\tau}=\left\{\mathbf{z} \in \mathbf{C}^{n} ;|\mathbf{z}|=\tau\right\}$ intersects transversely with V for any $\tau>0$.

Proof. Let $\phi(\mathbf{x}, \mathbf{y})=\|\mathbf{z}\|^{2}=\sum_{j=1}^{n}\left(x_{j}^{2}+y_{j}^{2}\right)$. Then S_{τ} intersects transversely with V if and only if the gradient vectors $d_{\mathbf{R}} g, d_{\mathbf{R}} h, d_{\mathbf{R}} \phi$ are linearly independent over R. Note that $d_{\mathbf{R}} \phi(\mathbf{x}, \mathbf{y})=2(\mathbf{x}, \mathbf{y})$. Suppose that the sphere $S_{\|\mathbf{z}\|}$ is tangent to V at $\mathbf{z}=(\mathbf{x}, \mathbf{y}) \in V$. Then we have for example, a linear relation $d g(\mathbf{x}, \mathbf{y})=$ $\alpha d h(\mathbf{x}, \mathbf{y})+\beta d \phi(\mathbf{x}, \mathbf{y})$ with some $\alpha, \beta \in \mathbf{R}$. Note that the tangent vector \mathbf{v}_{r} to the \mathbf{R}^{+}-oribit is tangent to V and it is written $\mathbf{v}_{r}=\left(q_{1} x_{1}, \ldots, q_{n} x_{n}, q_{1} y_{1}, \ldots, q_{n} y_{n}\right)$ as a real vector. Then we have

$$
\begin{aligned}
0= & \left.\frac{d g(r \circ(\mathbf{x}, \mathbf{y})}{d r}\right|_{r=1}
\end{aligned}=\sum_{j=1}^{n} q_{j}\left(x_{j} \frac{\partial g}{\partial x_{j}}(\mathbf{x}, \mathbf{y})+y_{j} \frac{\partial g}{\partial y_{j}}(\mathbf{x}, \mathbf{y})\right) .
$$

as $\left(\mathbf{v}_{r}(\mathbf{x}, \mathbf{y}), d h(\mathbf{x}, \mathbf{y})\right)_{\mathbf{R}}=0$ by the same reason. This is the case only if $\beta=0$ which is impossible as $V \backslash\{O\}$ is non-singular by Proposition 3 .
2.2.1. Remark. Let $f(\mathbf{z}, \overline{\mathbf{z}})$ be a polar weighted homogeneous polynomial with respective weights $\left(q_{1}, \ldots, q_{n} ; m_{r}\right)$ and $\left(p_{1}, \ldots, p_{n} ; m_{p}\right)$. Proposition 3 does not hold if the radial weights contain some negative q_{j}. Assume that $q_{j} \geq 0$ for any j and $I_{0}:=\left\{j \mid q_{j}=0\right\}$ is not empty. Then it is easy to see that f does not have monomial which does not contain any z_{i} with $i \notin I_{0}$, as if such monomial exists, its radial degree is 0 . This implies that $V=f^{-1}(0)$ contains the coordinate subspace $\mathbf{C}^{I_{0}}=\left\{\mathbf{z} \mid z_{i}=0, i \notin I_{0}\right\}$. We call $\mathbf{C}^{I_{0}}$ the canonical retract coordinate subspace. Then Proposition 3 can be modified as $\mathbf{C}^{I_{0}}$ is a deformation retract of V. Of course, $\mathbf{C}^{I_{0}}$ can be contracted to O but this contraction is not through the action and not related to the geometry of V.
2.2.2. Example. Consider the following examples.

$$
g_{1}(\mathbf{z}, \overline{\mathbf{z}})=z_{1}^{a_{1}} \bar{z}_{2}+\cdots+z_{n}^{a_{n}} \bar{z}_{1}, \quad a_{i} \geq 1, j=1, \ldots, n
$$

and there exists j such that $a_{j} \geq 2$

$$
g_{2}(\mathbf{z}, \overline{\mathbf{z}})=z_{1}^{a_{1}} \bar{z}_{2}+\cdots+z_{n-1}^{a_{n-1}} \bar{z}_{n}+z_{n}^{a_{n}}, \quad a_{j} \geq 1, j=1, \ldots, n
$$

Proposition 5. (1) The radial weight vector $\left(q_{1}, \ldots, q_{n}\right)$ of $g_{1}(\mathbf{z}, \overline{\mathbf{z}})$ is semipositive, i.e. $q_{j} \geq 0$ for any j if $a_{i} \geq 1$ for any i. ($\exists j, a_{j} \geq 2$ by the existence of polar action.) It is not strictly positive if and only if $n=2 m$ is even and either (a) $a_{1}=a_{3}=\cdots=a_{2 m-1}=1$ or (b) $a_{2}=a_{4}=\cdots=$ $a_{2 m}=1$.

In case (a) (respectively (b)), we have $q_{2}=q_{4}=\cdots=q_{2 m}=0$ and $q_{2 j+1} \geq 1,0 \leq j \leq m-1$ (resp. $q_{1}=q_{3}=\cdots=q_{2 m-1}=0$ and $q_{2 j} \geq 1$, $1 \leq j \leq m)$.
(2) The radial weight vector $\left(q_{1}, \ldots, q_{n}\right)$ of $g_{2}(\mathbf{z}, \overline{\mathbf{z}})$ is semi-positive. It is not strictly positive if and only if $a_{n}=1$. Let s be the integer such that $a_{n}=a_{n-2}=\cdots=a_{n-2 s}=1$ and $a_{n-2 s-2} \geq 2$. Then $q_{n-1}=\cdots=$ $q_{n-2 s+1}=0$ and $q_{j} \geq 1$ otherwise.

Proof. We first consider $g_{1}(\mathbf{z}, \overline{\mathbf{z}})=z_{1}^{a_{1}} \bar{z}_{2}+\cdots+z_{n}^{a_{n}} \bar{z}_{1}$. By an easy calculation, using the notation $a_{i+n}=a_{i}$ the normalized radial weigts (u_{1}, \ldots, u_{n}) are given as

$$
\begin{gathered}
u_{j}=\frac{1}{a_{1} \cdots a_{n}-1} \sum_{i=0}^{m-1}\left(a_{j+2 i+1}-1\right) a_{j+2 i+2} \cdots a_{j+n-1}, \quad \text { if } n=2 m \\
u_{j}=\frac{1}{a_{1} \cdots a_{n}+1}\left(1+\sum_{i=0}^{m-1}\left(a_{j+2 i+1}-1\right) a_{j+2 i+2} \cdots a_{j+n-1}\right), \quad \text { if } n=2 m+1
\end{gathered}
$$

and the assertion follows immediately from this expression.
Next we consider $g_{2}(\mathbf{z}, \overline{\mathbf{z}})=z_{1}^{a_{1}} \bar{z}_{2}+\cdots+z_{n}^{a_{n-1}} \bar{z}_{n}+z_{n}^{a_{n}}$. Then the normalized radial weigts $\left(u_{1}, \ldots, u_{n}\right)$ are given as

$$
\begin{aligned}
u_{j} & =\frac{1}{a_{j}}-\frac{1}{a_{j} a_{j+1}}+\cdots+(-1)^{n-j} \frac{1}{a_{j} a_{j+1} \cdots a_{n}} \\
& =\left\{\begin{array}{l}
\frac{a_{j+1}-1}{a_{j} a_{j+1}}+\cdots+\frac{a_{n}-1}{a_{j} a_{j+1} \cdots a_{n}}, \quad n-j: \text { odd } \\
\frac{a_{j+1}-1}{a_{j} a_{j+1}}+\cdots+\frac{a_{n-1}-1}{a_{j} a_{j+1} \cdots a_{n-1}}+\frac{1}{a_{j} a_{j+1} \cdots a_{n}}
\end{array} \quad n-j:\right. \text { even }
\end{aligned}
$$

As $a_{i} \geq 1$, the assertion follows from the above expression.
2.3. Simplicial mixed polynomial. Let $f(\mathbf{z}, \overline{\mathbf{z}})=\sum_{j=1}^{s} c_{j} \mathbf{z}^{\mathbf{n}_{\overline{\mathbf{z}}} \mathbf{m}_{j}}$ be a mixed polynomial. Here we assume that $c_{1}, \ldots, c_{s} \neq 0$. Put

$$
\hat{f}(\mathbf{w}):=\sum_{j=1}^{s} c_{j} \mathbf{w}^{\mathbf{n}_{j}-\mathbf{m}_{j}} .
$$

We call \hat{f} the the associated Laurent polynomial. This polynomial plays an important role for the determination of the topology of the hypersurface $F=f^{-1}(1)$. Note that

Proposition 6. If $f(\mathbf{z}, \overline{\mathbf{z}})$ is a polar weighted homogeneous polynomial of polar weight type $\left(p_{1}, \ldots, p_{n} ; m_{p}\right), \hat{f}(\mathbf{w})$ is also a weighted homogeneous Laurent polynomial of type $\left(p_{1}, \ldots, p_{n} ; m_{p}\right)$ in the complex variables w_{1}, \ldots, w_{n}.

A mixed polynomial $f(\mathbf{z}, \overline{\mathbf{z}})$ is called simplicial if the exponent vectors $\left\{\mathbf{n}_{j} \pm \mathbf{m}_{j} \mid j=1, \ldots, s\right\}$ are linearly independent in \mathbf{Z}^{n} respectively. In particular, simplicity implies that $s \leq n$. When $s=n$, we say that f is full. Put $\mathbf{n}_{j}=$ $\left(n_{j, 1}, \ldots, n_{j, n}\right), \mathbf{m}_{j}=\left(m_{j, 1}, \ldots, m_{j, n}\right)$ in \mathbf{N}^{n}. Assume that $s \leq n$. Consider two integral matrix $N=\left(n_{i, j}\right)$ and $M=\left(m_{i, j}\right)$ where the k-th row vectors are $\mathbf{n}_{k}, \mathbf{m}_{k}$ respectively.

Lemma 7. Let $f(\mathbf{z}, \overline{\mathbf{z}})$ be a mixed polynomial as above. If $f(\mathbf{z}, \overline{\mathbf{z}})$ is simplicial, then $f(\mathbf{z}, \overline{\mathbf{z}})$ is a polar weighted homogeneous polynomial. In the case $s=n$, $f(\mathbf{z}, \overline{\mathbf{z}})$ is simplicial if and only if $\operatorname{det}(N \pm M) \neq 0$.

Proof. First we assume that $s=n$ and consider the system of linear equations

$$
\begin{align*}
& \left\{\begin{array}{c}
\left(n_{1,1}+m_{1,1}\right) u_{1}+\cdots+\left(n_{1, n}+m_{1, n}\right) u_{n}=1 \\
\cdots \\
\left(n_{n, 1}+m_{n, 1}\right) u_{1}+\cdots+\left(n_{n, n}+m_{n, n}\right) u_{n}=1
\end{array}\right. \tag{5}\\
& \left\{\begin{array}{l}
\left(n_{1,1}-m_{1,1}\right) v_{1}+\cdots+\left(n_{1, n}-m_{1, n}\right) v_{n}=1 \\
\cdots \\
\left(n_{n, 1}-m_{n, 1}\right) v_{1}+\cdots+\left(n_{n, n}-m_{n, n}\right) v_{n}=1
\end{array}\right. \tag{6}
\end{align*}
$$

It is easy to see that equations (5) and (6) have solutions if $\operatorname{det} N \pm M \neq 0$ which is equivalent for f to be simplicial by definition. Note that the solutions $\left(u_{1}, \ldots, u_{n}\right)$ and $\left(v_{1}, \ldots, v_{n}\right)$ are rational numbers. We call them the normalized radial (respectively polar) weights. Now let m_{r}, m_{p} be the least common multiple of the denominators of u_{1}, \ldots, u_{n} and v_{1}, \ldots, v_{n} respectively. Then the weights are given as $q_{j}=u_{j} m_{r}, p_{j}=v_{j} m_{p}, j=1, \ldots, n$ respectively.

Now suppose that $s<n$. It is easy to choose positive integral vectors \mathbf{n}_{j}, $j=s+1, \ldots, n_{\tilde{M}}$ (and put $\left.\mathbf{m}_{j}=0, j=s+1, \ldots, n\right)$ such that $\operatorname{det}(\tilde{N} \pm \tilde{M}) \neq 0$, where \tilde{N} and \tilde{M} are $n \times n$-matrices adding $(n-s)$ row vectors $\mathbf{n}_{s+1}, \ldots, \mathbf{n}_{n}$. Then the assertion follows from the case $s=n$.

This corresponds to considering the mixed polynomial:

$$
f(\mathbf{z}, \overline{\mathbf{z}})=\sum_{j=1}^{s} c_{j} \mathbf{z}^{\mathbf{n}_{j} \overline{\mathbf{z}}_{j}^{\mathbf{m}_{j}}}+0 \times \sum_{j=s+1}^{n} \mathbf{z}^{\mathbf{n}_{j}} .
$$

2.3.1. Example. Let

$$
\begin{gathered}
f_{\mathbf{a}, \mathbf{b}}(\mathbf{z}, \overline{\mathbf{z}})=z_{1}^{a_{1}} \bar{z}_{2}^{b_{1}}+\cdots+z_{n}^{a_{n}} \bar{z}_{1}^{b_{n}}, \quad a_{i}, b_{i} \geq 1, i=1, \ldots, n \\
k(\mathbf{z}, \overline{\mathbf{z}})=z_{1}^{d}\left(\bar{z}_{1}+\bar{z}_{2}\right)+\cdots+z_{n}^{d}\left(\bar{z}_{n}+\bar{z}_{1}\right), \quad d \geq 2 .
\end{gathered}
$$

The associated Laurent polynomials are

$$
\begin{gathered}
\widehat{f_{\mathbf{a}, \mathbf{b}}}(\mathbf{w})=w_{1}^{a_{1}} w_{2}^{-b_{1}}+\cdots+w_{n}^{a_{n}} w_{1}^{-b_{n}} \\
\hat{k}(\mathbf{w})=w_{1}^{d}\left(1 / w_{1}+1 / w_{2}\right)+\cdots+w_{n}^{d}\left(1 / w_{n}+1 / w_{1}\right) .
\end{gathered}
$$

Corollary 8. For the polynomial $f_{\mathbf{a}, \mathbf{b}}$, the following conditions are equivalent.
(1) $f_{\mathbf{a}, \mathbf{b}}$ is simplicial.
(2) $f_{\mathbf{a}, \mathbf{b}}$ is a polar weighted homogeneous polynomial.
(3) (SC) $a_{1} \cdots a_{n} \neq b_{1} \cdots b_{n}$.

Proof. The assertion follows from the equality:

$$
\begin{aligned}
\operatorname{det}(\mathbf{n} \pm \mathbf{m}) & =\operatorname{det}\left(\begin{array}{cccc}
a_{1} & 0 & \cdots & \pm b_{n} \\
\pm b_{1} & a_{2} & \cdots & 0 \\
\vdots & \ddots & \ddots & \vdots \\
0 & \cdots & \pm b_{n-1} & a_{n}
\end{array}\right) \\
& =\left\{\begin{array}{l}
a_{1} a_{2} \cdots a_{n}+(-1)^{n-1} b_{1} b_{2} \cdots b_{n} \text { for } \mathbf{n}+\mathbf{m} \\
a_{1} a_{2} \cdots a_{n}-b_{1} b_{2} \cdots b_{n} \text { for } \mathbf{n}-\mathbf{m} .
\end{array}\right.
\end{aligned}
$$

The polynomial $k(\mathbf{z}, \overline{\mathbf{z}})$ is a polar weighted homogeneous polynomial with respective weight types $(1, \ldots, 1 ; d+1)$ and $(1, \ldots, 1 ; d-1)$. However it is not simplicial.

Now we consider an example which does not satisfy the simplicial condition (SC) of Corollary 8: $\phi_{a}:=z_{1}^{a} z_{1}^{a}+\cdots+z_{n}^{a} \bar{z}_{n}^{a}$. This does not have any polar action as they are polynomials of $\left|z_{1}\right|^{2}, \ldots,\left|z_{n}\right|^{2}$ and it takes only non-negative values. Note also that $\phi_{a}^{-1}(1)$ is real codimension 1 as $\phi_{a}(\mathbf{x}, \mathbf{y})=\sum_{j=1}^{n}\left(x_{j}^{2}+y^{2}\right)^{a}$.

As typical simplicial polar weighted polynomials, we consider again the following two polar weighted polynomials.

$$
\begin{gathered}
g_{1}(\mathbf{z}, \overline{\mathbf{z}})=z_{1}^{a_{1}} \bar{z}_{2}+\cdots+z_{n}^{a_{n}} \bar{z}_{1}, \quad a_{i} \geq 1, j=1, \ldots, n \\
\text { and there exists } j \text { such that } a_{j} \geq 2 \\
g_{2}(\mathbf{z}, \overline{\mathbf{z}})=z_{1}^{a_{1}} \bar{z}_{2}+\cdots+z_{n-1}^{a_{n-1}} \bar{z}_{n}+z_{n}^{a_{n}}, \quad a_{i} \geq 1, j=1, \ldots, n .
\end{gathered}
$$

The polynomial $g_{1}(\mathbf{z}, \overline{\mathbf{z}})$ with $a_{i} \geq 2,(i=1, \ldots, n)$ is a special case of σ-twisted Brieskorn polynomial and has been studied intensively ([12]). In our case, we only assume $a_{i} \geq 2$ for some i. The existence of i with $a_{i} \geq 2$ is the condition for the existence of polar action. We consider the two hypersurfaces defined by $V_{i}=g_{i}^{-1}(0)$ for $i=1,2$. The condition for a hypersurface defined by a polar weighted homogeneous polynomial to have an isolated singularity is more complicated than that of the singularity defined by a complex anaytic hypersurface. For the above examples, we assert the following.

Proposition 9. For V_{1}, V_{2}, we have the following criterion.
(1) $V_{i} \cap \mathbf{C}^{* n}, i=1,2$ are non-singular.
(2) $V_{1}=g_{1}^{-1}(0)$ has no singularity outside of the origin if and only if one of the following conditions is satisfied.
(a) n is odd.
(b) n is even and there are (at least) two indices $i, j(i<j)$ such that $a_{i}, a_{j} \geq 2$ and $j-i$ is odd.
(3) $V_{2}=g_{2}^{-1}(0)$ has no singularity outside of the origin if and only if one of the following conditions is satisfied.
(a) $a_{n} \geq 2$.
(b) $a_{n}=1, n=2 m+1$ is odd and $a_{2 j-1}=1$ for any $1 \leq j \leq m+1$.

Proof. We use Proposition 1. So assume that

$$
(\#): \quad \overline{d f(\mathbf{z}, \overline{\mathbf{z}})}=\alpha \bar{d} f(\mathbf{z}, \overline{\mathbf{z}}), \quad|\alpha|=1
$$

(1) We consider V_{1}. Suppose $\mathbf{z} \in V_{1} \cap \mathbf{C}^{* n}$ is a singular point. Note that

$$
d f(\mathbf{z}, \overline{\mathbf{z}})=\left(a_{1} z_{1}^{a_{1}-1} \bar{z}_{2}, \ldots, a_{n} z_{n}^{a_{n}-1} \bar{z}_{1}\right), \quad \bar{d} f(\mathbf{z}, \overline{\mathbf{z}})=\left(z_{n}^{a_{n}}, z_{1}^{a_{1}}, \ldots, z_{n-1}^{a_{n-1}}\right)
$$

(\#) implies that

$$
\begin{equation*}
a_{j} z_{j}^{a_{j}-1} z_{j+1}=\alpha z_{j-1}^{a_{j-1}}, \quad j=1, \ldots, n,|\alpha|=1 . \tag{7}
\end{equation*}
$$

In this case, indices should be understood to be integers modulo n. So $z_{n+1}=z_{1}$, and so on. If $\mathbf{z} \in \mathbf{C}^{* n}$, the multiplication of the absolute values of the both sides gives a contradiction: $\prod_{i=1}^{n} a_{i}\left|z_{i}\right|^{a_{i}}=\prod_{i=1}^{n}\left|z_{i}\right|^{a_{i}}$.

Now we consider the smoothness on $V_{1} \backslash\{O\}$. Assume that \mathbf{z} is a singular point of $V_{1} \backslash\{O\}$. For simplicity, we may assume that $a_{n} \geq 2$ as g_{1} is symmetric with the permutation $i \rightarrow i+1$.

Assume that $z_{l} \neq 0$. Then the $(l+1)$-th component of $\bar{d} f(\mathbf{z}, \overline{\mathbf{z}})$ is nonzero. Thus by (\#), ($l+1$)-th component of $d f(\mathbf{z}, \overline{\mathbf{z}})$ is also non-zero. That is, $z_{l+1}^{a_{l}-1} \bar{z}_{l+2} \neq 0$. In particular, $z_{l+2} \neq 0$. We repeat the same argument and get a sequence of non-zero components z_{l}, z_{l+2}, \ldots. Thus we arrive to the conclusion that either $z_{n-1} \neq 0$ (if $n-\imath$ is odd) or $z_{n} \neq 0$ (if $n-\imath$ is even).

- If $n-l$ is odd and $z_{n-1} \neq 0$, the last component of $d f(\mathbf{z}, \overline{\mathbf{z}})$ is non-zero and we have $z_{n}, z_{1} \neq 0$ as we have assumed that $a_{n} \geq 2$. This creates two nonzero sequences $z_{n}, z_{2}, z_{4}, \ldots$ and z_{1}, z_{3}, \ldots. Thus we conclude that $\mathbf{z} \in \mathbf{C}^{* n}$, which is impossible by the first argument.
- If $n-\imath$ is even, $z_{l}, z_{l+2}, \ldots, z_{n} \neq 0$. Thus we see that the first component of $\bar{d} f(\mathbf{z}, \overline{\mathbf{z}})$ is non-zero. By the same argument, we get a non-zero sequence z_{2}, z_{4}, \ldots.

Thus to show that $\mathbf{z} \in \mathbf{C}^{* n}$, it is enough to show that $z_{n-1} \neq 0$.
(a) Assume first n is odd. If l is even, then we see that $z_{l}, z_{l+2}, \ldots, z_{n-1} \neq 0$ and we are done.

If l is odd, we get $z_{n} \neq 0$, which implies the first component of $\bar{d} f(\mathbf{z}, \overline{\mathbf{z}})$ is non-zero. Thus as the second round, we have non-zero a sequence z_{2}, z_{4}, \ldots which contains z_{n-1}. Thus we are done.
(b) Now we assume that n is even but there is another integer $1 \leq i<n$ such that $a_{i} \geq 2$ and $a_{n} \geq 2$ and i is odd. If l is odd, we have shown that $\mathbf{z} \in \mathbf{C}^{* n}$.

If l is even, we get $z_{n} \neq 0$ and thus $z_{2} \neq 0$. Then the sequence z_{2}, z_{4}, \ldots contains z_{i-1}. As $a_{i} \geq 2$, looking at the i-th component of $d f(\mathbf{z}, \overline{\mathbf{z}})$, we get $z_{i} \cdot z_{i+1} \neq 0$. Thus we get a non-zero sequence z_{i}, z_{i+2}, \ldots which contains z_{n-1}, and we are done.

Now to show that one of the conditions (a) or (b) is necessary, we assume that n is even and $a_{v}=1$ for any odd v and $a_{n} \geq 2$. Thus putting $n=2 m$,

$$
f=\left(z_{1} \bar{z}_{2}+z_{2}^{a_{2}} \bar{z}_{3}\right)+\cdots+\left(z_{2 m-1} \bar{z}_{2 m}+z_{2 m}^{a_{2 m}} \bar{z}_{1}\right)
$$

Consider the subvariety $z_{1}=z_{3}=\cdots=z_{n-1}=0$. Then

$$
d f(\mathbf{z}, \overline{\mathbf{z}})=\left(\bar{z}_{2}, 0, \bar{z}_{4}, 0, \ldots, \bar{z}_{2 m}, 0\right), \quad \bar{d} f(\mathbf{z}, \overline{\mathbf{z}})=\left(z_{n}^{a_{n}}, 0, \ldots, z_{2 m-2}^{a_{2 m-2}}, 0\right)
$$

the condition (\#) is written as

$$
\text { (\#) } \quad z_{2}=\alpha z_{n}^{a_{n}}, \quad z_{4}=\alpha z_{2}^{a_{2}}, \ldots, z_{2 m}=\alpha z_{2 m-2}^{a_{2 m-2}}
$$

which has real one-dimensional solution

$$
\begin{gathered}
z_{2 j}=\alpha^{\beta_{j}} u^{\gamma_{j}} \quad(j=1, \ldots, m), \quad \alpha^{\beta_{m}} u^{\gamma_{m} a_{2 m}-1}=1 \\
\beta_{j}=1+\sum_{i=1}^{j-1} a_{2(j-1)} a_{2(j-2)} \cdots a_{2(j-i)}, \quad \gamma_{j}=a_{2} a_{4} \cdots a_{2(j-1)}
\end{gathered}
$$

(2) We consider the case V_{2}. We will see first $V_{2} \cap \mathbf{C}^{* n}$ is non-singular. Take a singular point of V_{2}. Then we have some $\alpha \in S^{1}$ so that

$$
(\#): \quad \overline{d f}(\mathbf{z}, \overline{\mathbf{z}})=\alpha \bar{d} f(\mathbf{z}, \overline{\mathbf{z}})
$$

As we have

$$
\begin{aligned}
& d f(\mathbf{z}, \overline{\mathbf{z}})=\left(a_{1} z_{1}^{a_{1}-1} \bar{z}_{2}, \ldots, a_{n-1} z_{n-1}^{a_{n-1}-1} \bar{z}_{n}, a_{n} z_{n}^{a_{n}-1}\right) \\
& \bar{d} f(\mathbf{z}, \overline{\mathbf{z}})=\left(0, z_{1}^{a_{1}}, \ldots, z_{n-1}^{a_{n-1}}\right)
\end{aligned}
$$

we see that (\#) implies that $z_{1}^{a_{1}-1} \bar{z}_{2}=0$. Thus there are no singularities on $V_{2} \cap \mathbf{C}^{* n}$. Suppose that $z_{l} \neq 0$ for some l. If $l<n-1$, this implies $(l+1)$-th component of $\bar{d} f(\mathbf{z}, \overline{\mathbf{z}})$ is non-zero. Thus (\#) implies that $(l+1)$-th component of $d f$ is non-zero. In particular, z_{l+2} is non-zero. (Of course, $z_{l+1} \neq 0$ if $a_{t+1}>1$.) Repeating this argument, we arrive to the conclusion: either z_{n-1} or z_{n} is non zero.

First assume that $a_{n} \geq 2$. Comparing the last components of $d f(\mathbf{z}, \overline{\mathbf{z}})$ and $\bar{d} f(\mathbf{z}, \overline{\mathbf{z}})$, we observe that z_{n-1} and z_{n} are both non-zero. Now we go in the reverse direction. As the $(n-1)$-th component of $d f(\mathbf{z}, \overline{\mathbf{z}})$ is non-zero, the corresponding $(n-1)$-th component $z_{n-2}^{a_{n-2}}$ of $\bar{d} f(\mathbf{z}, \overline{\mathbf{z}})$ is non-zero. Then the $(n-2)$-th component of $d f(\mathbf{z}, \overline{\mathbf{z}})$ is non-zero. Going downwords, we see that $z \in \mathbf{C}^{* n}$. However this is impossible, as we have already seen above.

Next we assume that $a_{n}=1$ and n is odd and $a_{2 j-1}=1$ for any j. Note that the last component of $d f(\mathbf{z}, \overline{\mathbf{z}})$ is 1 . Thus $z_{n-1} \neq 0$. If $z_{n} \neq 0$, we get a
contradiction as above $\mathbf{z} \in \mathbf{C}^{* n}$. Thus we may assume that $z_{n}=0$. Comparing (2j)-components of $d f(\mathbf{z}, \overline{\mathbf{z}})$ and $\alpha \bar{d} f(\mathbf{z}, \overline{\mathbf{z}})$, we get

$$
z_{2}=0, \quad z_{4}=\alpha z_{2}^{a_{2}}, \ldots, z_{n-1}=z_{n-3}^{a_{n-3}}
$$

which has no solution with $z_{n-1} \neq 0$.
Now we show that the condition (a) or (b) in (3) is necessary.
(i) Assume that $a_{n}=1$ and n is even ans put $n=2 m$. Let s be the maximal integer such that $a_{2 s} \geq 2$. If there does not exists such s, we put $s=0$. Nonisolated singularities are given by the solutions of

$$
\begin{gathered}
z_{2}=z_{4}=\cdots=z_{2 m}=0, \quad z_{2 j-1}=0, j \leq s \\
z_{2 s+3}=\alpha z_{2 s+1}^{a_{2 s+1}}, \ldots, z_{2 m-1}=\alpha z_{2 m-3}^{a_{2 m-3}}, \quad 1=\alpha z_{2 m-1}^{a_{2 m-1}} .
\end{gathered}
$$

(ii) Assume that $a_{n}=1, n=2 m+1$ is odd, and there exists odd index such that $a_{2 j+1} \geq 2$. Put s be the maximum integer of such j. Non-isolated singularities are given by the solutions of

$$
\begin{gathered}
z_{1}=z_{3}=\cdots=z_{2 m+1}=0, \quad z_{2 j}=0, j \leq s \\
z_{2 s+4}=\alpha z_{2 s+2}^{a_{2 s}}, \ldots, z_{2 m}=\alpha z_{2 m-2}^{a_{2 m}}, \quad 1=\alpha z_{2 m}^{a_{2 m}} .
\end{gathered}
$$

2.3.2. Remark. 1. The polynomial $g_{1}(\mathbf{z}, \overline{\mathbf{z}})=z_{1}^{a_{1}} \bar{z}_{2}+\cdots+z_{n}^{a_{n}} \bar{z}_{1}$ is an example of so-called σ-twisted Brieskorn polynomial if $a_{i} \geq 2, i=1, \ldots, n$. Let σ be a permutation of $\{1,2, \ldots, n\}$. Then σ-twisted Brieskorn polynomial is defined as

$$
f_{\sigma}(\mathbf{z}, \overline{\mathbf{z}})=z_{1}^{a_{1}} \bar{z}_{\sigma(1)}+\cdots+z_{n}^{a_{n}} \bar{z}_{\sigma(n)}, \quad a_{1}, \ldots, a_{n} \geq 2
$$

and the corresponding assertions in Proposition 3 and 4 are proved in [13]. See also [14] for more systematical treatment for real analytic polynomials which define Milnor fibrations. In [3], similar conditions for the isolatedness condition as Proposition 9 are considered. For our purpose, we call $f_{\sigma}(\mathbf{z}, \overline{\mathbf{z}})$ a weak σ twisted Brieskorn polynomial if $\sigma \in \mathscr{S}_{n}$ and $a_{i} \geq 1$ for any $i=1, \ldots, n$.
2. Consider a product $\mathbf{C}^{n}=\mathbf{C}^{s} \times \mathbf{C}^{n-s}$ and use variables $\mathbf{v} \in \mathbf{C}^{s}$ and $\mathbf{w} \in \mathbf{C}^{n-s}$. Assume that there exist mixed polynomials $h(\mathbf{v}, \overline{\mathbf{v}})$ and $k(\mathbf{w}, \overline{\mathbf{w}})$ so that $f(\mathbf{z}, \overline{\mathbf{z}})=h(\mathbf{v}, \overline{\mathbf{v}})+k(\mathbf{w}, \overline{\mathbf{w}}) . \quad f(\mathbf{z}, \overline{\mathbf{z}})$ is a polar weighted polynomial if and only if $h(\mathbf{v}, \overline{\mathbf{v}}), k(\mathbf{w}, \overline{\mathbf{w}})$ are polar weighted polynomial and it is known that $f^{-1}(1)$ is homotopic to the join $h^{-1}(1) \star k^{-1}(1)$ if f is polar weighted. Such a polynomial is called a polynomial of join type ([2], see also [6]).

Now consider a weak σ-twisted Brieskorn polynomial $f_{\sigma}(\mathbf{z}, \overline{\mathbf{z}})$. If σ has order n, it is (up to a change of ordering) equal to the cyclic permutation $\sigma=(1,2, \ldots, n)$ and $f_{\sigma}=g_{1}$. In general, σ can be written as a product of mutually commuting cyclic permutations $\sigma=\tau_{1} \tau_{2} \cdots \tau_{v}$. Put $\left|\tau_{i}\right|=\left\{j \mid \tau_{i}(j) \neq j\right\}$ and put $f_{\tau_{i}}$ be the partial sum of monomials in $f(\mathbf{z}, \overline{\mathbf{z}})$ written in variables $\left\{z_{j}|j \in| \tau_{i} \mid\right\}$. Thus f_{σ} is a join type polynomial of v weak τ_{i}-twisted Brieskorn polynomial $f_{\tau_{i}}$. Thus $f_{\sigma}(\mathbf{z}, \overline{\mathbf{z}})$ has an isolated singularity if and only if each polynomial $f_{\tau_{i}}$ has an isolated singularity. A similar assertion is also proved in [3].
3. Observe that the singularities of V_{1}, V_{2} are on the canonical retract coordinate subspaces $\mathbf{C}^{I_{0}}$. Note also that the polar action is trivial on $\mathbf{C}^{I_{0}}$.
2.4. Milnor fibration. Let $f(\mathbf{z}, \overline{\mathbf{z}})$ be a polar weighted homogeneous polynomial of radial weight type $\left(q_{1}, \ldots, q_{n} ; m_{r}\right)$ and of polar weight type $\left(p_{1}, \ldots, p_{n} ; m_{p}\right)$. Then

$$
f: \mathbf{C}^{n}-f^{-1}(0) \rightarrow \mathbf{C}^{*}
$$

is a locally trivial fibration. The local triviality is given by the action. In particular, the monodromy map $h: F \rightarrow F$ is given by $h(\mathbf{z})=\exp \left(2 \pi i / m_{p}\right) \circ \mathbf{z}=$ $\left(z_{1} \exp \left(2 p_{1} \pi i / m_{p}\right), \ldots, z_{n} \exp \left(2 p_{n} \pi i / m_{p}\right)\right)$ where $F=f^{-1}(1)([12,2])$.

3. Topology of simplicial polar weighted homogeneous hypersurfaces

Let $f(\mathbf{z}, \overline{\mathbf{z}})=\sum_{j=1}^{s} c_{j} \mathbf{z}^{\mathbf{n}_{j}} \mathbf{m}^{\mathbf{m}_{j}}$ be a polar weighted homogeneous polynomial of radial weight type $\left(q_{1}, \ldots, q_{n} ; m_{r}\right)$ and of polar weight type $\left(p_{1}, \ldots, p_{n} ; m_{p}\right)$. Let $F=f^{-1}(1)$ be the fiber.
3.1. Canonical stratification of F and the topology of each stratum. For any subset $I \subset\{1,2, \ldots, n\}$, we define

$$
\mathbf{C}^{I}=\left\{\mathbf{z} \mid z_{j}=0, j \notin I\right\}, \quad \mathbf{C}^{* I}=\left\{\mathbf{z} \mid z_{i} \neq 0 \text { iff } i \in I\right\}, \quad \mathbf{C}^{* n}=\mathbf{C}^{*\{1, \ldots, n\}}
$$

and we define mixed polynomials f^{I} by the restriction: $f^{I}=\left.f\right|_{\mathbf{C}^{I}}$. For simplicity, we write a point of \mathbf{C}^{I} as \mathbf{z}_{I}. Put $F^{* I}=\mathbf{C}^{* I} \cap F$. Note that $F^{* I}$ is a non-empty subset of $\mathbf{C}^{* I}$ if and only if $f^{I}\left(\mathbf{z}_{I}, \overline{\mathbf{z}}_{I}\right)$ is not constantly zero. Now we observe that the hypersurface $F=f^{-1}(1)$ has the canonical stratification

$$
F=\amalg_{I} F^{* I} .
$$

Thus it is essential to determine the topology of each stratum $F^{* I}$. Put $F^{*}:=F \cap \mathbf{C}^{* n}$, the open dense stratum and put $\hat{F}^{*}:=\hat{f}^{-1}(1) \cap \mathbf{C}^{* n}$ where $\hat{f}(\mathbf{w})$ is the associated Laurent weighted homogeneous polynomial.

Theorem 10. Assume that $f(\mathbf{z}, \overline{\mathbf{z}})$ is a simplicial polar weighted homogeneous polynomial and let $\hat{f}(\mathbf{w})$ be the associated Laurent weighted homogeneous polynomial. Then there exists a canonical diffeomorphism $\varphi: \mathbf{C}^{* n} \rightarrow \mathbf{C}^{* n}$ which gives an isomorphism of the two Milnor fibrations defined by $f(\mathbf{z}, \overline{\mathbf{z}})$ and $\hat{f}(\mathbf{w})$:

and it satisfies $\varphi\left(F^{* n}\right)=\hat{F}^{* n}$ and φ is compatible with the respective canonical monodromy maps.

Proof. Assume first that $s=n$ for simplicity. Recall that

$$
\hat{f}(\mathbf{w})=\sum_{j=1}^{n} c_{j} \mathbf{w}^{\mathbf{n}_{j}-\mathbf{m}_{j}} .
$$

Let $\mathbf{w}=\left(w_{1}, \ldots, w_{n}\right)$ be the complex coordinates of \mathbf{C}^{n} which is the ambient space of \hat{F}. We construct $\varphi: \mathbf{C}^{* n} \rightarrow \mathbf{C}^{* n}$ so that $\varphi(\mathbf{z})=\mathbf{w}$ satisfies

$$
\mathbf{w}(\varphi(\mathbf{z}))^{\mathbf{n}_{j}-\mathbf{m}_{j}}=\mathbf{z}^{\mathbf{n}_{j} \overline{\mathbf{z}}^{\mathbf{m}_{j}}}, \quad \text { thus } \hat{f}(\varphi(\mathbf{z}))=f(\mathbf{z}) .
$$

For the construction of φ, we use the polar coordinates $\left(\rho_{j}, \theta_{j}\right)$ for $z_{j} \in \mathbf{C}^{*}$ and the polar coordinates $\left(\xi_{j}, \eta_{j}\right)$ for \mathbf{w}_{j}. Thus $\mathbf{z}_{j}=\rho_{j} \exp \left(i \theta_{j}\right)$ and $\mathbf{w}_{j}=\xi_{j} \exp \left(i \eta_{j}\right)$. First we take $\eta_{j}=\theta_{j}$. Put $\mathbf{n}_{j}=\left(n_{j, 1}, \ldots, n_{j, n}\right), \mathbf{m}_{j}=\left(m_{j, 1}, \ldots, m_{j, n}\right)$ in \mathbf{N}^{n}. Consider two integral matrix $N=\left(n_{i, j}\right)$ and $M=\left(m_{i, j}\right)$ where the k-th row vector are $\mathbf{n}_{k}, \mathbf{m}_{k}$ respectively. Now taking the logarithm of the equality $\mathbf{z}^{\mathbf{n}_{j} \overline{\mathbf{z}}^{\mathbf{m}_{j}}}=\mathbf{w}^{\mathbf{n}_{j}-\mathbf{m}_{j}}$, we get an equivalent equality:

$$
\begin{aligned}
& \left(n_{j 1}+m_{j 1}\right) \log \rho_{1}+\cdots+\left(n_{j n}+m_{j n}\right) \log \rho_{n} \\
& \quad=\left(n_{j 1}-m_{j 1}\right) \log \xi_{1}+\cdots+\left(n_{j n}-m_{j n}\right) \log \xi_{n}, \quad j=1, \ldots, n .
\end{aligned}
$$

This can be written as

$$
(N+M)\left(\begin{array}{c}
\log \rho_{1} \tag{8}\\
\vdots \\
\log \rho_{n}
\end{array}\right)=(N-M)\left(\begin{array}{c}
\log \xi_{1} \\
\vdots \\
\log \xi_{n}
\end{array}\right)
$$

Put $(N-M)^{-1}(N+M)=\left(\lambda_{i j}\right) \in \operatorname{GL}(n, \mathbf{Q})$. Now we define φ as follows.

$$
\begin{aligned}
\varphi: \mathbf{C}^{* n} & \rightarrow \mathbf{C}^{* n}, \quad \mathbf{z}=\left(\rho_{1} \exp \left(i \theta_{1}\right), \ldots, \rho_{n} \exp \left(i \theta_{n}\right)\right) \\
& \mapsto \mathbf{w}=\left(\xi_{1} \exp \left(i \theta_{1}\right), \ldots, \xi_{n} \exp \left(i \theta_{n}\right)\right)
\end{aligned}
$$

where ξ_{j} is given by $\xi_{j}=\exp \left(\sum_{i=1}^{n} \lambda_{j i} \log \rho_{i}\right)$ for $j=1, \ldots, n$. It is obvious that φ is a real analytic isomorphism of $\mathbf{C}^{* n}$ to $\mathbf{C}^{* n}$. Let us consider the Milnor fibrations of $f(\mathbf{z}, \overline{\mathbf{z}})$ and $\hat{f}(\mathbf{w})$ in the respective ambient tori $\mathbf{C}^{* n}$.

$$
f: \mathbf{C}^{* n} \backslash f^{-1}(0) \rightarrow \mathbf{C}^{*}, \quad \hat{f}: \mathbf{C}^{* n} \backslash \hat{f}^{-1}(0) \rightarrow \mathbf{C}^{*}
$$

Recall that the monodromy maps h^{*}, \hat{h}^{*} are given as

$$
\begin{aligned}
h^{*}: F^{*} \rightarrow F^{*}, & \mathbf{z} & \mapsto \exp \left(2 \pi i / m_{p}\right) \circ \mathbf{z} \\
\hat{h}^{*}: \hat{F}^{*} \rightarrow \hat{F}^{*}, & \mathbf{w} & \mapsto \exp \left(2 \pi i / m_{p}\right) \circ \mathbf{w} .
\end{aligned}
$$

Note that the \mathbf{C}^{*}-action associated with $\hat{f}(\mathbf{w})$ is the polar action of $f(\mathbf{z}, \overline{\mathbf{z}})$. Namely $\exp i \theta \circ \mathbf{w}=\left(\exp \left(i p_{1} \theta\right) w_{1}, \ldots, \exp \left(i p_{n} \theta\right) w_{n}\right)$. Thus we have the commutative diagram:

where $F_{\alpha}^{*}=f^{-1}(\alpha) \cap \mathbf{C}^{* n}$ and $\hat{F}_{\alpha}^{*}=\hat{f}^{-1}(\alpha) \cap \mathbf{C}^{* n}$ for $\alpha \in \mathbf{C}^{*}$.

3.1.1. Remark. The case $f(\mathbf{z}, \overline{\mathbf{z}})=z_{1}^{a_{1}} \bar{z}_{1}+\cdots+z_{n}^{a_{n}} \bar{z}_{n}$ is studied in [12].

3.2. Zeta-functions. Now we know that by [7, 8], the inclusion map $\hat{F}^{*} \hookrightarrow \mathbf{C}^{* n}$ is $(s-1)$-equivalence and $\chi\left(\hat{F}^{*}\right)=(-1)^{n-1} \operatorname{det}(N-M)$ for $s=n$ and 0 otherwise. Note also the monodromy map $\hat{h}: \hat{F}^{*} \rightarrow \hat{F}^{*}$ has a period m_{p}. The fixed point locus of $(\hat{h})^{k}$ is F^{*} if $m_{p} \mid k$ and \emptyset otherwise. Thus using the formula of the zeta function (see, for example [4]),

$$
\zeta_{\hat{h}^{*}}(t)=\exp \left(\sum_{j=0}^{\infty}(-1)^{n-1} d t^{j m_{p}} /\left(j m_{p}\right)\right)=\left(1-t^{m_{p}}\right)^{(-1)^{n} d / m_{p}}
$$

where $d=\operatorname{det}(N-M)$ if $s=n$ and $d=0$ for $s<n$. Translating this in the monodromy $h^{*}: F^{*} \rightarrow F^{*}$, we obtain

Corollary 11. F^{*} has a homotopy type of CW-complex of dimension $n-1$ and the inclusion map $F^{*} \hookrightarrow \mathbf{C}^{* n}$ is an $(s-1)$-equivalence. The zeta function $\zeta_{h^{*}}(t)$ of $h^{*}: F^{*} \rightarrow F^{*}$ is given as $\left(1-t^{m_{p}}\right)^{(-1)^{n} d / m_{p}}$ with $d=\operatorname{det}(N-M)$ if $s=n$ and $\zeta_{h^{*}}(t)=1$ for $s<n$.
3.2.1. Remark. In general, the restriction of the polar action on \mathbf{C}^{n} to $\mathbf{C}^{* I}$ may not effective and to make the action effective, we need to define polar weights as $p_{I, i}=p_{i} / r_{I}$ and $m_{I, P}=m_{p} / r_{I}$ where r_{I} is the gratest common divisor of $\left\{p_{i} \mid i \in I\right\}$. However the monodromy map $h_{I}: F^{* I} \rightarrow F^{* I}$ is equal to the restriction of $h: F \rightarrow F$.

4. Connectivity of F

Now we are ready to patch together the information of the strata $F^{* I}$ for the topology of F. First we introduce the notion of k-convenience which is introduced for holomorphic functions ([8]). We say $f(\mathbf{z}, \overline{\mathbf{z}})$ is k-convenient if $f^{I} \nsupseteq 0$ for any $I \subset\{1,2, \ldots, n\}$ with $|I| \geq n-k$. The following is obvious by the definition.

Proposition 12. Assume that $f(\mathbf{z}, \overline{\mathbf{z}})$ is a simplicial polar weighted homogeneous polynomial with s monomials and assume that f is k-convenient. Then $k \leq s-1$.

Now we have the following result about the connectivity of F.

Theorem 13. Assume that $f(\mathbf{z}, \overline{\mathbf{z}})$ is a simplicial polar weighted homogeneous polynomial with s monomials and assume that f is k-convenient. Then F is $\min (k, n-2)$-connected.

For the proof, we show the following stronger assertion. Let $I \subset\{1,2, \ldots, n\}$ and put

$$
\begin{gathered}
\mathbf{C}^{n}(* I)=\left\{\mathbf{z}=\left(z_{1}, \ldots, z_{n}\right) \in \mathbf{C}^{n} \mid z_{j} \neq 0, j \in I\right\}, \quad F(* I)=F \cap \mathbf{C}^{n}(* I) . \\
\mathbf{C}^{* I}=\left\{\mathbf{z} \in \mathbf{C}^{n} \mid z_{j} \neq 0 \text { iff } j \in I\right\}, \quad F^{* I}=F \cap \mathbf{C}^{* I} .
\end{gathered}
$$

Lemma 14. Under the assumption as in Theorem 13, the inclusion $F(* I) \hookrightarrow \mathbf{C}^{n}(* I)$ is $\min (k+1, n-1)$-equivalence.

We prove the assertion by double induction on (n, k). Put

$$
\begin{aligned}
I_{j} & =\{j, \ldots, n\}, \quad K_{j}=\{1, \ldots, \stackrel{\vee}{j}, \ldots, n\} \\
\mathbf{C}_{j}^{n-1} & =\mathbf{C}^{K_{j}}=\mathbf{C}^{n} \cap\left\{z_{j}=0\right\}, \quad F_{j}=F \cap \mathbf{C}_{j}^{n-1} .
\end{aligned}
$$

Note that F_{j} is the Milnor fiber of $f^{K_{j}}$. Theorem 13 follows from Lemma 14 by taking $I=\emptyset$. Changing the ordering if necessary, we may assume that $I=I_{t}$ for some t. We consider the filtration of F :

$$
F^{*}=F\left(* I_{1}\right) \subset F\left(* I_{2}\right) \subset F\left(* I_{3}\right) \subset \cdots \subset F\left(* I_{n}\right) \subset F=F(* \emptyset) .
$$

A key lemma is
Lemma 15. The inclusion map $\left(F\left(* I_{j}\right), F\left(* I_{j-1}\right)\right) \hookrightarrow\left(\mathbf{C}^{n}\left(* I_{j}\right), \mathbf{C}^{n}\left(* I_{j-1}\right)\right)$ is $\min (k+1, n-1)$-equivalence.

Proof. Let T_{j} be a tubular neighborhood of $\left\{z_{j}=0\right\}$ in $\mathbf{C}^{n}\left(* I_{j+1}\right)$ such that $T_{j} \cap F\left(* I_{j+1}\right)$ is a tubular neighborhood of $F_{j}\left(* I_{j+1}\right)=\left\{z_{j}=0\right\} \cap F\left(* I_{j+1}\right)$ in $F\left(* I_{j+1}\right)$. Consider the following diagrams by the excision isomorphisms and by the Thom isomorphisms ψ for D^{2}-bundle:

Now note that $f^{K_{j}}$ is $(k-1)$-convenient. Thus by the induction assumption on Lemma 15, $\tau_{j}^{\prime \prime}$ is isomorphism for $\ell-1 \leq k-1$. This implies that $\tau_{j}^{\prime}, \tau_{j}$ is isomorphism for $\ell+1 \leq k+1$.

Proof of Lemma 14. Now we can prove Lemma 14 by the induction on j and Five Lemma, assuming $I=I_{j}$ for some j, applied to two exact sequences for the pairs $\left(F\left(* I_{j+1}\right), F\left(* I_{j}\right)\right)$ and $\left(\mathbf{C}^{n}\left(* I_{j+1}\right), F\left(* I_{j}\right)\right)$ and commutative diagrams:

Induction starts for $j=1$: $\quad l_{1}$ is $\min (k+1, n-1)$-equivalence by Corollary 11 . This completes the proof of Lemma 14.
 polar weighted homogeneous. Let

$$
\mathscr{S}=\left\{I \subset\{1, \ldots, n\} ; f^{I} \text { is full }\right\}
$$

and put $r_{I}=\operatorname{gcd}_{i \in I}\left\{p_{i}\right\}$ and $m_{p, I}=m_{p} / r_{I}$ and put $d_{I}=\left|\operatorname{det}_{i \in I}\left(\mathbf{n}_{i}-\mathbf{m}_{i}\right)\right|$. Thus for $I \in \mathscr{S}, f^{I}$ is a simplicial full polar weighted homogeneous polynomial of polar weight type $\left(p_{i} / r_{I}\right)_{i \in I}$ with degree $m_{p, I}$. We observed in Remark 3.2.1 that the monodromy map $h^{* I}: F^{* I} \rightarrow F^{* I}$ is equal to the restriction of the monodromy map $h: F \rightarrow F$. We denote the zeta function of the monodromy map

$$
h: F \rightarrow F, \quad h^{* I}=\left.h\right|_{F^{* I}}: F^{* I} \rightarrow F^{* I}
$$

by $\zeta(t), \zeta^{* I}(t)$ respectively. Recall that $\zeta(t)$ is an alternating product of characteristic polynomials ([4]). Namely

$$
\zeta(t)=\prod_{j=0}^{n-1} P_{j}(t)^{(-1)^{j+1}}
$$

where P_{j} is the characteristic polynomial of the monodromy action on $h_{*}: H_{j}(F, \mathbf{Q}) \rightarrow H_{j}(F, \mathbf{Q})$. By Theorem 10 and the additive formula for the Euler characteristics, using a similar argument as that of Proposition 2.8, [8], we have:

Theorem 16. (1) $\chi(F)=\sum_{I \in \mathscr{S}}(-1)^{|I|-1} d_{I}$.
(2) $\zeta(t)=\prod_{I \in \mathscr{G}} \zeta^{* I}(t), \zeta^{* I}(t)=\left(1-t^{m_{p, I}}\right)^{(-1)^{I I}} d_{I} / m_{p, I}$.
4.2. Examples. 1. Assume that $f_{1}(\mathbf{z})$ is a homogeneous polynomial defined by

$$
f_{1}(\mathbf{z})=z_{1}^{a_{1}}+z_{2}^{a_{2}}+\cdots+z_{n}^{a_{n}}, \quad a_{1}, \ldots, a_{n} \geq 2
$$

Then $F=f_{1}^{-1}(1)$ is $(n-2)$-connected and

$$
\chi(F)=\sum_{j=1}^{n} \sum_{|I|=j} \chi\left(F^{* I}\right)=\left(a_{1}-1\right)\left(a_{2}-1\right) \cdots\left(a_{n}-1\right)-(-1)^{n}
$$

and

$$
\operatorname{div}\left(\zeta_{h}\right)=\left(\Lambda_{a_{1}}-1\right) \cdots\left(\Lambda_{a_{n}}-1\right)-(-1)^{n}
$$

as is well-known by $[9,1,5]$. Here $\operatorname{div}\left(\left(t-\lambda_{1}\right) \cdots\left(t-\lambda_{k}\right)\right)=\sum_{i=1}^{k} \lambda_{i} \in \mathbf{Z} \cdot \mathbf{C}^{*}$ and $\Lambda_{m}=\operatorname{div}\left(t^{m}-1\right)$.
2. Consider

$$
f_{2}(\mathbf{z}, \overline{\mathbf{z}})=z_{1}^{a_{1}} \bar{z}_{2}+\cdots+z_{n-1}^{a_{n-1}} \bar{z}_{n}+z_{n}^{a_{n}}
$$

Then f_{2} is a simplicial polar weighted polynomial and put

$$
\mathscr{S}=\left\{I_{j}=\{1, \ldots, j\} \mid j=0, \ldots, n-1\right\} .
$$

Thus we have

$$
\begin{gathered}
\chi(F)=(-1)^{n-1}\left(a_{1} a_{2} \cdots a_{n}-a_{2} \cdots a_{n}+\cdots+(-1)^{n-1} a_{n}\right) \\
\log \zeta(t)=(-1)^{n}\left(\frac{1}{\left(1-t^{a_{1} \cdots a_{n}}\right)}-\frac{1}{\left(1-t^{a_{2} \cdots a_{n}}\right)}+\cdots+(-1)^{n-1} \frac{1}{\left(1-t^{a_{n}}\right)}\right)
\end{gathered}
$$

Proof. The polar weight of f_{2} is given by $\left(p_{1}, \ldots, p_{n} ; m_{p}\right)$ where

$$
\begin{gathered}
m_{p}=a_{1} \cdots a_{n}, \quad p_{1}=m_{p}\left(\frac{1}{a_{1}}+\cdots+\frac{1}{a_{1} \cdots a_{n}}\right), \\
p_{2}=m_{p}\left(\frac{1}{a_{2}}+\cdots+\frac{1}{a_{2} \cdots a_{n}}\right) \\
\vdots \\
p_{n-1}=m_{p}\left(\frac{1}{a_{n-1}}+\frac{1}{a_{n-1} a_{n}}\right), \quad p_{n}=\frac{m_{p}}{a_{n}}
\end{gathered}
$$

Thus the assertion follows from Corollary 11.
4.3. Surface cases. Consider the case $n=3$. We consider two simplicial polar weighted homogeneous polynomials.

$$
\begin{gathered}
f_{1}(\mathbf{z}, \overline{\mathbf{z}})=z_{1}^{a_{1}} \bar{z}_{2}^{b_{1}}+z_{2}^{a_{2}} z_{3}^{b_{2}}+z_{3}^{a_{3}}, \quad a_{1}, a_{2}, b_{1}, b_{2}>0 \\
f_{2}(\mathbf{z}, \overline{\mathbf{z}})=z_{1}^{a_{1}} z_{2}^{b_{1}}+z_{2}^{a_{2}} z_{3}^{b_{2}}+z_{3}^{a_{3}} \bar{z}_{1}^{b_{3}}, \quad a_{1} a_{2} a_{3}>b_{1} b_{2} b_{3}>0 .
\end{gathered}
$$

They are 1-convenient. Let $F_{1}=f_{1}^{-1}(1)$ and $F_{2}=f_{2}^{-1}(1)$. By Theorem 13, F_{1}, F_{2} are simply connected. Their Betti numbers $b_{2}\left(F_{i}\right)$ are given as

$$
b_{2}\left(F_{1}\right)=a_{1} a_{2} a_{3}-a_{2} a_{3}+a_{3}-1, \quad b_{2}\left(F_{2}\right)=a_{1} a_{2} a_{3}-b_{1} b_{2} b_{3}-1
$$

(I) First we consider f_{1}. The normalized polar weight for f_{1} is given as

$$
v_{1}=\frac{b_{1} b_{2}}{a_{1} a_{2} a_{3}}+\frac{b_{1}}{a_{1} a_{2}}+\frac{1}{a_{1}}, \quad v_{2}=\frac{b_{2}}{a_{2} a_{3}}+\frac{1}{a_{2}}, \quad v_{3}=\frac{1}{a_{3}}
$$

Let $r=\operatorname{gcd}\left(b_{1} b_{2}, a_{1} a_{2} a_{3}\right), r_{1}=\operatorname{gcd}\left(b_{2}, a_{2} a_{3}\right)$. Then m_{p} is given as $a_{1} a_{2} a_{3} / r$ and the zeta function of $h_{1}: F_{1} \rightarrow F_{1}$ is given as

$$
\zeta_{h_{1}}(t)=P_{0}(t)^{-1} P_{2}(t)^{-1}=\frac{\left(1-t^{a_{2} a_{3} / r_{1}}\right)^{r_{1}}}{\left(1-t^{a_{1} a_{2} a_{3} / r}\right)^{r}\left(1-t^{a_{3}}\right)}
$$

where $P_{2}(t)$ is the characteristic polynomial of the monodromy action $h_{1 *}: H_{2}\left(F_{1} ; \mathbf{Q}\right) \rightarrow H_{2}\left(F_{1} ; \mathbf{Q}\right)$. Note that $P_{0}(t)=1-t$. For example,

$$
\begin{gathered}
\zeta_{h_{1}}(t)=\frac{\left(1-t^{a_{2} a_{3}}\right)}{\left(1-t^{a_{1} a_{2} a_{3}}\right)\left(1-t^{a_{3}}\right)}, \quad b_{1}=b_{2}=1 \\
\zeta_{h_{1}}(t)=\frac{\left(1-t^{a_{2}^{\prime} a_{3}}\right)^{2}}{\left(1-t^{a_{1}^{\prime} a_{2}^{\prime} a_{3}}\right)^{4}\left(1-t^{a_{3}}\right)}, \quad a_{1}=2 a_{1}^{\prime}, \quad a_{2}=2 a_{2}^{\prime}, b_{1}=b_{2}=2 .
\end{gathered}
$$

(II) We consider f_{2}. The normalized polar weight for f_{2} is given as:

$$
v_{1}=\frac{a_{2} a_{3}+b_{1} a_{3}+b_{1} b_{2}}{a_{1} a_{2} a_{3}-b_{1} b_{2} b_{3}}, \quad v_{2}=\frac{a_{1} a_{3}+a_{1} b_{2}+b_{2} b_{3}}{a_{1} a_{2} a_{3}-b_{1} b_{2} b_{3}}, \quad v_{3}=\frac{a_{1} a_{2}+a_{2} b_{3}+b_{1} b_{3}}{a_{1} a_{2} a_{3}-b_{1} b_{2} b_{3}} .
$$

Put $d=a_{1} a_{2} a_{3}-b_{1} b_{2} b_{3}$. The least common multiple m_{p} of the denominators of v_{1}, v_{2}, v_{3} depends on $\operatorname{gcd}\left(d, a_{2} a_{3}+b_{1} a_{3}+b_{1} b_{2}\right)$ and so on. We only gives two examples.
(1) Assume that $a_{1}=a_{2}=a_{3}=a, b_{1}=b_{2}=b_{3}=b$. Then $v_{1}=v_{2}=v_{3}=$ $\frac{1}{a-b}$. Thus

$$
\zeta_{h_{2}}(t)=\left(1-t^{a-b}\right)^{a^{2}+a b+b^{2}} .
$$

(2) Assume that $\operatorname{gcd}\left(d, a_{2} a_{3}+b_{1} a_{3}+b_{1} b_{2}\right)=\operatorname{gcd}\left(d, a_{1} a_{3}+a_{1} b_{2}+b_{2} b_{3}\right)=$ $\operatorname{gcd}\left(d, a_{1} a_{2}+a_{2} b_{3}+b_{1} b_{3}\right)=1$. Then $m_{p}=d$ and $\zeta_{h_{2}}(t)=\left(1-t^{d}\right)$.

For example, if $a_{1}=2, a_{2}=3, a_{3}=5$ and $b_{1}=b_{2}=b_{3}=1$, we get $\zeta_{h_{2}}(t)=$ $\left(1-t^{29}\right)$.

References

[1] E. Brieskorn, Beispiele zur Differentialtopologie von Singularitäten, Invent. Math. 2 (1966), 1-14.
[2] J. Cisneros-Molina, Join theorem for polar weighted homogeneous singularities, Proceeding of Le-Fest, Cuernavaca, 2007, to appear.
[3] L. Hernández de la Cruz and S. López de Medrano, Some families of isolated singularities, Proceeding of Le-Fest, Cuernavaca, 2007, to appear.
[4] J. Milnor, Singular Points of Complex Hypersurface, Annals math. studies 61, Princeton Univ. Press, 1968.
[5] J. Milnor and P. Orlik, Isolated singularities defined by weighted homogeneous polynomials, Topology 9 (1970), 385-393.
[6] M. Ока, On the homotopy types of hypersurfaces defined by weighted homogeneous polynomials, Topology 12 (1973), 19-32.
[7] M. Ока, On the topology of full nondegenerate complete intersection variety, Nagoya Math. J. 121 (1991), 137-148.
[8] M. Ока, Non-degenerate complete intersection singularity, Hermann, Paris, 1997.
[9] F. Pham, Formules de Picard-Lefschetz généralisées et ramification des intégrales, Bull. Soc. Math. France 93 (1965), 333-367.
[10] A. Pichon and J. Seade, Real singularities and open-book decompositions of the 3-sphere, Ann. Fac. Sci. Toulouse Math. (6) 12 (2003), 245-265.
[11] A. Pichon and J. Seade, Fibered multilinks and singularities $f \bar{g}^{*}$, preprint, Nov. 13, 2007.
[12] M. A. S. Ruas, J. Seade and A. Verjovsky, On real singularities with a Milnor fibration, Trends in singularities, Trends Math., Birkhäuser, Basel, 2002, 191-213.
[13] J. Seade, Open book decompositions associated to holomorphic vector fields, Bol. Soc. Mat. Mexicana (3) 3 (1997), 323-335.
[14] J. Seade, On the topology of hypersurface singularities, Real and complex singularities, Lecture notes in pure and appl. Math. 232, Dekker, New York, 2003, 201-205.

Mutsuo Oka
Department of Mathematics
Tokyo University of Science
26 Wakamiya-cho
Shinjuku-ku, Toкyo 162-8601
Japan
E-mail: oka@rs.kagu.tus.ac.jp

[^0]: 2000 Mathematics Subject Classification. 14J17, 32S25.
 Key words and phrases. Polar weighted homogeneous, Polar action.
 Received January 25, 2008; revised February 22, 2008.

