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Abstract

Let D denote the open unit disc and let p A ð0; 1Þ. We consider the family CoðpÞ
of functions f : D ! C that satisfy the following conditions:

(i) f is meromorphic in D and has a simple pole at the point p.

(ii) f ð0Þ ¼ f 0ð0Þ � 1 ¼ 0.

(iii) f maps D conformally onto a set whose complement with respect to C is

convex.

We determine the exact domains of variability of some coe‰cients anð f Þ of the Laurent

expansion

f ðzÞ ¼
Xy
n¼�1

anð f Þðz� pÞn; jz� pj < 1� p;

for f A CoðpÞ and certain values of p. Knowledge on these Laurent coe‰cients is used

to disprove a conjecture of the third author on the closed convex hull of CoðpÞ for

certain values of p.

Let D denote the open disc and let p A ð0; 1Þ. We consider the family CoðpÞ
of functions f : D ! C that satisfy the following conditions:

(i) f is meromorphic in D and has a simple pole at the point p.
(ii) f ð0Þ ¼ f 0ð0Þ � 1 ¼ 0.
(iii) f maps D conformally onto a set whose complement with respect to C

is convex.
In [7] the third author of the present article proved the following theorem.

Theorem A. Let p A ð0; 1Þ, f A CoðpÞ, and let

f ðzÞ ¼
Xy
n¼�1

anð f Þðz� pÞn; jz� pj < 1� p;
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be the Laurent expansion of f at the point p. Then the domain of variability of
the residuum a�1ð f Þ is determined by the inequality

a�1ð f Þ þ
p2

1� p4

����
����a p4

1� p4
:ð1Þ

Equality is attained in (1) if and only if

f ðzÞ ¼
z� p

1þ p2
ð1þ eiyÞz2

1� z

p

� �
ð1� zpÞ

; z A D;ð2Þ

for some y A ½0; 2p�.

Theorem A follows without di‰culty from the following representation
theorem proved by Avkhadiev and Wirths in [2].

Theorem B. Let p A ð0; 1Þ. For any f A CoðpÞ there exists a function
o : D ! D holomorphic in D such that

f ðzÞ ¼
z� p

1þ p2
ð1þ oðzÞÞz2

1� z

p

� �
ð1� zpÞ

; z A D:ð3Þ

On one hand, the present article originated in discussions among the authors
whether it is possible to derive the domains of variability of Laurent coe‰cients
anð f Þ, nb 0, for f A CoðpÞ from Theorem B. On the other hand, the third
author hoped that it would be possible to prove that the family of functions
defined by (3) represents the closed convex hull of CoðpÞ in the topology of
uniform convergence on compact subsets of D.

In the sequel, we will determine the above domains of variability for n ¼ 0
and n ¼ 1 for certain values of p. For the remaining values of p we will use
these considerations and some results of Livingston in [4] to show that the above
mentioned hope was in vain.

Our first result is an application of Theorem A and Theorem 4 in [4].

Theorem 1. Let p A ð0; 1Þ and f A CoðpÞ. Then

Re a0ð f Þb� p

ð1� p2Þ2
:ð4Þ

Equality is attained in (4) if and only if

f ðzÞ ¼ z

1� z

p

� �
ð1� zpÞ

; z A D:ð5Þ
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Proof. In [4, Theorem 4], Livingston proved that for f A CoðpÞ the
inequality

pþ a0ð f Þð1� p2Þ
a�1ð f Þ

����
����a 1þ p2

p

is valid. Hence, for any f A CoðpÞ there exists a number t A D such that

a0ð f Þ ¼
a�1ð f Þ
1� p2

�pþ t
1þ p2

p

� �
:ð6Þ

To prove (4) we have to determine the minimal real part of the product at the
right side of (6), where a�1ð f Þ varies in the disc described by (1). To that end
it is su‰cient to consider the points t ¼ eij, j A ½0; 2p�, and to compute the
minimum of the quantity

�p

ð1� p4Þð1� p2Þ ðð1þ p2Þ cos j� p2Þ

� p3

ð1� p4Þð1� p2Þ ðð1þ p2Þ2 sin2 jþ ðð1þ p2Þ cos j� p2Þ2Þ1=2;

where j A ½0; 2p�. Letting x ¼ cos j A ½�1; 1� in this expression and di¤erentiat-
ing with respect to x reveals there is no local extremum in the interval ð�1; 1Þ.
Therefore, it is easy to see that the minimum is attained for t ¼ 1 and a�1ð f Þ ¼
�p2=ð1� p2Þ. According to Theorem A, this residuum occurs only for the
function (5) and for this function equality is attained in (4). This concludes the
proof of Theorem 1. r

For poles near the origin much more can be proved.

Theorem 2. Let p A ð0;
ffiffiffi
3

p
� 1� and f A CoðpÞ. Then the domain of vari-

ability of a0ð f Þ is determined by the inequality

1� p2

p
a0ð f Þ þ

1� p2 þ p4

1� p4

����
����a p2ð2� p2Þ

1� p4
:ð7Þ

Equality is attained in (7) if and only if f is one of the functions given in (2).

Proof. We multiply (3) by the denominator of the right side and expand
both side in power series with expansion point at p. In the resulting equation,
letting

oðzÞ ¼
Xy
n¼0

cnðz� pÞn; z A D;

and comparing the constant terms and the coe‰cients of ðz� pÞ, we get
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a�1ð f Þ ¼
�p2

1� p4
þ p4

1� p4
c0ð8Þ

and

a�1ð f Þ �
1� p2

p
a0ð f Þ ¼

1� p2

1þ p2
� p2

1þ p2
ð2c0 þ pc1Þ:ð9Þ

It may be mentioned at this place that (8) and the inequality jc0ja 1 immediately
prove Theorem A.

Further, we derive from (8) and (9) together the representation

1� p2

p
a0ð f Þ þ

1� p2 þ p4

1� p4
¼ 2p2 � p4

1� p4
c0 þ

p3

1þ p2
c1:ð10Þ

Using the inequalities

jc0ja 1 and jc1ja
1� jc0j2

1� p2
;

we get from (10) the inequality

1� p2

p
a0ð f Þ þ

1� p2 þ p4

1� p4

����
����a p2

1� p4
ðð2� p2Þjc0j þ pð1� jc0j2ÞÞ:

The function

gðxÞ ¼ ð2� p2Þxþ pð1� x2Þ

has its local maximum at xMðpÞ ¼ ð2� p2Þ=2p. Since xMðpÞb 1 for p A
ð0;

ffiffiffi
3

p
� 1�, we get that

maxfgðxÞ j x A ½0; 1�g ¼ gð1Þ ¼ 2� p2

for those p. This proves the inequality (7) for f A CoðpÞ. Obviously, jc0j ¼ 1
implies that the only functions f A CoðpÞ, for which equality can occur there, are
the functions (2).

The points in the disc described by (7) are attained for the functions (3)
with oðzÞ1 c0, jc0ja 1. The fact that they belong to the class CoðpÞ has been
proved in [1] and [7]. The proof of Theorem 2 is finished. r

Now, we turn to the values of p in the interval ð
ffiffiffi
3

p
� 1; 1Þ and for them we

get

Theorem 3. Let p A ð
ffiffiffi
3

p
� 1; 1Þ. Then the closed convex hull of the class

CoðpÞ is a proper subset of the class of functions defined by (3).

Proof. It is a direct consequence of Theorem 1 that the coe‰cients a0ð f Þ
of the functions in the closed convex hull of CoðpÞ satisfy the inequality (4),
likewise.
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On the other hand, let us insert into (3) the functions

oxðzÞ ¼
� z� p

1� pz

� �
� x

1þ x
z� p

1� pz

� � ; z A D;ð11Þ

x A ð0; 1Þ fixed. A computation of the coe‰cients a0ð f Þ for the resulting func-
tions using (10) delivers

a0ð f Þ ¼
�p

ð1� p2Þ2
1þ ð1� xÞp2

1þ p2
ðpð1þ xÞ � ð2� p2ÞÞ

� �
:

The right side is less than �p=ð1� p2Þ2 for x > ð2� p2 � pÞ=p and ð2� p2 � pÞ=
p < 1 for p A ð

ffiffiffi
3

p
� 1; 1Þ. Hence, the functions f got by inserting (11) into (3)

do not belong to the closed convex hull of CoðpÞ for the values of p indicated in
Theorem 3 and x A ðð2� p2 � pÞ=p; 1Þ. r

In the sequel, we shall prove similar theorems as above concerning the
coe‰cient a1ð f Þ. During this program Theorem 1 may be replaced by the fol-
lowing theorem.

Theorem C (see [4, Theorem 3]). Let p A ð0; 1Þ and f A CoðpÞ. Then the
inequality

ja1ð f Þja
p2

ð1� p2Þ3
is valid.

Concerning the analogue to Theorem 2, much more e¤ort than before is
needed because of the appearance of c0, c1, and c2 in the formulas. To get a
sharp result nevertheless, we apply the theory of extremum problems for linear
functionals on Hp, 1a pay, due to Macintyre and Rogosinski [5], and
Rogosinski and Shapiro [6] (see also Duren’s Book [3] on Hp spaces, Ch. 8).
This discussion enables us to prove

Theorem 4. Let p A 0; 1�
ffiffiffi
2

p

2

 #
and f A CoðpÞ. Then the domain of

variability of a1ð f Þ is determined by the inequality

a1ð f Þ
1� p2

p

� �2
þ p2

1� p4

�����
�����a 1

1� p4
:ð12Þ

Equality is attained in (12) if and only if f is one of the functions given in (2).

Proof. By the same procedure as in the proof of Theorem 2 we get in
addition to (8) and (9) comparing the coe‰cients of ðz� pÞ2
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a0ð f Þ �
1� p2

p
a1ð f Þ ¼ � p

1þ p2
ð1þ c0 þ 2pc1 þ p2c2Þ:

If we insert (10) into this equation, we get the following representation formula

a1ð f Þ
1� p2

p

� �2
þ p2

1� p4
¼ c0

1� p4
þ 2p� p3

1þ p2
c1 þ

p2 � p4

1þ p2
c2 ¼: FpðoÞ:ð13Þ

Our aim is to prove the inequality

jFpðoÞja
1

1� p4
;ð14Þ

where o is as above. Obviously, it is su‰cient to consider functions o holo-
morphic on D. For them, we can represent the functional Fp in the form

FpðoÞ ¼
1

2pi

ð
qD

kpðzÞoðzÞ dz;ð15Þ

where

kpðzÞ ¼
1

ð1� p4Þðz� pÞ þ
2p� p3

ð1þ p2Þðz� pÞ2
þ p2 � p4

ð1þ p2Þðz� pÞ3
:

The functional Fp remains unchanged, if we replace in (15) the kernel kp by a
rational function Kp that has the same singular part at the point p as kp and is
holomorphic elsewhere in D. Let

KpðzÞ ¼
1

1� p4
1

z� p
þ p

1� pz

� �
þ 2p� p3

1þ p2
1

ðz� pÞ2
þ 1

ð1� pzÞ2

 !

þ p2 � p4

1þ p2
1

ðz� pÞ3
þ z

ð1� pzÞ3

 !
:

A lengthy but straightforward evaluation of Kp on the unit circle results in the
following identity

eiyKpðeiyÞð1þ p2Þj1� peiyj6

¼ ð1� 2p cos yþ p2Þ2

þ ð2p� p3Þð�4pþ 2ð1þ p2Þ cos yÞð1� 2p cos yþ p2Þ

þ ðp2 � p4Þð4ðcos yÞ2 � ð2p3 þ 6pÞ cos y� 2þ 6p2Þ

¼ 4p4ð�2þ p2Þðcos yÞ2 þ 4p3ð3� p2Þ cos y

þ 1� 8p2 þ 5p4 � 2p6

:¼ Qpðcos yÞ;
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where y A ½0; 2p�. The function QpðxÞ has its local maximum at the point

xMðpÞ ¼ 3� p2

2pð2� p2Þ :

Since xMðpÞ > 1 for p A ð0; 1Þ, we get

Qpðcos yÞbQpð�1Þ ¼ 1� 8p2 � 12p3 � 3p4 þ 4p5 þ 2p6 :¼ SðpÞ; y A ½0; 2p�:

From S 0ðpÞ < 0 for p A ð0; 1� and Sð1�
ffiffiffi
2

p
=2Þ ¼ 0 we conclude that

eiyKpðeiyÞb 0; y A ½0; 2p� and p A 0; 1�
ffiffiffi
2

p

2

 #
:

Hence the desired inequality (14) results from the following chain of relations

1

2pi

ð
qD

KpðzÞoðzÞ dz
����

����a 1

2p

ð2p
0

jeiyKpðeiyÞj dykoky

¼ 1

2p

ð2p
0

eiyKpðeiyÞ dykoky

a
1

2p

ð2p
0

eiyKpðeiyÞ dy

¼ 1

2pi

ð
qD

KpðzÞ dz

¼ 1

1� p4
:

This proves the inequality (14) and therefore (12).
For the proof that any point in the disc described by (12) occurs as the

Laurent coe‰cient a1ð f Þ of a function f A CoðpÞ we may use the same functions
as in the analogous situation in the proof of Theorem 2.

To prove the second assertion of Theorem 4 we observe that in the above
chain equality is attained everywhere if oðzÞ1 1. If we apply the theory of
extremum problems for linear functionals on Hy to the linear functional Fp

(compare in particular [3, Theorem 8.1]), we see that there is a unique extremal
function oE such that

maxfjFpðoÞj jo A Hy; koky a 1g ¼ FpðoEÞ:

The above considerations show that in our case oEðzÞ1 1. This implies that
equality in (14) is attained if and only if oðzÞ1 eiy for some y A ½0; 2pÞ. This
concludes the proof of Theorem 4. r
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For the remaining values of p we can show that an improved version of
Theorem 3 is valid.

Theorem 5. Let p A 1�
ffiffiffi
2

p

2
; 1

 !
. Then the closed convex hull of the class

CoðpÞ is a proper subset of the class of functions defined by (3).

Proof. For the proof, we use the same functions as in the proof of Theorem
3. For the coe‰cients of the Taylor expansion of ox, defined by (11), at the
point p, we compute

c0 ¼ �x; c1 ¼ � 1� x2

1� p2
; and c2 ¼ � 1� x2

ð1� p2Þ2
ðp� xÞ:

If we insert these identities into (13), we derive the following expression for the
Laurent coe‰cients a1ð f Þ

a1ð f Þ ¼ � p2

ð1� p2Þ3
1þ 1� x

1þ p2
ð�1þ ð1þ xÞð2p� p2xÞÞ

� �
:

Let RpðxÞ ¼ �1þ 2pþ xð2p� p2Þ � p2x2. Because of

Rpð1Þ ¼ �1þ 4p� 2p2 > 0 for p A 1�
ffiffiffi
2

p

2
; 1

 !
;

we see that there exist x A ð0; 1Þ such that for the corresponding functions f the
inequalities

a1ð f Þ < � p2

ð1� p2Þ3

are valid. Hence, according to Theorem C, these functions f do not belong to
the closed convex hull of CoðpÞ. r
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