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NON-HYPERELLIPTIC RIEMANN SURFACES OF GENUS FIVE ALL

OF WHOSE WEIERSTRASS POINTS HAVE MAXIMAL WEIGHT1

Ryutaro Horiuchi

Abstract

It is proved that any non-hyperelliptic Riemann surface of genus five all of whose

Weierstrass points have maximal weight has only Weierstrass points with gap sequence

ð1; 2; 3; 5; 9Þ, and a defining equation of such a surface is given.

§1. Introduction

In their papers ([6], [7]), Kuribayashi and al. proved that if a non-
hyperelliptic compact Riemann surface of genus three has exactly twelve Weier-
strass points, then its defining equation is given by one of the followings:

x4 þ y4 þ 1 ¼ 0

x4 þ y4 þ 3ðx2y2 þ x2 þ y2Þ þ 1 ¼ 0
ð1Þ

As to the case of genus five, in his paper ([2]) Centina showed the existence
of elliptic-hyperellitic curves of genus five having exactly twenty four Weierstrass
points which constitute the set of fixed points of three distinct elliptic-hyperellitic
involutions on them, and proved that all such curves are double covers of
Fermat’s quartic.

The purpose of this paper is to prove that any non-hyperellitic Riemann
surfaces of genus five all whose Weierstrass points have maximal weight has only
Weierstrass points with gap sequence ð1; 2; 3; 5; 9Þ (Proposition 2), and to give an
explicit defining equation of such a surface.

The referee showed us that the example given by Centina and ours are
equivalent. The author thanks the referee for granting generous permission to
write it in Theorem 4, which makes our small contribution fruitful.

In this paper the term linear series means a linear series of positive
dimension.

379

1Primary 14H55; Secondly 30F10, 14H45.

Keywords: Weierstrass point, Weierstrass weight, non-hyperelliptic Riemann surface of genus

five.

Received December 4, 2006; revised April 20, 2007.



§2. Gap sequences

It is known ([3]) that the maximal weight of Weierstrass points on compact
non-hyperelliptic Riemann surfaces of genus five is five, and the total Weier-
strass weight is 120 ¼ 4 � 5 � 6. We shall be concerned with the existence of non-
hyperelliptic surfaces all whose Weierstrass points have maximal weight, in other
words, having 24 ¼ 120=5 Weierstrass points, and determining defining equations
of such surfaces if there exist.

There are two types of gap sequence with maximal weight five, i.e.,

ð1; 2; 4; 5; 8Þ; ð1; 2; 3; 5; 9Þ:ð2Þ
Let W max

3 be the set of Weierstrass points with the gap sequence ð1; 2; 4; 5; 8Þ,
and W max

4 the set of Weierstrass points with the gap sequence ð1; 2; 3; 5; 9Þ of a
Riemann surface.

We shall prove that non-hyperelliptic Riemann surfaces of genus five all
whose Weierstrass points have maximal weight have only Weierstrass points in
W max

4 .

Lemma 1. There is at most one linear series of degree three on surfaces of
genus gb 5 ([5], p. 553).

Proposition 1. There is no surface of genus five with all Weierstrass points
in W max

3 .

Proof. If there were a surface of genus five with all Weierstrass points in
W max

3 , then by Lemma 1 and the Riemann-Hurwitz relation for the three-sheeted
covering of P1 assured by the non-gap 3 of a Weierstrass point in W max

3 , we
would see that the surface has at most seven points in W max

3 .

Lemma 2. For each point P A W max
4 , we consider the linear series j4Pj of

degree four without fixed points. Then the number of points of W max
4 that

determine the same linear series is at most five.

Proof. The Riemann-Hurwitz relation for the four-sheeted covering of P1

assured by the non-gap 4 of a point in W max
4 is

2 � 5� 2 ¼ 4ð2 � 0� 2Þ þ V ; V ¼ 16;ð3Þ
where V is the total ramification number. We see from ½16=3� ¼ 5 that at most
five points among W max

4 determine the same linear series of degree four without
fixed points.

Proposition 2. Any non-hyperellitic Riemann surfaces of genus five all whose
Weierstrass points have maximal weight has no Weierstrass point in W max

3 .

Proof. In the proof of Corollary 5, Section 4, Part III of his lecture notes
([1]), Accola showed that a Riemann surface of genus five admitting a linear
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series of degree three without fixed points can admit at most one half-canonical
linear series of degree four.

If the surface has a Weierstrass points in W max
3 , then by the proof of

Proposition 1 it must have at least 17 Weierstrass points in W max
4 so that by

Lemma 2 it must have at least four distinct linear series. This contradicts the
fact shown by Accola.

Thus we only have to consider the Riemann surfaces with all Weierstrass
points in W max

4 .

§3. A definig equation

Lemma 3. Any Riemann surface of genus five all whose Weierstrass points
have maximal weight has at least five distinct half-canonical linear series of degree
four.

Proof. We note that n is a gap at a point P if and only if there is a
holomorphic di¤erential with zero of order n� 1 at P. Thus for a point
P A W max

4 , j8Pj is canonical, and then by Lemma 2 we have the result.

The next theorem seems to suggest that a Riemann surface with all Weier-
strass points in W max

4 would be elliptic-hyperelliptic.

Theorem 1 (Accola [2]). If a non-hyperelliptic Riemann surface of genus
five has four even half-integer theta-characteristics ½hi�, i ¼ 1; 2; 3; 4 such that
h1 þ h2 þ h3 ¼ h4, and y½hi�ðuÞ, i ¼ 1; 2; 3; 4 vanishes to order two at u ¼ 0, then
the Riemann surface has an elliptic-hyperelliptic involution.

So we have looked for Riemann surfaces with all Weierstrass points in W max
4

among the elliptic-hyperelliptic Riemann surfaces, and found the following.

Theorem 2. All Weierstrass points of the Riemann surface defined by the
equation

y4 ¼ xðx2 � 1Þðx2 þ 1Þ2ð4Þ

are in W max
4 .

Before giving the proof of this Theorem, we need the next proposition.

Proposition 3 ([3], p. 84–86). Let ff1; . . . ; fng be a basis for a finite-
dimensional space A of holomorphic functions on a complex domain D. For z A D
one can find a basis fc1; . . . ;cng with

ordz c1 < ordz c2 < � � � < ordz cnð5Þ
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by linearly transforming ff1; . . . ; fng. Let mj ¼ ordz cðzÞ, and

tðzÞ ¼
Xn

j¼1

ðmj � j þ 1Þð6Þ

be the weight of z with respect to A. Consider the Wronskian

FðzÞ ¼ det

c1ðzÞ � � � cnðzÞ
c 0
1ðzÞ � � � c 0

nðzÞ
..
. ..

.

c
ðn�1Þ
1 ðzÞ � � � cðn�1Þ

n ðzÞ

2
666664

3
777775:ð7Þ

Then

ordz F ¼ tðzÞ:ð8Þ

Proof of Theorem 2. The surface defined by (4) is obviously elliptic-
hyperelliptic, that is, a two-sheeted covering of the elliptic curve defined by

Y 2 ¼ xðx2 � 1Þ ðy2 ¼ Yðx2 þ 1ÞÞ:ð9Þ
The projection ðx; yÞ ! x defines a four-sheeted covering of the Riemann sphere
Px with four ramification points ðx; yÞ ¼ ð0; 0Þ; ðG1; 0Þ; ðy;yÞ of multiplicity
four and four ramification points ðx; yÞ ¼ ðGi; 0Þ of multiplicity two. A basis of
the holomorphic di¤erentials on the surface is given by

1

y
dx;

ðx2 þ 1Þ
y2

dx;
ðx2 þ 1Þ

y3
dx;

xðx2 þ 1Þ
y3

dx;
x2ðx2 þ 1Þ

y3
dx:ð10Þ

It is obvious that four ramification points of multiplicity four including the infinite
point ðx; yÞ ¼ ðy;yÞ belong to W max

4 . Except the point ðx; yÞ ¼ ðy;yÞ we
use x as a local parameter, since the orders of zeros of the Wronskian do not
depend on local parameters ([4], p. 148–149). Direct calculation of its Wron-
skian and Proposition 3 proves that the 24 points on it : the four point with
x ¼ 0;G1;y, the four points with x ¼Gi and the sixteen points with x ¼
�1G

ffiffiffi
2

p
and x ¼ 1G

ffiffiffi
2

p
are all the Weierstrass points in W max

4 . But it is
cumbersome to calculate by hand, and one can use Maple as follows:

> restart :
> DðxÞ :¼ 1 :
> f ½0� :¼ y54� x � ðx52� 1Þ � ðx52þ 1Þ52 :
> Dðf ½0�Þ :
> f ½1� :¼ DðyÞ ¼ factorðsolveð%;DðyÞÞÞ :
> for i from 2 to 4 do g½i� :¼ Dðf ½i� 1�Þ : f ½i� :¼ factorðsubsðf ½1�; g½i�ÞÞ : od :
> with(linalg) :
> A1 :¼ matrixð½½1=y; ðx52þ 1Þ=y52; ðx52þ 1Þ=y53; x � ðx52þ 1Þ=y53,

x52 � ðx2 þ 1Þ=y53��Þ :
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> for i from 2 to 5 do Aki :¼ mapðD;Akði� 1ÞÞ : od :
> B :¼ stackmatrixðA1;A2;A3;A4;A5Þ :
> detðBÞ :
> factorðsubsðf ½1�; f ½2�; f ½3�; f ½4�;%ÞÞ :
> factorðsubsðy ¼ ðx � ðx52� 1Þ � ðx52þ 1Þ52Þ5ð1=4Þ;%ÞÞ;

63ðx2 � 2x� 1Þ5ðx2 þ 2x� 1Þ5

1024ðx2 þ 1Þ5ðx� 1Þ10ðxþ 1Þ10x10
ð11Þ

Remark. One might think that the elliptic-hyperelliptic curves would have
all its Weierstrass points in W max

4 , but this is not the case. Some Weierstrass
points of the curves

y4 ¼ xðx2 � aÞðx2 þ 1Þ2 or y4 ¼ xðx2 � 1Þðx2 þ aÞ2 ða0 1Þð12Þ
have not maximal weight 5. This fact suggests that the Riemann surfaces having
only Weierstrass points in W max

4 need to have some automorphisms besides the
elliptic-hyperelliptic involution.

Here we give a proof of the equivalence of an example by Centina and the
one in Theorem 2, which is announced in Introduction.

Theorem 4. Centina’s example ([2]) defined by

X 2
1 þ X 2

4 þ X 2
5 ¼ 0

X 2
2 þ X 2

4 � X 2
5 ¼ 0

X 2
3 þ X4X5 ¼ 0

8><
>:ð13Þ

is birationally equivalent to

y4 ¼ xðx2 � 1Þðx2 þ 1Þ2:ð14Þ

Proof. Set xi ¼
Xi

X5
ði ¼ 1; . . . ; 4Þ, and we have

x2
1 þ x2

4 þ 1 ¼ 0

x2
2 þ x2

4 � 1 ¼ 0

x2
3 þ x4 ¼ 0

8><
>: :ð15Þ

Next we set u ¼ x1 � x2, v ¼ x3, then obviously we have Cðx1; x2; x3; x4ÞI
Cðu; vÞ. Subtracting the second equation from the first of (15), we have x2

1 �

x2
2 ¼ �2 and then x1 þ x2 ¼ � 2

u
. Thus we have x1 ¼

u

2
� 1

u
, x2 ¼ � u

2
þ 1

u

� �
.

In addition, we have x4 ¼ �v2 so that Cðx1; x2; x3; x4ÞHCðu; vÞ. Consequently
we have

Cðx1; x2; x3; x4Þ ¼ Cðu; vÞð16Þ
with the relation:
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u6

4
þ u2 þ ðuvÞ4 ¼ 0:ð17Þ

Set s ¼ cu, t ¼ duv and choose the constants c, d properly, we have Cðu; vÞ ¼
Cðs; tÞ with t4 ¼ s6 þ s2. Furthermore, if we set

x ¼ ið�isþ zÞ
ðisþ zÞ

y ¼ ðxþ iÞ2tffiffiffi
84

p

8>>>><
>>>>:

; where z ¼ ð�1Þ1=4ð18Þ

then we ultimately have y4 ¼ xðx2 � 1Þðx2 þ 1Þ2.

The problem to find all defining equations of non-hyperelliptic Riemann
surfaces all whose Weierstrass points in W max

4 still remains.
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