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MEROMORPHIC SOLUTIONS OF FUNCTIONAL EQUATION

Pð f ÞPðgÞ ¼ 1

Mingbo Yang and Ping Li

Abstract

By utilizing Nevanlinna’s value distribution theory, we find the meromorphic

solutions of the functional equations of the type Pð f ÞPðgÞ ¼ 1, where P is a polynomial

with three distinct zeros at least.

1. Introduction

Let C denote the complex plane and f ðzÞ a nonconstant function mer-
omorphic on C. The value distribution theory was derived and developed by R.
Nevanlinna in 1925, with the well-known Jensen formula as the starting point.
The theory mainly consists of the so-called first and second fundamental theorems,
expressed in terms of the quantities Tðr; f Þ, mðr; f Þ, Nðr; f Þ and Nðr; f Þ; they
are called characteristic function, proximate function, counting function and
reduced counting function (see, e.g., [4]). We use Sðr; f Þ to denote the quantity
oðTðr; f ÞÞ, ðr ! y; r B EÞ, here and in sequel, the letter E is a set of r A ð0;yÞ
with finite linear measure not necessarily the same at each occurrence. A
meromorphic function aðzÞð2yÞ is called a small function of f ðzÞ provided
that Tðr; aÞ ¼ Sðr; f Þ.

Let f ðzÞ and gðzÞ be two nonconstant meromorphic functions, and c a
finite complex number. If f ðzÞ � c and gðzÞ � c have the same zeros counting
multiplicity, then we say that f ðzÞ and gðzÞ share the value c CM. Let a, b be
two constants. We recall the definition (see, e.g., [5]) on f and g which share a
value a CM�, which means that

N r;
1

f � a

� �
�Nðr; f ¼ a; g ¼ aÞ ¼ Sðr; f Þ;

and

N r;
1

g� a

� �
�Nðr; f ¼ a; g ¼ aÞ ¼ Sðr; gÞ;
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where Nðr; f ¼ a; g ¼ bÞ denote the reduced counting function of the common
zeros of f � a and g� b. It is obvious that f and g share a value a CM implies
that f and g share a CM�.

Nevanlinna’s value distribution theory has been used to study the Fermat
type of equations of meromorphic functions since 1960s (see [2], [8]). And we
refer the reader to [3] for some recent developments of value sharing and more
general type equation Pð f Þ ¼ QðgÞ of meromorphic functions, where P, Q are
two polynomials in C½z�, see [3], [10].

In 1997, C.-C. Yang and X.-H. Hua [9] proved the following theorem.

Theorem A. Suppose that f , g are two nonconstant meromorphic functions
and nb 6 is an integer. If f nf 0gng 0 ¼ 1, then gðzÞ ¼ c1e

cz and f ðzÞ ¼ c2e
�cz,

where c, c1 and c2 are constants satisfying ðc1c2Þnþ1
c2 ¼ �1.

This theorem is also true for nb 2 (see [5]). It is nature to ask what will
happen when f n and gn in Theorem A are replaced by general polynomials in f
and g, respectively. In another paper [11], we have studied the existence or
solvability of meromorphic solutions of the functional equations of the type
Pð f Þ f 0PðgÞg 0 ¼ 1, where P is a polynomial with two distinct zeros at least, and
obtain some results. In this paper, by using Nevanlinna’s value distribution
theory, we further study the existence or solvability of meromorphic solutions of
the functional equations of the type Pð f ÞPðgÞ ¼ 1, where P is a polynomial with
three distinct zeros at least, and prove the following results.

Theorem 1. Suppose that PðzÞ is a complex polynomial having at least three

distinct zeros r1, r2 and r3. Let PðzÞ ¼ ðz� r1Þk1ðz� r2Þk2ðz� r3Þk3QðzÞ, where
k1, k2, k3 are three positive integers, QðzÞ is a polynomial of degree m and
QðriÞ0 0, i ¼ 1; 2; 3, the constant term of QðzÞ is D. If ð f ; gÞ is a pair of
nonconstant meromorphic solutions of the functional equation Pð f ÞPðgÞ ¼ 1, then
ð f ; gÞ must satisfy one of the following three equations:

(i) ð f � r1Þð f � r2Þð f � r3Þðg� r1Þðg� r2Þðg� r3Þ ¼ d;

(ii) ð f � r1Þ2ð f � r2Þð f � r3Þðg� r1Þ2ðg� r2Þðg� r3Þ ¼ d;

(iii) ð f � r1Þ3ð f � r2Þ2ð f � r3Þðg� r1Þ3ðg� r2Þ2ðg� r3Þ ¼ d,
where d is a nonzero constant.

Obviously, we can assume that one of those three numbers is zero in
Theorem 1 by parallel moving: r1 ! 0, r2 ! r2 � r1 (denoted by r1), r3 ! r3 � r1
(denoted by r2), so we only need to solve the the following three equations,

f ð f � r1Þð f � r2Þgðg� r1Þðg� r2Þ ¼ d;ð1:1Þ
f 2ð f � r1Þð f � r2Þg2ðg� r1Þðg� r2Þ ¼ d;ð1:2Þ
f 3ð f � r1Þ2ð f � r2Þg3ðg� r1Þ2ðg� r2Þ ¼ d:ð1:3Þ

Now we have the following theorem:
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Theorem 2. Let r1, r2 and d be nonzero constants, and r1 0 r2. Then the
functional equations (1.2) and (1.3) have no nonconstant meromorphic solutions; the
functional equation (1.1) has nonconstant meromorphic solutions, if and only if r1
and r2 satisfy

r21 � r1r2 þ r22 ¼ 0;ð1:4Þ
and when r1, r2 satisfy (1.4), the pair of nonconstant meromorphic solution ð f ; gÞ of
equation (1.1) must satisfy

f ¼ r� rcð
ffiffiffi
3

p
� } 0ðWÞÞ

2}ðWÞð1:5Þ

g ¼ r� r2f 0ð f � rÞffiffiffi
3

p
cW 0f ð f � r1Þð f � r2Þ

;ð1:6Þ

where W is an entire function of z, }ðzÞ is the Weierstrass elliptic function

satisfying ð} 0Þ2 ¼ 4}3 � 1, r ¼ r1 þ r2

3
and c is a cube root of unity.

Corollary 1. Suppose that f and g are two nonconstant meromorphic
functions. Let m, n be two positive integers satisfying mþ nb 14, and a, b, c
three distinct constants. Let HðzÞ ¼ ðz� aÞðz� bÞmðz� cÞn. If Hð f Þ and HðgÞ
share 1 CM, then Hð f Þ ¼ HðgÞ.

2. Some lemmas

The following lemmas will be used in the proof of our theorems. Lemma 1
is obvious by the lemma of logarithmic derivative, i:e:, mðr; f 0=f Þ ¼ Sðr; f Þ (see
e.g. [4]). Lemma 3 is well-known.

Lemma 1. Let f ðzÞ be a nonconstant meromorphic function, and let Plð f Þ be
a polynomial in f of degree l, and ai, i ¼ 1; 2 . . . ; n be distinct complex numbers in
C, and j be a natural number. Let

g ¼ Plð f Þ f ðjÞ
ð f � a1Þ � � � ð f � anÞ

:

If l < n, then mðr; gÞ ¼ Sðr; f Þ.

Lemma 2 ([1, 2]). Any functions FðzÞ, GðzÞ, which are meromorphic in the
plane and satisfy

F 3 þ G3 ¼ 1;ð2:1Þ

have the form

F ¼ f ðWðzÞÞ; G ¼ cgðWðzÞÞ ¼ cf ð�WðzÞÞ ¼ f ð�c2WðzÞÞ;ð2:2Þ
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where f and g are the following functions:

f ðzÞ ¼ 3þ
ffiffiffi
3

p
} 0ðzÞ

6}ðzÞ ; gðzÞ ¼ 3�
ffiffiffi
3

p
} 0ðzÞ

6}ðzÞ ;ð2:3Þ

where W is an entire function of z, }ðzÞ is the Weierstrass elliptic function
satisfying ð} 0Þ2 ¼ 4}3 � 1 and c is a cube-root of unity.

Lemma 3 ([7]). Let f ðzÞ be a nonconstant meromorphic function. If

Rð f Þ ¼ P1ð f Þ
Q1ð f Þ

¼ ap f
p þ ap�1 f

p�1 þ � � � þ a0

bq f q þ bq�1 f q�1 þ � � � þ b0
;

where P1ð f Þ and Q1ð f Þ are two relatively prime polynomials of degree p and q,
respectively, and the coe‰cients aiðzÞ and bjðzÞ are all small functions of f ðzÞ with
apðzÞ2 0, bqðzÞ2 0, i ¼ 1; 2 . . . ; p, j ¼ 1; 2 . . . ; q, then we have

Tðr;Rð f ÞÞ ¼ maxfp; qgTðr; f Þ þ Sðr; f Þ:ð2:4Þ

Lemma 4 ([5] or [6]). Suppose that f and g are two nonconstant meromorphic
functions sharing the value 1 CM. If f 0 g and fg0 1, then the following
inequality holds:

Tðr; f ÞaN2ðr; f Þ þN2ðr; gÞ þN2 r;
1

f

� �
þN2 r;

1

g

� �
þ Sðr; f Þ þ Sðr; gÞ;ð2:5Þ

where the notation N2ðr; f Þ ¼ Nðr; f Þ þNð2ðr; f Þ.

3. Proof of Theorem 1

Suppose that ð f ; gÞ is a pair of nonconstant meromorphic solution of the
functional equation Pð f ÞPðgÞ ¼ 1, where PðzÞ is a polynomial having k ðkb 3Þ
distinct roots r1; r2; . . . ; rk. By Nevanlinna’s first fundamental theorem and
Lemma 3, we have Tðr; f Þ ¼ Tðr; gÞ þ SðrÞ, where SðrÞ :¼ Sðr; f Þ ¼ Sðr; gÞ.
It is obvious that any rj point of f is a pole of g. If kb 4, then by Nevanlinna’s
second fundamental theorem, we have

2Tðr; f Þa
Xk
j¼0

N r;
1

f � rj

� �
þ SðrÞaNðr; gÞ þ SðrÞaTðr; gÞ þ SðrÞ;

which implies Tðr; f ÞaSðrÞ, a contradiction. Hence equation PðzÞ ¼ 0 only
has three distinct roots r1, r2, r3, and QðzÞ is constant. We write QðzÞ as
D. Suppose that z is a ri point of f with multiplicity ni, and also a pole f
with multiplicity p. Then niki ¼ pðk1 þ k2 þ k3Þ. Therefore, ni bmi :¼
ðk1 þ k2 þ k3Þ=ki. This means that the multiplicities of all ri points of f are at
least mi, i ¼ 1; 2; 3. Since
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1

m1
þ 1

m2
þ 1

m3
¼ 1;ð3:1Þ

by Nevanlinna’s second fundamental theorem, we have

Tðr; f ÞaN r;
1

f � r1

� �
þN r;

1

f � r2

� �
þN r;

1

f � r3

� �
þ SðrÞ

a
1

m1
N r;

1

f � r1

� �
þ 1

m2
N r;

1

f � r2

� �
þ 1

m3
N r;

1

f � r3

� �
þ SðrÞ

aTðr; f Þ þ SðrÞ;

which implies that

N r;
1

f � ri

� �
¼ miN r;

1

f � ri

� �
þ SðrÞ0SðrÞ; i ¼ 1; 2; 3:

Therefore, ‘‘almost all’’ ri points of f have multiplicity mi, and thus ‘‘almost all’’
poles of g are simple. Symmetrically, we see that ‘‘almost all’’ ri points of g
have multiplicity mi, and ‘‘almost all’’ poles of f are simple. For convenience,
we assume m1 am2 am3. Since

k1 þ k2 þ k3 ¼ miki; i ¼ 1; 2; 3;ð3:2Þ
we have 3ðk1 þ k2 þ k3Þbm1ðk1 þ k2 þ k3Þ, that is m1 a 3. By (3.1), we have
m1 > 1. Therefore, m1 ¼ 2 or m1 ¼ 3.

Now we distinguish two cases below.
If m1 ¼ 3, note m1 am2 am3, by (3.1) we get m1 ¼ m2 ¼ m3 ¼ 3, obviously

there exists a natural number k such that ki ¼ k, i ¼ 1; 2; 3.
If m1 ¼ 2, then we have k1 ¼ k2 þ k3, by (3.2) and m1 am2 am3, we get

2ðk1 þ k2 þ k3Þbm2ðk2 þ k3Þ. Therefore, 4ðk2 þ k3Þbm2ðk2 þ k3Þ, and thus
m2 a 4. Obviously by (3.1), we have m2 0 2. Hence we have m2 ¼ 3 or
m2 ¼ 4. If m2 ¼ 3, then we have m3 ¼ 6. Thus there exists a natural number
k such that k1 ¼ 3k, k2 ¼ 2k, k3 ¼ k. If m2 ¼ 4; then we have m3 ¼ 4, thus
there exists a natural number k such that k1 ¼ 2k, k2 ¼ k, k3 ¼ k. Therefore,
the equation Pð f ÞPðgÞ ¼ 1 can be reduced to the following three equations:

(i) ð f � r1Þkð f � r2Þkð f � r3Þkðg� r1Þkðg� r2Þkðg� r3Þk ¼ 1=D,

(ii) ð f � r1Þ2kð f � r2Þkð f � r3Þkðg� r1Þ2kðg� r2Þkðg� r3Þk ¼ 1=D,

(iii) ð f � r1Þ3kð f � r2Þ2kð f � r3Þkðg� r1Þ3kðg� r2Þ2kðg� r3Þk ¼ 1=D.
The conclusion of Theorem 1 follows.

4. Proof of Theorem 2

Suppose that f and g are nonconstant meromorphic functions satisfying one
of the equations (1.1), (1.2), and (1.3). Then the 0 points, r1 points, and r2 points
of f are poles of g. By Nevanlinna’s second fundamental theorem, we have
Tðr; f ÞaTðr; gÞ þ Sðr; f Þ. Symmetrically, we have Tðr; gÞaTðr; f Þ þ Sðr; gÞ.
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Hence Tðr; f Þ ¼ Tðr; gÞ þ SðrÞ, where SðrÞ :¼ Sðr; f Þ ¼ Sðr; gÞ. We shall con-
sider the three functional equations (1.1), (1.2) and (1.3), respectively.

4.1. Solution of equation (1.1)
Suppose that f and g are nonconstant meromorphic functions satisfying

equation (1.1). In this case, by the arguments in the proof of Theorem 1, we see
that the multiplicities of 0 points, r1 points and r2 points of f or g are almost all
3, the poles of f or g are almost all simple. Let

j1 ¼
ð f 0Þ3

f 2ð f � r1Þ2ð f � r2Þ2
; j2 ¼

ðg 0Þ3

g2ð f � g1Þ2ðg� r2Þ2
:ð4:1Þ

Then we have ji 2 0 and Nðr; jiÞ ¼ SðrÞ, i ¼ 1; 2. From the expression

j1 ¼
f 0

f ð f � r1Þ
� f 0

f ð f � r2Þ
� f 0

ð f � r1Þð f � r2Þ
;

and by Lemma 1, we get mðr; j1Þ ¼ SðrÞ. Therefore, Tðr; j1Þ ¼ SðrÞ. Similarly,
we have Tðr; j2Þ ¼ SðrÞ. By the first equation in (4.1), we get

f ¼ 1

j1

f 0

f

f 0

ð f � r1Þð f � r2Þ

� �2

;

then we have mðr; f Þ ¼ SðrÞ, similarly we have mðr; gÞ ¼ SðrÞ.
Suppose that z1 is a zero of g of multiplicity of 3. Then it is a simple pole

of f , we have the following Laurent expansions in a neighborhood of z1,

f ðzÞ ¼ A1

z� z1
þOð1Þ; gðzÞ ¼ A2ðz� z1Þ3 þOððz� z1Þ4Þ;

where A1 and A2 are nonzero constant. Then we get

f 0ðzÞ ¼ �A1

ðz� z1Þ2
þOð1Þ; g 0ðzÞ ¼ 3A2ðz� z1Þ2 þOððz� z1Þ3Þ:

Substitute the above two equations into (1.1) and (4.1), respectively, we get
d ¼ A3

1A2r1r2, j1ðz1Þ ¼ �1=A3
1 , j2ðz1Þ ¼ 27A2=ðr21r22Þ. And thus

j1ðz1Þ
j2ðz1Þ

¼ � r31r
3
2

27d
:

Note that Nðr; 1=gÞ0Sðr; gÞ. We deduce that

j1
j2

¼ � r31r
3
2

27d
:ð4:2Þ

Similarly we have
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j2
j1

¼ � r31r
3
2

27d
:ð4:3Þ

Therefore, we get j1 1 j2 or j1 1�j2.
Taking the derivative in equation (1.1) gives

f 0Lð f Þ
f ð f � r1Þð f � r2Þ

þ g 0LðgÞ
gðg� r1Þðg� r2Þ

¼ 0;ð4:4Þ

where LðzÞ is a polynomial defined by

LðzÞ ¼ 3 z2 � 2

3
ðr1 þ r2Þzþ

r1r2

3

� �
:ð4:5Þ

Note that the zeros of f 0 are the poles of g and the zeros of g 0 are the poles of f ,
hence by (4.4), we see that Lð f Þ and LðgÞ share 0 CM.

We divide our argument into two cases below:
Case (a): r21 � r1r2 þ r22 ¼ 0.
In this case, the equation LðzÞ ¼ 0 has a multiple root r ¼ ðr1 þ r2Þ=3, hence

we have LðzÞ ¼ 3ðz� rÞ2. So, r is a shared value of f and g. By (1.1), we get

d ¼ ðrðr� r1Þðr� r2ÞÞ2 ¼
r1r2

3

� �3

¼ r6:ð4:6Þ

Combine this with (4.2), we obtain j2 ¼ �j1. By (4.1) and (4.4), we get

f 0

ðLð f ÞÞ2
¼ � g 0

ðLðgÞÞ2
:

Let

A ¼ ðg� rÞ2

ð f � rÞ2
f 0:ð4:7Þ

Note that d ¼ r6 and zðz� r1Þðz� r2Þ ¼ ðz� rÞ3 þ r3. (1.1) can be rewritten as

1

ðg� rÞ3
¼ � 1

r3
f ð f � r1Þð f � r2Þ

ð f � rÞ3
:ð4:8Þ

Hence we get A3 ¼ r6j1. From (4.7) and (4.8), we get

g ¼ r� r3 f 0ð f � rÞ
Af ð f � r1Þð f � r2Þ

;ð4:9Þ

By the first equation in (4.1), A3 ¼ r6j1 and zðz� r1Þðz� r2Þ ¼ ðz� rÞ3 þ r3, we
get

f 0r2

A

� �3

¼ ðð f � rÞ3 þ r3Þ2:ð4:10Þ
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Let G ¼ f 0r2=A and F ¼ ð f � rÞ3 þ r3. Then the above equation yields G ¼ h2

and F ¼ h3, where h ¼ F=G. Therefore,

h

r

� �3

þ 1� f

r

� �3

¼ 1;ð4:11Þ

By Lemma 2, we get

h

r
¼ 3þ

ffiffiffi
3

p
} 0ðWÞ

6}ðWÞ ;
r� f

r
¼ c

3�
ffiffiffi
3

p
} 0ðWÞ

6}ðWÞ ;ð4:12Þ

where W is an entire function of z, }ðzÞ is the Weierstrass elliptic function
satisfying ð} 0Þ2 ¼ 4}3 � 1 and c is a cube root of unity.

Taking the derivative of the both sides in the second equation of (4.12) and
deducing, we get

f 0

r
¼ cW 0

2

2ffiffiffi
3

p }3ðWÞ þ } 0ðWÞ þ 1ffiffiffi
3

p

}2ðWÞ :ð4:13Þ

By the first equation of (4.12), combined with G ¼ f 0r2=A and G ¼ h2, we get

f 0 ¼ A

1þ 1ffiffiffi
3

p } 0ðWÞ

2}ðWÞ

0
BB@

1
CCA
2

:ð4:14Þ

The above two equations yield

2ffiffiffi
3

p � 2rcW 0

A

� �
} 0ðWÞ ¼ 4rcW 0ffiffiffi

3
p

A
� 4

3

� �
}3ðWÞ þ 2rcW 0ffiffiffi

3
p

A
� 2

3
:

Note that ð} 0Þ2 ¼ 4}3 � 1, we know
2ffiffiffi
3

p � 2rcW 0

A
1 0, hence A ¼

ffiffiffi
3

p
rcW 0,

combined with (4.9) and the second equation in (4.12), we have

f ¼ r� rcð
ffiffiffi
3

p
� } 0ðWÞÞ

2}ðWÞ

g ¼ r� r2f 0ð f � rÞffiffiffi
3

p
cW 0f ð f � r1Þð f � r2Þ

:

Hence we proved the result of Theorem (2) in this case.
Case (b): r21 � r1r2 þ r22 0 0.
In this case, the equation LðzÞ ¼ 0 has two distinct roots denoted by a1,

a2. (4.5) can be rewritten as

LðzÞ ¼ 3ðz� a1Þðz� a2Þ:
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By (4.4), we know that f and g share the set fa1; a2g CM. (4.4) can be rewritten
as

f 0ð f � a1Þð f � a2Þ
f ð f � r1Þð f � r2Þ

þ g 0ðg� a1Þðg� a2Þ
gðg� r1Þðg� r2Þ

¼ 0:ð4:15Þ

Note that

a1ða1 � r1Þða1 � r2Þ ¼ a1ða21 � ðr1 þ r2Þa1 þ r1r2Þ

¼ a1
2

3
ðr1 þ r2Þa1 �

r1r2

3
� ðr1 þ r2Þa1 þ r1r2

� �

¼ 2

3
r1r2a1 �

1

3
ðr1 þ r2Þa21

¼ 2

3
r1r2a1 �

1

3
ðr1 þ r2Þ

2

3
ðr1 þ r2Þa1 �

r1r2

3

� �
;

thus we obtain

a1ða1 � r1Þða1 � r2Þ ¼ � 2

9
ðr21 � r1r2 þ r22Þa1 þ

r1r2ðr1 þ r2Þ
9

:ð4:16Þ

Similarly we can get

a2ða2 � r1Þða2 � r2Þ ¼ � 2

9
ðr21 � r1r2 þ r22Þa2 þ

r1r2ðr1 þ r2Þ
9

:ð4:17Þ

When Nðr; f ¼ a1; g ¼ a1Þ0SðrÞ and Nðr; f ¼ a1; g ¼ a2Þ0SðrÞ occur at
the same time, by (1.1), we have

d ¼ ða1ða1 � r1Þða1 � r2ÞÞ2 and d ¼ a1ða1 � r1Þða1 � r2Þa2ða2 � r1Þða2 � r2Þ;
thus we get

a1ða1 � r1Þða1 � r2Þ ¼ a2ða2 � r1Þða2 � r2Þ:
From (4.16) and (4.17), we get a1 ¼ a2, a contradiction. Similarly
Nðr; f ¼ a1; g ¼ a1Þ0SðrÞ and Nðr; f ¼ a2; g ¼ a1Þ0SðrÞ cannot occur at the
same time. Hence when Nðr; f ¼ a1; g ¼ a1Þ0SðrÞ, we have Nðr; f ¼ a1;
g ¼ a2Þ ¼ SðrÞ and Nðr; f ¼ a2; g ¼ a1Þ ¼ SðrÞ, thus f and g share a1, a2 CM�.
Let

a ¼ f � a1

g� a1

g� a2

f � a2
:

Obviously, we have Tðr; aÞ ¼ SðrÞ and a2 0, thus we get

g ¼ a1 þ
ða1 � a2Þð f � a1Þ

ða� 1Þ f þ a1 � aa2
¼ ðaa1 � a2Þ f þ ð1� aÞa1a2

ða� 1Þ f þ a1 � aa2
:

Hence
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g� ri ¼
ðaa1 � a2 � ða� 1ÞriÞ f þ ð1� aÞa1a2 � riða1 � aa2Þ

ða� 1Þ f þ a1 � aa2
; i ¼ 1; 2:

From (1.1) and the above equation, we get

d ¼ f ð f � r1Þð f � r2Þ
ðaa1 � a2Þ f þ ð1� aÞa1a2

ða� 1Þ f þ a1 � aa2

� ðaa1 � a2 � ða� 1Þr1Þ f þ ð1� aÞa1a2 � r1ða1 � aa2Þ
ða� 1Þ f þ a1 � aa2

� ðaa1 � a2 � ða� 1Þr2Þ f þ ð1� aÞa1a2 � r2ða1 � aa2Þ
ða� 1Þ f þ a1 � aa2

:

By Lemma 3 and the above equation, we deduce that d is not a constant, a
contradiction.

Similarly when Nðr; f ¼ a2; g ¼ a2Þ0SðrÞ, we can deduce that f � a1 and
g� a2 share 0 CM�, and that f � a2 and g� a1 share 0 CM�. Let

b ¼ f � a1

g� a2

g� a1

f � a2
:

Obviously, we have Tðr; bÞ ¼ SðrÞ and b2 0. By a similar argument as the
above, we can also deduce a contradiction. Hence equation (1.1) has no
nonconstant meromorphic solutions in Case (b), which completes the proof
about solutions of equation (1.1).

4.2. Solution of equation (1.2)
Suppose that f and g are nonconstant meromorphic functions satisfying

equation (1.2). In this case, the multiplicities of 0 points of f , g are almost all 2,
the multiplicities of r1 points, r2 points of f , g are almost all 4, their poles are
almost all simple. Let

f1 ¼
ð f 0Þ4

f 2ð f � r1Þ3ð f � r2Þ3
; f2 ¼

ðg 0Þ4

g2ðg� r1Þ3ðg� r2Þ3
:ð4:18Þ

Obviously we have Tðr; fiÞ ¼ SðrÞ and fi 2 0, i ¼ 1; 2. By the first equation in
(4.18), we get

f ¼ 1

f1

f 0

f

f 0

ð f � r1Þð f � r2Þ

� �3

;

and by Lemma 1, we have mðr; f Þ ¼ SðrÞ, similarly we have mðr; gÞ ¼ SðrÞ.
By considering the Laurent expansion in the neighborhood of a zero with

multiplicity 2 of f and g, respectively, we can obtain f1 ¼ f2 or f1 ¼ �f2, and
by (1.2)

d ¼ ðr1r2Þ4

16

f1
f2

:ð4:19Þ
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On the other hand, by considering the Laurent expansions in the neighborhood of
a r1 point with multiplicity 4 of f , we can get

f1
f2

¼ 256d

ðr1ðr1 � r2ÞÞ4
;ð4:20Þ

combined with (4.19) and by the symmetry of r1 and r2, we get r1 ¼ �r2. Let
r ¼ r1 ¼ �r2. Hence d ¼ r8=16 or d ¼ �r8=16. If d ¼ r8=16, then by (1.2), we
get

f 2ð f 2 � r2Þg2ðg2 � r2Þ ¼ r8

16
:ð4:21Þ

Let h1 ¼ fg. Then by (4.21), we get

f 2 þ g2 ¼
h41 � r4h21 �

r8

16
r2h21

:

Hence

ð f þ gÞ2 ¼
h41 þ 2r2h31 � r4h21 �

r8

16
r2h21

;ð4:22Þ

ð f � gÞ2 ¼
h41 � 2r2h31 � r4h21 �

r8

16
r2h21

:ð4:23Þ

Note r0 0, either the equation z4 þ 2r2z3 � r4z2 � r8=16 ¼ 0 or the equation
z4 � 2r2z3 � r4z2 � r8=16 ¼ 0 have no multiple roots. All of the roots of the two
equations are pairwise distinct, thus by (4.22) and (4.23), we deduce that h1 has
eight multiple value points. By Nevanlinna’s second fundamental theorem, we
know that a nonconstant meromorphic function has four multiple value points
at most, thus h1 is a constant, hence f þ g and f � g are also constants, which
implies that f and g are constants, a contradiction. If d ¼ �r8=16, then we
can also get a contradiction by using the similar argument as the above. Hence
equation (1.2) has no nonconstant meromorphic solutions.

4.3. Solution of equation (1.3)
Suppose that f and g are nonconstant meromorphic functions satisfying

equation (1.3). In this case, the multiplicities of 0 points of f , g are almost all 2,
the multiplicities of r1 points of f , g are almost all 3, the multiplicities of r2
points of f , g are almost all 6, their poles are almost all simple. Let

c1 ¼
ð f 0Þ6

f 3ð f � r1Þ4ð f � r2Þ5
; c2 ¼

ðg 0Þ6

g3ðg� r1Þ4ðg� r2Þ5
:ð4:24Þ
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Obviously we have Tðr;ciÞ ¼ SðrÞ and ci 2 0, i ¼ 1; 2. Simultaneously we have
mðr; f Þ ¼ SðrÞ and mðr; gÞ ¼ SðrÞ.

Suppose that z2 is a zero point of f of multiplicity 2. Then it is the simple
pole of g. By considering the Laurent expansions of f and g in a neighborhood
of z2, we can prove

d ¼ r1r2

2

� �6
c1

c2

;ð4:25Þ

and c1 ¼ c2 or c1 ¼ �c2.
Suppose that z3 is a r1-point of f of multiplicity 3. Then it is the simple

pole of g. By considering the Laurent expansions of f and g in a neighborhood
of z3, we can obtain

d ¼ r1ðr1 � r2Þ
3

� �6
c1

c2

:ð4:26Þ

Combined with (4.25), we get

r2

2

� �6

¼ r1 � r2

3

� �6

:ð4:27Þ

Suppose that z4 is a r2-point of f of multiplicity 6. Then it is the simple pole of
g. By considering the Laurent expansions of f and g in a neighborhood of z4,
we can get

d ¼ 66

r62ðr2 � r1Þ6
c1

c2

:ð4:28Þ

Combined with (4.25), we get

r1

2

� �6

¼ r2 � r1

6

� �6

:ð4:29Þ

From (4.27) and (4.29), we can get r32 þ 8r31 ¼ 0 or r32 � 8r31 ¼ 0. When
r32 þ 8r31 ¼ 0, we have r2 ¼ �2r1 or r22 ¼ 2r1r2 � 4r21 .

If r2 ¼ �2r1. Taking it into (4.27), we get r31 ¼ 0, hence r1 ¼ 0, a contra-
diction.

If r22 ¼ 2r1r2 � 4r21 , then combining with (4.27), we still get r1 ¼ 0, a
contradiction. When r32 � 8r31 ¼ 0, we can still get a contradiction by using
a similar argument as the above. Hence equation (1.3) has no nonconstant
solutions. Therefore, the proof of Theorem 2 is completed.

5. Proof of Corollary 1

Let

F ¼ Hð f Þ ¼ ð f � aÞð f � bÞmð f � cÞn

65meromorphic solutions of functional equation Pð f ÞPðgÞ ¼ 1



and

G ¼ HðgÞ ¼ ðg� aÞðg� bÞmðg� cÞn.
Then we have

N2ðr;F Þ ¼ 2Nðr; f Þa 2Tðr; f Þ; N2ðr;GÞ ¼ 2Nðr; gÞa 2Tðr; gÞ;ð5:1Þ

N2 r;
1

F

� �
a 5Tðr; f Þ þOð1Þ; N2 r;

1

G

� �
a 5Tðr; gÞ þOð1Þ:ð5:2Þ

If F 0G and FG0 1, then by Lemma 4 and inequalities (5.1), (5.2), we have

Tðr;FÞa 7Tðr; f Þ þ 7Tðr; gÞ þ SðrÞ;ð5:3Þ

where SðrÞ ¼ Sðr;FÞ þ Sðr;GÞ ¼ Sðr; f Þ þ Sðr; gÞ. Since

Tðr;FÞ ¼ ðmþ nþ 1ÞTðr; f Þ þOð1Þ
and by (5.3), we get

ðmþ n� 6ÞTðr; f Þa 7Tðr; gÞ þ SðrÞ:
Symmetrically, we have

ðmþ n� 6ÞTðr; gÞa 7Tðr; f Þ þ SðrÞ:
These two inequalities yield

ðmþ n� 13ÞðTðr; f Þ þ Tðr; gÞÞaSðrÞ;
which is impossible for mþ nb 14 and nonconstant meromorphic functions f
and g.

When mþ nb 14, we can rule out the case FG ¼ 1 by Theorem 2. There-
fore, we have F ¼ G, i.e., Hð f Þ ¼ HðgÞ, which completes the proof of Corollary
1.
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