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SEMI-INVARIANT LIGHTLIKE SUBMANIFOLDS
OF A SEMI-RIEMANNIAN PRODUCT MANIFOLD

MEHMET ATCEKEN AND ERroOL KiLIC

Abstract

In this paper, we introduce a new class of lightlike submanifolds, namely, semi-
invariant lightlike submanifolds of a semi-Riemannian product manifold. We inves-
tigate totally umbilical, curvature invariant lightlike submanifolds in real space forms
M (c1) X M>(c2) and discuss integrabilities of distributions on semi-Riemannian product
manifold.

1. Introduction

Let (M,g) be a semi (pseudo) Riemannian manifold and let M be a sub-
manifold of M. If the restriction g = g|M of g to M is still non-degenerate, then
(M,g) becomes a semi-Riemannian manifold and it can be studied as the sub-
manifold of semi-Riemannian manifolds. A different situation appears when g is
degenerate, then (M, g) is said to be a lightlike (degenerate) submanifold of semi-
Riemannian manifold M. Lightlike submanifolds M of a manifold (M,j) were
considered by many authors (see [1], [2], [3], [4] and [9]). On the other hand, the
geometry of submanifolds of a Riemannian product manifold (semi-Riemannian
Product manifold) has been extensively studied by many geometers (see [6], [7]
and [10]). It is known that a submanifold of semi-Riemannian product manifold
is defined according to behaviours of almost product structure. Recently, in [7]
the authors defined semi-invariant submanifolds of a Riemannian product mani-
fold and proved some properties of these submanifolds.

In this paper, we have defined and studied a new class of lightlike sub-
manifolds of a semi-Riemannian product manifold, i.e., proper semi-invariant
lightlike submanifolds. We have discussed integrabilities of distributions and
researched totally-umbilical proper semi-invariant lightlike and semi curvature-
invariant lightlike submanifold in any positively or negatively curved semi-
Riemannian product manifolds. Moreover, we give two necessary and sufficient
conditions for semi-invariant lightlike submanifolds to be locally lightlike product
manifolds.
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2. Preliminaries

In this section, we use the same notations and terminologies as in [4].

Let M be a real (m+ n)-dimensional semi-Riemannian manifold, m,n > 1
and g be a semi-Riemannian metric tensor on M. We denote by ¢ the constant
index of § and suppose that M is not a Riemannian manifold.

Let (M,g) be a (m + n)-dimensional semi-Riemannian manifold with index
g >0 and M be a submanifold of n-codimension of M. If §is degenerate on the
tangent bundle TM of M, then M is called a lightlike (degenerate) submanifold
of M. We denote by g the induced metric of § on M. If we suppose that g is
degenerate, then for each tangent space 7 M, we know that

Tx]‘4L = {U'c € TxM : gx(Ux» Vx) = O;vi‘ € TxM}7

for each xe M, is a degenerate n-dimensional subspace of T, M. Thus both
T.M and T, M+* are degenerate orthonormal distributions. Set

Rad(T M) = T.MNT . M*
which is called Radical subspace. If the mapping
Rad(TM) : xe M — Rad(T M),

defines a smooth distribution on M of rank(Rad(7M)) =r > 0, then the sub-
manifold M of M is called r-lightlike submanifold and Rad(7TM) is called the
radical distribution on M. Furthermore, there are four possible cases with
respect to the dimensional and codimensional of M and rank of Rad(TM). We
recall that;

Case 1) M is called r-lightlike submanifold, if 1 <r < min{m,n}

Case 2) M is called co-isotropic submanifold, if 1 <r=n<m

Case 3) M is called isotropic submanifold, if 1 <r=m<n

Case 4) M is called totally lightlike submanifold, if 1 <r=m =n.
For the dependence of all the induced geometric objects of M on {S(TM),
S(TM™*)} we refer to [4].

We shall consider to only Case 1. In this case, consider a complementary
distribution S(TM) to Rad(TM) in TM. 1t is called a screen distribution on M
which is nondegerate. Therefore, we can write

2.1) TM = Rad(TM) L S(TM).

As S(TM) is nondegenerate vector subbundle of TM]|,,, we put
(2.2) TM|,, = S(TM) L S(TM)*,

and

(2.3) TM* =Rad TM L S(TM™),
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where S(TM™') is a complementary vector bundle of Rad(7M) in TM* which is
called screen transversal vector bundle of M. We denote a r-lightlike submani-
fold by (M,g,S(TM*')). Let tr(TM) and ¢ tr(TM) be complementary (but, not
orthogonal) vector bundles to TM in TM. Then we have

(2.4) tr(TM) =/ t(TM) ® S(TM™Y)
and
(2.5) TM =TM ® tr(TM)

= (Rad(TM) @ ¢ (TM)) ® S(TM) ® S(TM™).

where S(TM )* is the complementary orthogonal vector subbundle of S(TM) in
TM|,,. If we use the fact that S(TM) and S(TM)" are non-degenerate, we
have the following orthogonal direct decomposition

(2.6) S(TM)" = S(TM*) L S(TM*)™.

TueoreM 2.1 (Duggal-Bejancu [4]). Let (M,g,S(TM),S(TM*')) be a r-

lightlike submanifold of a semi-Riemannian manifold (M,g). Then there exists
a complementary vector bundle ¢ tr(TM) called a lightlike transversal bundle of
Rad(TM) in S(TM*)" and a basis of T(¢ t«(TM)|,) consists of smooth sections
{Ni,...,N,} of S(TM*")"|, such that

Q(Niaéj)zéij, g(NH]vj):Ov ivj:()al"'ra
where {&,...,&.} is a basis of T(Rad TM|y).

We consider the vector bundle
(2.7) tr(TM) = £ tr(TM) L S(TM™).
Thus we have
(28) TM=TM @ tr(TM) = S(TM) L S(TM™*) L (Rad(TM) ® ¢ tr(TM)).

Now, let V be the Levi-Civita connection on M. Then we have

(2.9) VyY =VyY +h(X,Y), VX,YeDl(TM)
and
(2.10) ViV =—AyX + V3V, VX el (TM)

for any VeI (tr(TM)). Using the projectoins L :tr(TM) — ¢/ tr(TM) and
S:tr(TM) — S(TM*), we have

(2.11) VY =VyY+h'(X,Y)+h(X,Y)
(2.12) VyN = —AyX + Vi N + D*(X,N)

and
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(2.13) VW = —AwX + V3 W + D/ (X, W),

forany X, Y e [(TM), N e T(/ tr(TM)) and W € ['(S(TM")), where h!(X,Y) =
Lh(X,Y),h*(X,Y) =Sh(X,Y),V\N,D (X, W)e[(/ tt(TM)),V, W,D*(X,N) e
F(S(TMJ‘)) and VxY,ANX,AW/YGF(TM).

By using equations (2.9), (2.10) and (2.11) we obtain

(2.14) g (X, Y), W)+ g(Y,D' (X, W)) = g(AdypX,Y).

We denote the projection morphism of 7'M to the screen distribution S(7M) by
P and consider the decomposition

(2.15) VyPY =ViPY + h*(X,PY)
(2.16) Vyé=—AIX + Vié

for any X,Y eI'(TM) and &eT(Rad(TM)). Then we have the following
equations

(2.17)  g(h'(X,PY),&) = g(A;X,PY), g(h*(X,PY),N)=g(AyX,PY)
(2.18) g(A;PX,PY) = g(PX,APY), A(=0
(2.19) g(ANX,PY) =g(N,VxPY)

for any X,Y eI'(TM), (¢ e'(Rad(TM)) and N e (£ tr(TM)) ([4)).

In general, the induced connection on lightlike submanifold M is not metric
connection. Since V is metric connection, Vg is obtained from equations (2.11),
(2.12) and (2.13) as

(2.20) (Vxg)(Y,Z) = g(h"(X,Y),Z) + §(h' (X, Z), Y)
for any X, Y, Ze'(TM) [4].
Now, we recall that the equation of Gauss for the lightlike immersion of M

in M is given by

(2.21) R(X,Y)Z=R(X,Y)Z+ Ay (x,2)Y — A (v 20X + (Vxh')(Y,Z)
— (Vyh")(X,Z) + Apx, Y + D/ (X, W(Y, Z))
— Aps(v, )X = D' (Y, h*(X,Z)) + (Vxh*) (Y, Z)
—Vyh*(X,Z) 4+ D*(X,h’(Y,Z)) — D*(Y,h' (X, Z))

for any X,Y,Ze'(TM).

3. Semi-Riemannian product manifolds

Let (My,g1) and (M>,g,) be two m; and m,-dimensional semi-Riemannian
manifolds with constant indexes ¢g; > 0, ¢, > 0, respectively. Let n: My x M,
— M, and ¢ : M)} x M, — M, be the projections which are given by z(x, y) = x
and o(x, y) = y for any (x,y) e M} x M,. We denote the product manifold by
M = (M, x M>,j), where
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g X, Y)=¢g(n.X,7.Y) + g2(0.X,0.Y)
for any X, Y e I'(T M), where * means the differential mapping. Then we have
nf = m,, af =0, Wo,=07,,=0 and 7w, +o, =1,

where [ is the identity map of T(M; x M,). Thus (M,g) is a (m; +my)-
dimensional semi-Riemannian manifold with constant index (gq; +¢2). The
Riemannian product manifold M = M| x M, is characterized by M; and M,
which are totally geodesic submanifolds of M.

Now, if we put F =, — o,, then we can easily see that F 2=7 and

for any X,Y e (T M), where F is called almost Riemannian product structure
on M x M,. If we denote the Levi-Civita connection on M by V, then it can
be seen in [6] that

(VxF)Y =0,

for any X,Y e [(TM), that is, F is parallel with respect to V.
Now, let M and M, be real space forms with constant sectional curvatures

c; and ¢, respectively. Then the Riemannian curvature tensor R of M =
Mi(c1) x M>(cy) is given by

= 1
(3.2) R(X,Y)Z = E(

+g(FY,Z)FX — §(FX,Z)FY}

a+a)gY,2)x —gX,2)Y

+ %(cl —a){gFY,Z2)X —g(FX,2)Y

for any X, Y, ZeT(TM) [9].

4. Semi-invariant lightlike submanifolds of a semi-Riemannian product
manifold

In this section, we will give definition of semi-invariant lightlike submanifolds
and study integrabilities of distributions on M; x M,.

DEFINITION 4.1, Let (M, §) be a semi-Riemannian product manifold and M
be a r-lightlike submanifold of M. We say that M is a semi-invariant lightlike
submanifold of M, if the following conditions are satisfied:

1) F(Rad(TM)) is a distribution on S(TM).

2) F(Ly L L) is a distribution on S(TM), where L, =/ tr(TM) and L, is a
vector subbundle of S(TM™).
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From the Definition 4.1, we have

4.1 S(TM) = (F(Rad(TM)) ® F(L, L L,)) L D,.

Thus we obtain that the tangent bundle of M is decomposed as follow
(4.2) TM =D& D',

where

D = Rad(TM) L F(Rad(TM)) L D,, D' =F(L, L Ly).
Hence, from equations (4.1) and (4.2) we can write the following decompositions:
(43) TM=TM®tr(TM)
=TM ® (¢ t«(TM) L S(TM™))
= (Rad(TM) @ ¢ tr(TM)) L (F(Rad(TM))® D') L D, L S(TM™).

Lemma 4.1. Three dimensional semi-invariant lightlike submanifold is 1-
lightlike.

Moreover, for D, we have the following Lemma.

LemmA 4.3. Let M be a proper semi-invariant lightlike submanifold of a
semi-Riemannian product manifold M. Then the distribution D, is a F-invariant
distribution.

Proof. We take X,eI(D,). Then from equation (4.1), for any &e
I'(Rad TM), N eI'(¢/ tr(TM)) and U e I'(S(TM*)), we have

g(FX,,8) = §(X,, FE) =0

g(FX,,N) =g(X,,FN) =0
g(FX,,FN) = g(X,,N)=0

J(FX,, FS) = §(X,,¢) =

g(FX,,U) = (XO,FU 0

g’(FX,,,FU) = g(Xoa U) =0,
which imply that FX, € I'(D,), that is, D, is an invariant distribution with respect
to F. |

From Lemma 4.2 and definition of D, we conclude that D is also F-invariant
distribution.
Now, we shall construct an example for semi-invariant lightlike submanifold.

Example 1. Let M, and M, be Rg and RS, respectively. Then M =
My x M3 is a semi-Riemannian product manifold with metric tensor § = n*g; +
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0”92, where g; and g, are the standart metric tensors of Rg and R;’, 7, and o, are
the projection maps of I'(7M) onto I'(TM;) and I'(TM,), respectively. Sup-
pose that an immersed submanifold M of M is given by equations;

1 1
X1 =f1+t4—§t5, X2=f2+t4+§ls

1 1
vy = (i + 0+ i+ 15), =5 log(1+ (11— 1))

V2
1 1
Xs=h—l4a+3t5, Xe=13, X7=h—l—3ls,
2 2
where #;, 1 <i <5, are real parameters.

We set

0 0 0
Ur=V2(1+ (6 = £)") g+ (14 (0 = 0)) 5=+ V20 — ) o

U, = \/5(1 + (l1 - lz)z)ai;z-f— (1 + (l1 — lz)z)a—i — \/E(Zl — 12)5_i4

-~

30+ (1 — 6))) -+ VAL + (1 — 1)2)
+V2(1+ (1 2))ax5+\/_( + (1 2))ax7
0
Us — —
3 5)66
0 0 0 0 0
_ v 4“2 b =
Us 8x1+6x2+\/—6x3 0x5 0x7
b Lo 1o 10 142 120
> 26)(?1 2(3)62 \/§5X3 25)65 25)(7
0 0 0 0 0
H="+%41\ -
! axl + 6X2 + f&x3 + (3)65 + 6)67
F 5 pe
Hy, = -2(4) — — V2t — ) — 1 — .
b (ll l‘z)axz \/_(11 tz)ax3+( +(Z1 lz) )5)64

By direct calculations we check that Rad(7M) is a distribution on M of
rank one and spanned by £ = H;. Hence M is a 5-dimensional and 1-lightlike
submanifold of M. S(TM) and S(TM*') are spanned by vector fields
{U,,Us, Uy, Us} and {H,}, respectively. Then the lightlike transversal vector
bundle 7 tr(TM) is spanned by vector field

1o 190 1 ¢ 10 190

AR o (Y EA A

Therefore, F&= U, FN =1Us, that is, F(Rad(TM)) and F(/ te(TM)) are
subbundles of S(7M), where D, = Sp{U;,Us}, L, = {0} and F(S(TM")) =
S(TM*). Thus, M is a proper semi-invariant lightlike submanifold of M.
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Now, for any X e I'(TM), FX can be written as follow
(4.4) FX = fX + oX,

where fX and wX are tangential and normal parts of FX, respectively. Simi-
larly, for V e I'(tr(TM)) we set

(4.5) FV =BV +CV,

where BV and CV are also tangential and normal parts of FV, respectively.
Next we will study integrabilities of distributions on M; x M,. Since F is
parallel on M, from the equations (2.9), (2.10), (4.4) and (4.5) we obtain

(4.6) VyFY = FVyY
VyFY +h(X,FY) = fVyY + wVyY + Bh(X,Y) + Ch(X, Y),

for any X, Y e I'(TM). Comparing tangential part with normal one of the both
sides of (4.6) we have

(4.7 VxFY = fVyY + Bh(X,Y)
and
(4.8) WX, FY)=wVxyY + Ch(X,Y).

Thus we can give following theorems.

TueOREM 4.1, Let M be a proper semi-invariant r-lightlike submanifold of a
semi-Riemannian product manifold M. Then the distribution D is integrable if and
only if the second fundamental form of M satisfies

h(X,FY)=h(FX,Y),
for any X, Y e (D).

Proof. From (4.6) we have
(4.9) VxfY +h(X,FY)=fVxY +wVxY+Bh(X,Y)+ Ch(X,Y),
for any X, Y e'(D). By replacing X by Y in equation (4.9), we obtain
(4.10)  VyfX+h(Y,FX)=fVyX +oVyX + Bh(Y,X)+ Ch(Y,X).

Taking account of / being symmetric, from equations (4.9) and (4.10) we
conclude
WX, Y] = h(X,FY) — h(Y,FX),

which proves our assertion. O
THEOREM 4.2. Let M be a proper semi-invariant lightlike submanifold of a

semi-Riemannian product manifold M. Then the distribution D' is integrable if
and only if the shape operator of M satisfies
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ArxY = Ary X,
for any X, Y e'(D’).

Proof. We take X,Y e ['(D’). Noting that F is parallel with respect to V
and using the equations (2.9), (2.10), (4.4) and (4.5) we obtain

(4.11) VyFY = FVyY
~Apy X +V3FY = fVxY +oVx Y + Bh(X,Y) + Ch(X, Y).

Moreover, replacing X by Y in (4.11) and taking by a direct calculation we
obtain

(4.12) ~Apy X + Apx Y + V3 FY — V3 FX = f[X, Y] + 0[X, Y].
Considering the tangential part of the equation (4.12), we obtain
—ApyX + Apx Y = f[X, Y].

From the last equation [X,Y]eI'(D’) if and only if ApyX = ApxY. This
completes the proof of the Theorem. O

Now we suppose that {Ny, N»,...,N,} is a basis of I'(/ tr(TM)) with respect
to the basis {&1,&,,...,&,} of I'(Rad(7TM)) such that {N;, N,,...,N,} is a basis
of T'(L;). Also we consider an orthonormal basis { W, W,,..., W} of T'(L,).
Then we state

CorOLLARY 4.1.  Let M be a semi-invariant lightlike submanifold of a semi-
Riemannian product manifold M. Then invariant distribution D is integrable if
and only if the second fundamental form of M satisfies

(4.13) gh(X,FY)—h(Y,FX),&) =0, ie{l,2,...,r}
and
(4.14) gh(X,FY)—h(Y,FX),W,) =0, ae{l,2,...,s}

for any X, Y e (D).
Proof. Taking account of 4 being symmetric, we derive
(415) g([X, Y],Ff,-) = Q(V)(Y - VyX, Ff,) = g(VX Y — VYX, Ff,)
=g(VxFY — VyFX &) = g(h(X, FY) — h(Y, FX), &)
and
(4.16)  g([X,Y),FW,) =g(VxY —VyX,FW,) = g(VxY — VyX,FW,)
= g(VxFY —VyFX, W,) = g(h(X,FY) — h(Y,FX), W,),
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for any X, Y e I'(D). Thus from equations (4.15) and (4.16), we derive [X, Y] e
['(D) if and only if (4.13) and (4.14) are satisfied. O

THEOREM 4.3. Let M be a semi-invariant lightlike submanifold of a semi-
Riemannian product manifold M. Then the invariant distribution D defines a
totally geodesic foliation on M if and only if h(X,Y) has no component in
(L, L Ly), for any X,Y e T'(D).

Proof. D defines a totally geodesic foliation on M if and only if VyY €
(D), for any X, Y e '(D). By using the equations (4.2) and taking account of
D' =F(L, L L), we conclude that VyY e I'(D) if and only if

g(Vx Y, F&) =0, ie{l,2,...,r}
and
g(Vx Y, FW,) =0, ae{l,2,...,s},
for any X, Y e I'(D). Moreover, we have
G(Vx Y, F&) =g(VxY —h(X,Y),F&) = G(VxFY, &) — g(h(X, Y), F&)
= g(h(X, FY), ;).
In the same way, we have
Gg(Vx Y, FW,) = G(Vx Y —h(X,Y),FW,) = G(VxFY, W,) — g(h(X, Y), FW,)
= g(h(X,FY), Wa),
which proves our assertion. O
THEOREM 4.4. Let M be a proper semi-invariant r-lightlike submanifold of a

semi-Riemannian product manifold M. Then M is a locally lightlike Riemannian
product if and only if Vf =0.

Proof. Let M be a locally lightlike Riemannian product. Then the leaves
of distributions D and D’ are both totally geodesics in M. By applying Gauss
and Weingarten formulas, we infer

(4.17)  VufX +h(U, fX) = fVyX +oVyX + Bh(U, X) + Ch(U, X),

for any UeTl'(TM) and X e I'(D), since VF =0. Comparing the tangential
with normal parts with respect to D of both sides of (4.17), we have

V(ij:fVUX, i.e., (Vuf)XZO
and
Bh(U,X) = 0.

In the same way,
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(4.18) —ApyU + VZL,FY =fVyY+wVyY +Bh(U,Y)+ Ch(U,Y),

for any UeI'(TM) and Y e I'(D’). Comparing the tangential with transversal
parts with respect to TM of both sides of (4.18), we have

—ApyU = fVyY + Bh(U,Y).
For any X e I'(D) we have
9(fVuY,X) = —g(ApyU,X) = §(VuFY, X)
= g(VUfYa X)7

which implies that (Vyf)Y =0.
Conversely, we assume that Vf =0. Then we have

VzfX = fVzX
for any ZeI'(TM) and X e I'(D). Thus VzfX e T'(D). Similarly, we get
VzfY = fVzY

for any ZeI'(TM) and Y e I'(D’). Thus V,fY e I'(D’), that is, the distribu-
tions D and D’ are parallel and the leaves of their are totally geodesic in M.
This completes the proof of the Theorem. OJ

THEOREM 4.5.  Let M be a proper semi-invariant r-lightlike submanifold of a
semi-Riemannian product manifold M. Then M is a locally lightlike Riemannian
product if and only if

(4.19) Bh(Z,X)=0, VZeT(TM) and X eT(D).

Proof.  We suppose that M is a locally r-lightlike Riemannian product.
Then we have

(4.20) V,FX = FV X
VzfX + h(Z,FX) = fVzX + oVzX + Bh(Z,X) + Ch(Z, X),
for any X e ['(D) and ZeI'(TM). Taking account of Theorem 4.4 and con-
sidering equation (4.20), we conclude BA(X,Z) = 0.
Conversely, suppose (4.19) is satisfied. Then from equation (4.17), we have

(Vzf)X =0, for any ZeI'(TM) and X eI'(D). It follows that D is totally
geodesic in M. Furthermore, we have

(4.21) V,FW = FV W
~ArpwZ +VLFW = [V, W + oV, W + Bh(Y, W) + Ch(Z, W),
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for any W,Z eT'(D’). Thus we get
g(fVzW,X) = —g(ArwZ, X ) = §(V2FW, X)
=—g(VzX,FW) = —g(FVzX, W)
=—g(fVzX +Bh(Z,X), W) =0,

for all X eI'(D). Thus we have fVzW =0, i.e.,, VW € I'(D’), which implies
that D’ is totally geodesic in M. O

As a consequence of Theorem 4.4 and Theorem 4.5 we have the following
Theorem.

THEOREM 4.6. Let M be a proper semi-invariant r-lightlike totally umbilical
submanifold of a semi-Riemannian prodcut manifold M. Then M is a locally

lightlike Riemannian product if M is totally geodesic lightlike submanifold in M.

DerFmITION 4.2. A semi-invariant submanifold M of a semi-Riemannian
product manifold is said to be D-totally geodesic (resp. D’-totally geodesic) if
its the second fundamental form £ satisfies (X, Y) =0 (resp. h(Z, W) = 0), for
any X,Y e'(D)(Z, W e T'(D")).

THEOREM 4.7. Let M be a proper semi invariant r-lightlike submanifold of
a semi-Riemannian product (M,§). M is D-totally geodesic submanifold if and
only if

1) A2X has no component in I'(FLy 1 D,)

2) AwX has no component in T(D' ® D,),
for any X eT(D,), ¢eT(Rad TM) and W e T(S(TM™)).

Proof.
(4.22) g(h(X,FY),&) = g(VxFY,&) = —g(Vx&, FY)
=g(A; X, FY)
and
(4.23) Gh(X,FY), W) =g(VxFY, W)= —§(Vy W, FY)
= G(AwX,FY),

for any X,Y el(D), ¢el(Rad TM) and W e (S(TM*)). Thus from the
equation (4.22) and (4.23), we conclude that A(X,FY) =0 if and only if the
conditions (1) and (2) are satisfied. O

THEOREM 4.8.  Let M be a proper semi invariant r-lightlike submanifold of
a semi-Riemannian product (M,g). M is D'-totally geodesic submanifold if and

only if
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1) A:Z has no component in T'(FL, ® F Rad TM)
2) AwY has no component in T'(FL, ® Rad TM),
for any Y eT(D'), (e (Rad TM) and W e T(S(TM™)).

Proof.
(4.24) gh(Z,7),&) =g(VzY,¢) = —g(Vy¢, Z)
=g(4:Y,Z),
and
(4.25) gZ.Y),W)=g(VyZ, W) =—§(VyW,Z)
=g(AwY,Z)

for any Y,ZeT(D'), (e(Rad TM) and W e I'(S(TM*')). Thus from the
equations (4.24) and (4.25) we derive A(Y,Z) = 0 if and only if the conditions (1)
and (2) are satisfied. O

Now, we characterize a totally geodesic submanifolds in terms of killing
distributions.

THEOREM 4.9.  Let M be a proper semi invariant r-lightlike submanifold of a
semi-Riemannian product (M,g). Then M is totally geodesic submanifold if and
only if Rad TM and S(TM™) are killing distributions on M.

Proof.
gh(X,Y), &) =g(Vx Y, &) = Xg(Y,&) — g(Vx&, Y)

=g([&, X],Y) - g(VeX, )
=g([&X],Y) —Cg(X, ¥) +g(VeY, X)
= —&G(X. Y) +4([&, X], Y) + (& Y], X) — g(Vy X, <)
=—(Leg) (X, Y) — g(h(X, Y), <),

that is,

(4.26) 29(h(X,Y), <) = —=(Leg)(X, Y),

for any X, Y e['(TM) and £ e'(Rad TM). In the same way,
gh(X,Y),W)=g(VxY, W)= Xg(Y, W) —-g(VxW,Y)
=g([W,X],Y)-WgX,Y)+g(VwY,X)
=-W§X,Y)+g(W,.X],Y)+g([W, Y], X) +§(Vy W, X)
= —(Lwd) (X, Y) = g(Vy X, W),
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that is,

(4.27) 2g(h(X, Y), W) = =(Lwg)(X, Y),

) =
for any X,Y eI(TM) and W e I'(S(TM*)). Thus from the equations (4.26)
and (4. 27) we conclude that A(X,Y)=0 if and only if (L:g)(X,Y)=
(Lwg)(X,Y) =0, for any X,Y e I(TM), ¢ e T(Rad TM) and W e T(S(TM*')).
Thus the proof is complete. O

DEerFINITION 4.3. Let M be a proper semi-invariant r-lightlike submanifold
of a semi-Riemannian product manifold M. M is said to be mixed-geodesic
submanifold if the second fundamental form of M satisfies A(X,Y) =0 for any
X el'(D) and Y eT'(D').

THEOREM 4.10. Let M be a proper semi-invariant r-lightlike submanifold of
a semi-Riemannian product manifold M. Then M is mixed-geodesic submanifold
if and only if the shape operator of M satisfies

1) Ay X has only component in T'(D)

2) AuX has no component in T'(FL;),
for any X eT(D) and V e (L L L) and U e T(S(TM™4)).

Proof. Let X eT'(D). Choosing Y e'(D’), there is a vector field V e
I'(Ly L L) such that Y = FV. Thus we have

(4.28) gh(X,Y),&) =g(Vy Y, &) = G(FVyV,¢&)
= —g(FAyX,¢)
and
(4.29) gh(X,Y),U) =G(VxY,U) = —=g(VxU,Y) = (4 X, Y)
=g(AuX,FV),

for any U eI (S(TM*')). From the equations (4.28) and (4.29), we conclude
that

h(X,Y)=0
if and only if the conditions (1) and (2) are satisfied. O

A Lightlike submanifold (M,g) of a semi-Riemannian manifold (M, g) is
said to be totally umbilical if there exists a smooth transversal vector field

H el (tr(TM)) on M, called the transversal curvature vector field of M, such
that

(4.30) WX, Y)=g(X,Y)H

for any X, Y e I'(TM). Thus we can give the following Theorem.
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THEOREM 4.11. Let M be a proper semi-invariant r-lightlike submanifold of
a semi-Riemannian product manifold M. Then there exist no totally umbilical
proper semi-invariant lightlike submanifolds in any real product space forms M =
Ml(cl) X Mz(Cz) with ¢+ ¢y # 0.

Proof. We suppose that M is a totally umbilical proper semi-invariant r-
lightlike submanifold of Mj(c;) x M>(c;). Then from equation (2.21) we have
J(R(X,Y)FZ,FW) = g(Vxh)(Y,FZ),FW) — g((Vyh)(X,FZ),FW)
forany X, Y,Ze'(TM) and FW € I'(L,). Moreover, from the equation (4.30),

we obtain
(Vxh)(Y,Z) = g(Y,Z)VyH.
Thus we infer
(4.31) G(R(X,Y)FZ,FW) = g(Y,FZ)g(VyH,FW)
— g(X,FZ)g(VyH,FW).

Taking Z € T'(D,) and W instead of X and Y in the equation (4.31), respectively,
we conclude

R(Z,W,FZ,FW) = g(W,FZ)g(NsH,FW) — g(Z, FZ)§(Vi, H, FW) = 0.

Moreover, we can easily see that

K(Z,W,FZ,FW)=K(Z,W,Z,W) = 0.
Furthermore, from the equation (3.2) we have

K(Z W FZFW) =~ (e + ),

which proves our assertion. O

THEOREM 4.12.  Let M be a proper semi-invariant r-lightlike totally umbilical
submanifold of a semi-Riemannian prodcut manifold M. Then following state-
ments are equivalent.

1) The distribution D is parallel in M

2) y(Z,FY)H = g(Z,Y)CH, for any Y el'(D) and Z ' (TM), that is,
BH = 0.

3) The transversal vector field H is invariant with respect to F.

4) f is parallel in M.

Proof. Since D is an invariant distribution, we have FX = fX for any
X eT'(D). If M is totally umbilical, from equations (4.9) and (4.30), we can
write

VxfY+g(X,FY)H = fVxY +wVxY +g(X,Y)BH + g(X,Y)CH
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for any X, Y e I'(D). Considering the tangential with transversal components of
both sides of the last equation, we obtain

VyfY = fVyY +g(X,Y)BH
and
oVyY =g(X,FY)H —g(X,Y)CH.
Thus VyY e I'(D) if and only if g(X,FY)H = g(X,Y)CH. Thus the proof is
complete. O

CoROLLARY 4.2.  Let M be a proper semi-invariant lightlike submanifold of a
semi-Riemannian product manifold M. The distribution D is always integrable if
M is a totally umbilical proper semi-invariant lightlike submanifold.

Now, by using the equation (3.2), we get

(432) RX.V)Z= (e +e){g(Y.2)X — §(X.Z)Y + §FY.Z) /X

16
+ g(FY, Z)a)X — g(FX, Z)fY — g(FX, Z)w Y}
=t e~ )GUEY )X ~ GUEX, )Y +5(Y, )X

+g(Y,Z)wag(X,Z)fY7Q(X,Z)COY},

for any X, Y, Ze (T M). Now, considering the fact that the curvature tensor
field of M = M;(c1) x M>(c2) is given by (3.2), we have special forms for the

structure equations of Gauss and Codazzi for the submanifold M in M. Thus
the gauss equation becomes

(433)  R(X,Y)Z= 1 (er 4+ ) {g(Y, 2)X —§(X,2)Y

16
+g(FY, 2)fX —g(FX,Z)fY}
= 1—16 (c1 — e){g(FY,Z)X — G(FX,2)Y

+g(Y, 2) [ X —g(X,Z2)fY} + Ay, 20X — Awx,2) Y,

for any X,Y,Ze'(TM). Finally, the Ricci equation becomes

(434)  (Veh)(Y,Z) = (Vyh)(X, Z) = —(c1 + 2 {G(FY, Z)oX — G(FX, Z)o Y}

1
16
+ % (e1 = e){g(Y, Z)oX - §(X, Z)w Y},

for any X, Y,ZeI'(TM).
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DerFINITION 4.4, Let M be a r-lightlike submanifold of any semi-Rieman-
nian manifold M. M is said to be curvature-invariant lightlike submanifold if
the covariant derivative of the second fundamental form 4 of M satisfies

(Vxh)(Y,Z) — (Vyh)(X,Z) =0,
for any X,Y,Ze(TM).
THEOREM 4.13. Let M be a proper semi-invariant lightlike submanifold of

a semi-Riemannian product manifold M. Then there exist no curvature-invariant
proper semi-invariant lightlike submanifolds in any semi-Riemannian product real

space form M = Mi(c1) x My(cy) with c1,¢; # 0.

Proof. Let us suppose that M be a semi curvature-invariant lightlike sub-

manifold of a semi-Riemannian product real space form M = M(c1) X M>(c;)
with ¢;,¢; #0. Then from the (4.34) we have

(4.35) (c1 + ){g(FY,Z)wX — G(FX,Z)wY}
+ (1 —){g(Y, 2)oX — (X, Z)wY} =0.
Let X eI'(FL,) and Y e I'(FL;) in (4.35). Then we have

(4.36) (c1 +)g(FY,Z)wX + (c1 — 2)g(Y,Z)wX =0
and
(4.37) (c1 + 2)(FX, Z)oY + (¢ — c2)d(X, Z)wY = 0.

From the solutions of the equations (4.36) and (4.37), we get
(c1+)FY +(c1 —c2)Y =0

and
(c1 + 2)FX + (c1 — )X = 0.

This is imposible for Ly =/ tr(TM) # 0 and L, # 0. This is a complete proof
of the Theorem.
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