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A CHEVALLEY TYPE RESTRICTION THEOREM FOR A PROPER

COMPLEX EQUIFOCAL SUBMANIFOLD
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Abstract

In this paper, we prove a Chevalley type restriction theorem for a proper complex

equifocal submanifold. The proof is performed by showing the same type restriction

theorem for an infinite dimensional proper anti-Kaehlerian isoparametric submanifold

and using it.

1. Introduction

In 1985, C. L. Terng ([T1]) proved that the ring of all polynomials over a
Euclidean space which are constant along parallel submanifolds of a given iso-
parametric submanifold in the space is isomorphic to that of all polynomials over
a section of the submanifold which are invariant with respect to the associated
Coxeter group. In fact, the restriction map to the section gives an isomorphism
between these rings. This fact is similar to the so-called Chevalley restriction
theorem for semi-simple Lie groups (see [W] for example). Also, in 1989, C. L.
Terng ([T2]) proved that the ring of all Cy-functions over a Hilbert space which
are constant along parallel submanifolds of a given isoparametric submanifold
in the space is isomorphic to that of all Cy-functions over a section of the
submanifold which are invariant with respect to the associated a‰ne Coxeter
group. From this result, she showed a similar restriction theorem for equifocal
submanifolds in a symmetric space of compact type through a Riemannian
submersion of a Hilbert space onto the symmetric space. For non-compact sub-
manifolds in a symmetric space of non-compact type, the equifocality is a rather
weak condition. So, we [K1] introduced the stricter condition of the complex
equifocality. Furthermore, we [K2] introduced the notion of an infinite dimen-
sional anti-Kaehlerian isoparametric submanifold and showed that the inves-
tigation of a complete, real analytic and complex equifocal submanifold is
replaced by that of an infinite dimensional anti-Kaehlerian isoparametric sub-
manifold. In the sequel, we assume that all complex equifocal submanifolds are
complete and real anlytic. On the other hand, Heintze-Liu-Olmos [HLO] has
recently introduced the notion of an isoparametric submanifold with flat section
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in a general Riemannian manifold. Isoparametric submanifolds with flat section
in a symmetric space of non-compact type are complex equifocal and conversely,
all complex equifocal submanifolds satisfying certain condition are isoparametric
one with flat section (see Theorem 15 of [K2]). Also, we ([K2], [K3]) introduced
the notions of an infinite dimensional proper anti-Kaehlerian isoparametric sub-
manifold and a proper complex equifocal submanifold, where we note that prin-
cipal orbits of Hermann type actions (i.e., the actions of (not necessarily compact)
symmetric subgroups of G) on a symmetric space G=K of non-compact type are
proper complex equifocal (see [K3]). We [K4] defined the notion of the complex
Coxeter groups associated with these submanifolds. In the sequel, we assume
that all infinite dimensional proper anti-Kaehlerian isoparametric submanifolds
are complete. In this paper, we first prove the slice theorem for an infinite di-
mensional proper anti-Kaehlerian isoparametric submanifold, which states that the
intersections of the submanifold with suitable finite dimensional anti-Kaehlerian
a‰ne subspaces are finite dimensional anti-Kaehlerian isoparametric ones. Also,
we prove the Chevalley type restriction theorem for a finite dimensional proper
anti-Kaehlerian isoparametric submanifold, which states that the ring of complex
polynomials over the ambient space which are constant along parallel sub-
manifolds of a given finite dimensional proper anti-Kaehlerian isoparametric
submanifold is isomorphic to that of all complex poylnomials over a section of
the submanifold which is invariant with respect to the associated complex Coxeter
group. In fact, the restriction map to the section gives an isomorphism between
these rings. By using these theorems, we prove the following Chevalley type
restriction theorem for an infinite dimensional proper anti-Kaehlerian isopara-
metric submanifold.

Theorem A. Let M be a infinite dimensional proper anti-Kaehlerian iso-
parametric submanifold in an anti-Kaehlerian space V , S be a section of M and W
be the complex Coxeter group (which acts on S) associated with M. Assume that
a foliation F (which may have singular leaves) consisting of parallel submanifolds
of M is defined on the whole of V. Then the restriction map r : CyðV ;CÞF !
CyðS;CÞW is an isomorphism, where CyðV ;CÞF is the ring of all complex-valued
Cy-functions on V which are constant along leaves of F and CyðS;CÞW is that
of all W-invariant complex-valued Cy-functions on S.

The main theorem of this paper is the following Chevalley type restriction
theorem for a proper complex equifocal submanifold.

Theorem B. Let M be a proper complex equifocal submanifold in a sym-
metric space G=K of non-compact type, S be a section of M and W be the
complex Coxeter group (which acts on the extrinsic complexification Sc of S)
associated with M. Let F (resp. Fc) be a foliation (which may have singular
leaves) consisting of parallel submanifolds of M (resp. the extrinsic complexification
M c of M). Assume that Fc is defined on the whole of the anti-Kaehlerian sym-
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metric space G c=K c associated with G=K (hence F is defined on the whole of
G=K) and G c is simply connected. Then the restriction map r : CyðG=KÞF !
CyðSÞWS is an isomorphism, where CyðG=KÞF is the ring of all (real-valued )
Cy-functions on G=K which are constant along leaves of F and CyðSÞWS is
that of all (real-valued ) Cy-functions on S which are invariant with respect to
WS :¼ hfRjS jR A W s:t: RðSÞ ¼ Sgi (h�i: the group generated by the set �).

Remark 1.1. The principal orbits of the Hermann type action (in the sense
of [K3]) on a symmetric space of non-compact type are proper complex equifocal
submanifolds satisfying the conditions of Theorem B.

2. Basic notions and facts

In this section, we first recall the notion of a proper complex equifocal
submanifold. Let M be an immersed submanifold with abelian normal bundle
in a symmetric space N ¼ G=K of non-compact type. Denote by A the shape
tensor of M. Let v A T?

x M and X A TxM ðx ¼ gKÞ. Denote by gv the geodesic
in N with _ggvð0Þ ¼ v. The Jacobi field Y along gv with Yð0Þ ¼ X and Y 0ð0Þ ¼
�AvX is given by

Y ðsÞ ¼ ðPgvj½0; s� � ðD
co
sv � sDsi

sv � AvÞÞðXÞ;

where Y 0ð0Þ ¼ ~‘‘vY , Pgvj½0; s� is the parallel translation along gvj½0; s�,

Dco
sv ¼ g� � cosð

ffiffiffiffiffiffiffi
�1

p
adðsg�1

� vÞÞ � g�1
�

and

Dsi
sv ¼ g� �

sinð
ffiffiffiffiffiffiffi
�1

p
adðsg�1

� vÞÞffiffiffiffiffiffiffi
�1

p
adðsg�1

� vÞ
� g�1

� :

Here ad is the adjoint representation of the Lie algebra g of G. All focal radii
of M along gv are obtained as real numbers s0 with KerðDco

s0v
� s0D

si
s0v

� AvÞ0 f0g.
So, we call a complex number z0 with KerðDco

z0v
� z0D

si
z0v

� Ac
v Þ0 f0g a com-

plex focal radius of M along gv and call dimKerðDco
z0v

� z0D
si
z0v

� Ac
v Þ the mul-

tiplicity of the complex focal radius z0, where Dco
z0v

(resp. Dsi
z0v
) implies

the complexification of a map ðg� � cosð
ffiffiffiffiffiffiffi
�1

p
z0 adðg�1

� vÞÞ � g�1
� ÞjTxM

(resp.

g� �
sinð

ffiffiffiffiffiffiffi
�1

p
z0 adðg�1

� vÞÞffiffiffiffiffiffiffi
�1

p
z0 adðg�1

� vÞ
� g�1

�

 !�����
TxM

) from TxM to TxN
c. Also, for a complex

focal radius z0 of M along gv, we call z0v ðA T?
x M

cÞ a complex focal normal
vector of M at x. Furthermore, assume that M has globally flat normal
bundle. Let ~vv be a parallel unit normal vector field of M. Assume that the
number (which may be 0 or y) of distinct complex focal radii along g~vvx is
independent of the choice of x A M. Furthermore assume that this number
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is not equal to 0. Let fri;x j i ¼ 1; 2; . . .g be the set of all complex focal radii
along g~vvx , where jri;xj< jriþ1;xj or ‘‘jri;xj ¼ jriþ1;xj & Re ri;x > Re riþ1;x’’ or ‘‘jri;xj ¼
jriþ1;xj & Re ri;x ¼ Re riþ1;x & Im ri;x � Im riþ1;x > 0’’. Let ri ði ¼ 1; 2; . . .Þ be
complex valued functions on M defined by assigning ri;x to each x A M. We call
these functions ri ði ¼ 1; 2; . . .Þ complex focal radius functions for ~vv. We call ri~vv
a complex focal normal vector field for ~vv. If, for each parallel unit normal vector
field ~vv of M, the number of distinct complex focal radii along g~vvx is independent
of the choice of x A M, each complex focal radius function for ~vv is constant on
M and it has constant multiplicity, then we call M a complex equifocal sub-
manifold. Let f : H 0ð½0; 1�; gÞ ! G be the parallel transport map for G (see [K1]
about this definition) and p : G ! G=K be the natural projection. It is shown
that M is complex equifocal if and only if each component of ðp � fÞ�1ðMÞ is
complex isoparametric (see [K1] about this definition). In particular, if each
component of ðp � fÞ�1ðMÞ is proper complex isoparametric (see [K1] about this
definition), then we call M a proper complex equifocal submanifold.

Next we recall the notion of an infinite dimensional anti-Kaehlerian iso-
parametric submanifold. Let M be an anti-Kaehlerian Fredholm submanifold
in an infinite dimensional anti-Kaehlerian space V and A be the shape tensor
of M. See [K2] about the definitions of an infinite dimensional anti-Kaehlerian
space and anti-Kaehlerian Fredholm submanifold. Denote by the same symbol
J the complex structures of M and V . Fix a unit normal vector v of M. If
there exists Xð0 0Þ A TM with AvX ¼ aX þ bJX , then we call the complex

number aþ b
ffiffiffiffiffiffiffi
�1

p
a J-eigenvalue of Av (or a complex principal curvature of

direction v) and call X a J-eigenvector for aþ b
ffiffiffiffiffiffiffi
�1

p
. Also, we call the space of

all J-eigenvectors for aþ b
ffiffiffiffiffiffiffi
�1

p
a J-eigenspace for aþ b

ffiffiffiffiffiffiffi
�1

p
. The J-eigenspaces

are orthogonal to one another and each J-eigenspace is J-invariant. We call the
set of all J-eigenvalues of Av the J-spectrum of Av and denote it by SpecJ Av.
The set SpecJ Avnf0g is described as follows:

SpecJ Avnf0g ¼ fli j i ¼ 1; 2; . . .g
jlij > jliþ1j or “jlij ¼ jliþ1j & Re li > Re liþ1”

or “jlij ¼ jliþ1j & Re li ¼ Re liþ1 & Im li � Im liþ1 > 0”

� �
:

Also, the J-eigenspace for each J-eigenvalue of Av other than 0 is of finite
dimension. We call the J-eigenvalue li the i-th complex principal curvature of
direction v. Assume that M has globally flat normal bundle. Fix a parallel
normal vector field ~vv of M. Assume that the number (which may be y) of
distinct complex principal curvatures of direction ~vvx is independent of the choice
of x A M. Then we can define functions ~lli ði ¼ 1; 2; . . .Þ on M by assigning the
i-th complex principal curvature of direction ~vvx to each x A M. We call this
function ~lli the i-th complex principal curvature function of direction ~vv. We con-
sider the following condition:

(AKI) For each parallel normal vector field ~vv, the number of distinct complex
principal curvatures of direction ~vvx is independent of the choice of x A M, each
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complex principal curvature function of direction ~vv is constant on M and it has
constant multiplicity.

If M satisfies this condition (AKI), then we call M an anti-Kaehlerian
isoparametric submanifold. Let feigyi¼1 be an orthonormal system of TxM.
If feigyi¼1 U fJeigyi¼1 is an orthonormal base of TxM, then we call feigyi¼1 a
J-orthonormal base. If there exists a J-orthonormal base consisting of J-
eigenvectors of Av, then Av is said to be diagonalized with respect to the J-
orthonormal base. If M is anti-Kaehlerian isoparametric and, for each v A T?M,
the shape operator Av is diagonalized with respect to a J-orthonormal base,
then we call M a proper anti-Kaehlerian isoparametric submanifold. For arbi-
trary two unit normal vector v1 and v2 of a proper anti-Kaehlerian isoparametric
submanifold, the shape operators Av1 and Av2 are simultaneously diagonalized
with respect to a J-orthonormal base. Note that the notion of a proper anti-
Kaehlerian isoparametric submanifold in a finite dimensional anti-Kaehlerian
space is defined similarly. Let M be a proper anti-Kaehlerian isoparametric
submanifold in an infinite dimensional anti-Kaehlerian space V . Let fEi j i A Ig
be the family of distributions on M such that, for each x A M, fEiðxÞ j i A Ig
is the set of all common J-eigenspaces of Av’s ðv A T?

x MÞ. The relation

TxM ¼ 0
i A I Ei holds. Let li ði A IÞ be the section of ðT?MÞ� nC such that

Av ¼ Re liðvÞ idþ Im liðvÞJ on EiðpðvÞÞ for each v A T?M, where p is the
bundle projection of T?M. We call li ði A IÞ complex principal curvatures of
M and call distributions Ei ði A IÞ complex curvature distributions of M. It is
shown that there uniquely exists a normal vector field vi of M with lið�Þ ¼
hvi; �i�

ffiffiffiffiffiffiffi
�1

p
hJvi; �i (see Lemma 5 of [K2]). We call vi ði A IÞ the complex

curvature normals of M. Note that vi is parallel with respect to the normal
connection ‘?. The focal set of ðM; xÞ ðx A MÞ coincides with the sum
6

i A I ðliÞ
�1
x ð1Þ of the complex hyperplanes ðliÞ�1

x ð1Þ ði A IÞ. The Coxeter group
generated by te complex reflections of order two with respect to ðliÞ�1

x ð1Þ ðA IÞ
is discrete (see Proposition 3.7 of [K4]). We call this group the complex Coxeter
group associated with M at x and denote it by Wx. This group is independent
of the choice of x A M up to isomorphism. Hence we simply denote it by
W .

Let M be a submanifold with globally flat and abelian normal bundle in a
symmetric space N ¼ G=K of non-compact type. We assume that G admits the
complexification G c. In [K2], we defined the extrinsic complexification M c of M
as an anti-Kaehlerian submanifold in the anti-Kaehlerian symmetric space G c=K c

associated with G=K . Let fc : H 0ð½0; 1�; gcÞ ! G c be the parallel transport map
for G c (see [K2] about this definition) and pc : G c ! G c=K c be the natural pro-
jection. Let ~MM c be the complete extension of ðpc � fcÞ�1ðM cÞ. It is shown that
M is a proper complex equifocal one if and only if each component of ~MM c is a
proper anti-Kaehlerian isoparametric one. Let W be the complex Coxeter group
associated with ~MM c. We call W the complex Coxeter group associated with M.
Here we note that W is determined by only complex focal datas of M without
the use of M c.
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3. The associated complex Coxeter groups

Let M be a proper anti-Kaehlerian isoparametric submanifold in a finite
dimensional anti-Kaehlerian space V . Denote by the same symbol J the com-
plex structures of M and V . Let fli j i A Ig (resp. fvi j i A Ig) be the set of all
complex principal curvatures (resp. the set of all complex curvature normals) of
M and Ei ði A IÞ be the complex curvature distribution for li. Let T x

i be the
complex reflection of order two with respect to the complex hyperplane l xi :¼
ðliÞ�1

x ð1Þ of T?
x M, which is an a‰ne transformation of T?

x M. When T x
i is

regarded as a linear transformation of T?
x M, we denote it by Rx

i . Also, when l xi
is rgarded as a linear subspace of T?

x M, we denote it by the same symbol l xi .
The complex Coxeter group W associated with M is generated by T x

i ’s ði A IÞ.
Let WL be the group generated by Rx

i ’s ði A IÞ. According to Proposition 3.7 of
[K4], it is shown that W is discrete and hence WL is finite. Also, we can show
the following fact.

Proposition 3.1. The group W is isomorphic to W L.

Proof. Let LEi
x be the leaf of Ei through x A M, which is a complex sphere

in V (see [K2]). Let ox be the center of the complex sphere LE
x . Define a

di¤eomorphism fi of M by assigning the antipodal point of x in the complex
sphere LEi

x to each x A M. Then we have fEjðxÞ j j A Ig ¼ fEjðfiðxÞÞ j j A Ig
ði A IÞ as a family of linear subspaces of V (see Section 3 of [K4]). Let
ðEjÞfiðxÞ ¼ ðEsið jÞÞx. According to Lemma 3.2 in [K4], we have ðljÞfiðxÞ ¼ðlsið jÞÞx
1� ðlsið jÞÞxðfiðxÞ � xÞ , that is, ðvjÞfiðxÞ ¼

ðvsið jÞÞx
1� ðlsið jÞÞxðfiðxÞ � xÞ . For simplicity,

we denote T x
i (resp. Rx

i ) by Ti (resp. Ri). We have fiðxÞ ¼ TiðxÞ. Hence we

have ðvjÞTiðxÞ ¼
ðvsið jÞÞx

1� ðlsið jÞÞxðTiðxÞ � xÞ . In more general, we can show

ðvjÞðTi1
�����Tir ÞðxÞ ¼

ðvðsi1�����sir Þð jÞÞx
1� ðlðsi1�����sir Þð jÞÞxððTi1 � � � � � TirÞðxÞ � xÞð3:1Þ

ðði1; . . . ; irÞ A I rÞ, where r is an arbitrary positive integer. On the other hand, it
is clear that

ðvjÞðTi1
�����Tir ÞðxÞ ¼ ðRi1 � � � � � RirÞððvjÞxÞ:ð3:2Þ

Assume that Ri1 � � � � � Rir ¼ id. Then, by using ð3:2Þ, we can show ðEjÞðfi1�����fir ÞðxÞ¼ ðEjÞx. On the other hand, we have ðEjÞðfi1�����fir ÞðxÞ ¼ ðEðsir�����si1 Þð jÞÞx. Hence

we have sir � � � � � si1 ¼ id, that is, si1 � � � � � sir ¼ id. Furthermore, it follows from
ð3:1Þ and ð3:2Þ that hðvjÞx; ðTi1 � � � � � TirÞðxÞ � xi ¼ 0. Since M is contained
in the a‰ne subspace xþ TxMl SpanfðviÞx j i A Ig and ðTi1 � � � � � TirÞðxÞ �
x A T?

x M, it follows from the arbitrariness of j that ðTi1 � � � � � TirÞðxÞ ¼ x, which
implies Ti1 � � � � � Tir ¼ id. Conversely, it is clear that Ti1 � � � � � Tir ¼ id implies
Ri1 � � � � � Rir ¼ id. Since M is of finite dimension, I is finite. Hence W (resp.
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WL) is finitely generated by Ti’s (resp. Ri’s). These facts imply that W is
isomorphic to WL. q.e.d.

From this proposition, we can show the following fact.

Proposition 3.2. The set 7
i A I l

x
i is not empty.

Proof. Since WL is finite, so is also W by Proposition 3.1. Let a :¼
1

jW j
P

g AW gðxÞ, where jW j is the order of W . Clearly we have gðaÞ ¼ a for

each g A W . Hence we have a A 7
i A I l

x
i . This completes the proof. q.e.d.

4. Basic results

In this section, we prepare basic results to prove Theorem A. We first
prepare the following slice theorem for a proper anti-Kaehlerian isoparametric
submanifold.

Theorem 4.1. Let M be a proper anti-Kaehlerian isoparametric submanifold
in an infinite dimensional anti-Kaehlerian space V , li ði A IÞ be its complex princi-
pal curvatures, vi ði A IÞ be its complex curvature normals and Ei be its complex
curvature distributions. Let I 0 be a subset of I with 7

i A I 0 l
x0
i n6

i A InI 0 l
x0
i 0j,

where l x0i :¼ ðliÞ�1
x0
ð1Þ. Then the following statements ðiÞ@ðiiiÞ hold:

(i) 0
i A I 0 Ei is integrable,

(ii) The leaf LI 0

x0
of 0

i A I 0 Ei through x0 is contained in the complex a‰ne

subspace VI 0 :¼ x0 þ ð0
i A I 0 ðEiÞx0Þl SpanJfðviÞx0 j i A I 0g, where SpanJð�Þ implies

the complex subspace of V spanned by ð�Þ,
(iii) LI 0

x0
is a proper anti-Kaehlerian isoparametric submanifold in VI 0 and

its complex Coxeter group WI 0 is generated by the complex reflections of order
two with respect to the complex hyperplanes l x0j V SpanJfðviÞx0 j i A I 0g ð j A I 0Þ in
SpanJfðviÞx0 j i A I 0g.

Proof. Let NI 0 :¼ SpanJfvi j i A I 0g. Take v0 A 7
i A I 0 l

x0
i n6

i A InI 0 l
x0
i and

let v be the parallel normal vector field of M with vx0 ¼ v0. Define a sub-
mersion pv : M ! V by pvðxÞ :¼ xþ vx ðx A MÞ. Set Mv :¼ pvðMÞ and F x0

v :¼
p�1
v ðpvðx0ÞÞ. Easily we can show pv�jEi

¼ ð1� liðvÞÞ idEi
ði A IÞ, where idEi

is
the identity transformation of Ei. Hence we have Ker pv� ¼ 0

i A I 0 Ei, which
implies that 0

i A I 0 Ei is integrable and that LI 0
x0

¼ F x0
v . Thus the statement (i) is

shown. Denote by A (resp. ‘?) the shape tensor (resp. the normal connection)
of M and denote by A 0 (resp. ‘?0

) the shape tensor (resp. the normal connec-
tion) of LI 0

x0
(in V ). For w A T?MmNI 0 , we have AwjEj

¼ 0 ð j A I 0Þ and hence

AwjTLI 0
x0

¼ 0. That is, we have A 0
w ¼ 0. Hence the first normal space of LI 0

x0

is contained in NI 0 . For any X A TLI 0

x0
, we have ~‘‘Xvi A TLI 0

x0
ði A I 0Þ, that is,

‘?0

X vi ¼ 0. This implies that NI 0 jLI 0
x0

is parallel with respect to ‘?0
. Therefore,
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it follows from the reduction theorem that LI 0

x0
is contained in the complex

affine subspace x0 þ Tx0L
I 0
x0
l ðNI 0 Þx0ð¼ VI 0 Þ. Thus the statement (ii) is shown.

Since AviðTLI 0

x0
Þ ¼ 0

j A I 0 AviðEjÞHTLI 0

x0
ði A I 0Þ, we have Avi jTLI 0

x0

¼ A 0
vi

ði A I 0Þ.
Hence A 0

vi
jEj

¼ ljðviÞ idEj
ði; j A I 0Þ, where we note that A 0

vi
is regarded as the

shape operator of LI 0
x0

in VI 0 . Thus we see that LI 0
x0

is a proper anti-Kaehlerian

isoparametric submanifold in VI 0 and that flijNI 0
j i A I 0g is the set of all the

complex principal curvatures of LI 0

x0
. Since ðlijNI 0

Þ�1ð1Þ ¼ l x0i V ðNI 0 Þx0 ði A I 0Þ,
the complex Coxeter group WI 0 associated with LI 0

x0
is given as in the statement

(iii). q.e.d.

Thus an infinite dimensional proper anti-Kaehlerian isoparametric sub-
manifold is multi-foliated by finite dimensional proper anti-Kaehlerian isopa-
rametric ones. Hence the study of the finite dimensional proper anti-Kaehlerian
isoparametric submanifold leads to that of the infinite dimensional proper anti-
Kaehlerian isoparametric one. Next, by imitating the proof (see Section 3 of
[T1]) of Theorem C of [T1], we shall prove the following Chevalley type re-
striction theorem for a finite dimensional proper anti-Kaehlerian isoparametric
submanifold.

Theorem 4.2. Let M be a finite dimensional proper anti-Kaehlerian iso-
parametric submanifold in a finite dimensional anti-Kaehlerian space V , S be a
section of M and W be the complex Coxeter group (which acts on S) associated
with M. Assume that a foliation F (which may have singular leaves) consisting
of parallel submanifolds of M is defined on the whole of V. Then the restriction
map r : PolcðVÞF ! PolcðSÞW is an isomorphism, where PolcðVÞF is the ring of all
complex polynomials on V which are constant along leaves of F and PolcðSÞW
is that of all W-invariant complex polynomials on S.

Remark 4.1. Let G=K be a symmetric space of non-compact type and H be
a symmetric subgroup of G, where G can be assumed to be a connected semi-
simple Lie group and have its complexification, and K can be assumed to be a
maximal compact subgroup of G. Then principal orbits of the PðG c;H c � K cÞ-
action on H 0ð½0; 1�; gcÞ are infinite dimensional proper anti-Kaehlerian isopa-
rametric submanifolds (see Theorems 1, 3 of [K2] and Theorem B of [K3]) and
those slices as in Theorem 4.1 are finite dimensional proper anti-Kaehlerian iso-
parametric ones satisfying the assumptions of Theorem 4.2, where G c, K c and
H c are the complexifications of G, K and H, respectively, PðG c;H c � K cÞ :¼
fg A H 1ð½0; 1�;G cÞ j ðgð0Þ; gð1ÞÞ A H c � K cg and gc is the Lie algebra of G c.

The proof of Theorem C of [T1] is written too smartly. Since we need to
prove Theorem 4.2 carefully, we shall give the proof in detail comparatively by
dividing into some lemmas. Let M, V , W , F and S be as in the statement of
Theorem 4.2. Let n :¼ dimc M and m :¼ dimc V . Fix x0 A M VS. We identify
S with T?

x0
M through exp?. Let D be a contractible open neighborhood of x0
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in T?
x0
M contained in a fundamental domain of the complex Coxeter group W

containing x0 and B be a tubular neighborhood of the 0-section of the normal
bundle T?M obtained by parallel translating D with respect to the normal con-
nection. First we prepare the following lemma.

Lemma 4.3. Let u be a W-invariant holomorphic function over S. Then
there uniquely exists a holomorphic function f over exp?ðBÞ such that f ¼ u on
exp?ðBÞVS and that f is constant along each leaf of FjB.

Proof. Define a function f over exp?ðBÞ by f ðexp?ðvÞÞ :¼ uð~vvx0Þ ðv A BÞ,
where ~vv is the parallel normal vector field of M with ~vvx ¼ v (x: the base point
of v). It is clear that f satisfies two conditions in the statement. Since exp?jB
is an embedding, Fjexp?ðBÞ posseses no singular leaf. From this fact, the holo-
morphicity of f follows. The uniqueness is trivial. q.e.d.

Take a J-orthonormal base x1; Jx1; . . . ; xm�n; Jxm�n of T?
x0
M with hxa; xai ¼

1 ða ¼ 1; . . . ;m� nÞ and a A 7
i A I li, where fligi A I is the family of all focal com-

plex hyperplanes of ðM; x0Þ. Let a ¼
Pm�n

a¼1 ðaaxa þ baJxaÞ. Identify S ð¼ T?
x0
MÞ

with Cm�n under the correspondence
Pm�n

a¼1 ðxaxa þ yaJxaÞ $ ððx1 � a1Þ þffiffiffiffiffiffiffi
�1

p
ðy1 � b1Þ; . . . ; ðxm�n � am�nÞ þ

ffiffiffiffiffiffiffi
�1

p
ðym�n � bm�nÞÞ. In similar to the state-

ment (ii) of Lemma 3.3 of [T1], we have the following fact.

Lemma 4.4. Let u : S ! C be a W-invariant homogeneous (complex) poly-
nomial of degree k and f : exp?ðBÞ ! C be the extension of ujexp?ðBÞVS as in

Lemma 4.3. Then hgrad f ; grad f ic is an extension (as in Lemma 4.3) of the
restriction of a W-invariant homogeneous polyomial of degree 2ðk � 1Þ over S to
exp?ðBÞVS.

Proof. Let xa ða ¼ 1; . . . ;m� nÞ be a parallel unit normal vector field on
M with ðxaÞx0 ¼ xa. Define a unit vector field ~xxa ða ¼ 1; . . . ;m� nÞ on exp?ðBÞ
by ð~xxaÞexp?ðvÞ ¼ ðxaÞpðvÞ ðv A BÞ, where p is the bundle projection of T?M. Easily
we can show dfexp?ðvÞðð~xxaÞexp?ðvÞÞ ¼ du~vvx0 ðð~xxaÞ~vvx0 Þ ða ¼ 1; . . . ;m� nÞ, where v A B
and ~vv is as in the proof of Lemma 4.3. From this relation and the fact that f is
constant along each leaf of Fjexp?ðBÞ, we have hðgrad f Þexp?ðvÞ; ðgrad f Þexp?ðvÞic ¼
hðgrad uÞ~vvx0 ; ðgrad uÞ~vvx0i

c. Thus hgrad f ; grad f ic is an extension (as in Lemma
4.3) of the restriction of a W -invariant homogeneous polynomial hgrad u; grad uic

of degree 2ðk � 1Þ over S to exp?ðBÞVS. q.e.d.

Also, we prepare the following lemma.

Lemma 4.5. Let u and f be as in Lemma 4.3. Then we have

ðsf Þðexp?ðvÞÞ ¼ ðsuÞð~vvx0Þ þ
Xg
i¼1

mihðgrad uÞ~vvx0 ; ðviÞx0i
c

1� lið~vvx0Þ
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ðv A BÞ, where sf is defined by sf :¼ �
P2m

B¼1 eBð~‘‘eBð~‘‘eB f Þ � ~‘‘~‘‘eB
eB
f Þ (~‘‘: the

connection of V , fe1; . . . ; e2mg: an orthonormal base of V , eB :¼ heB; eBi), su is
also defined similarly, ~vv is as in the proof of Lemma 4.3, fli j i ¼ 1; . . . ; gg is the set
of all complex principal curvatures of M, mi :¼ 1

2 dim Ei (Ei: the complex cur-
vature distribution for li) and vi is the complex curvature normal for li.

Proof. Take an arbitrary x1 A M. Let U be a contractible open set of M
containing x0 and x1, fei1; Jei1; . . . ; eimi

; Jeimi
g be a J-orthonormal frame field of

EijU ði ¼ 1; . . . ; gÞ. Take v A Bxð:¼ BVT?
x MÞ ðx A UÞ. Let c : ð�e; eÞ ! U be

a curve with _ccð0Þ ¼ ðeij Þx and ~vv be a parallel normal vector field along c with
~vvð0Þ ¼ v. Define a vector field ~eeij on exp?ðBjU Þ by ð~eeij Þexp?ðvÞ :¼ exp?� ð _~vv~vvð0ÞÞ
ðv A BjUÞ. It is clear that 6g

i¼1
f~eei1; J~eei1; . . . ; ~eeimi

; J~eeimi
g is a tangent frame field of

leaves of Fjexp?ðBjU Þ. Also, let ~xxa ða ¼ nþ 1; . . . ;mÞ be unit vector fields on
exp?ðBÞ as in the proof of Lemma 4.4, which are normal to leaves of Fjexp?ðBÞ.
Let v A Bx ðx A UÞ. Let gv be the normal geodesic of M with _ggvð0Þ ¼ v. Since
~eeij jgv is the Jacobi field along gv satisfying ~‘‘v~ee

i
j ¼ �Avðeij Þx ¼ �liðvÞðeij Þx, we have

ð~eeij ÞgvðsÞ ¼ ð1� sliðvÞÞðeij Þx and hence

ðsf Þðexp?ðvÞÞ ¼ ðsuÞð~vvx0Þ þ
Xg
i¼1

Xmi

j¼1

2

ð1� liðvÞÞ2
ð~‘‘ð~‘‘

~ee i
j
~ee i
j
Þ? f Þexp?ðvÞ;ð4:1Þ

where ð�Þ? is the normal component (to leaves of Fjexp?ðBjU Þ) of ð�Þ. On the other

hand, we have ðð~‘‘~ee i
j
~eeij Þ?Þexp?ðvÞ ¼

Pm�n
a¼1 liððxaÞxÞð1� lið~vvx0ÞÞð~xxaÞexp?ðvÞ, where we

use ð~‘‘~ee i
j

~xxaÞexp?ðvÞ ¼ ð~‘‘e i
j
xaÞx, liðvÞ ¼ lið~vvx0Þ and ~‘‘J ¼ 0. Substituting this relation

into ð4:1Þ, we have ðsf Þðexp?ðvÞÞ ¼ ðsuÞð~vvx0Þ þ
Pg

i¼1

mi

1� lið~vvx0Þ
hðgrad uÞ~vvx0 ;

ðviÞx0i
c, where ~vvi is the vector field on exp?ðBjUÞ arising from vijU . q.e.d.

By identifying T?
x0
M with S through exp?, we regard lijT?

x0
M as a C-linear

function over S.

Lemma 4.6. The function
1

1� lijT?
x0
M

hgrad u; ðviÞx0i
c over S is a homoge-

neous polynomial of degree ðk � 2Þ as the function over Cm�n identified with
S ¼ T?

x0
M as stated in this section.

Proof. Assume that v A ðlijT?
x0
MÞ�1ð1Þ. Since the complex reflection of order

two with respect to ðlijT?
x0
MÞ�1ð1Þ is an element of the complex Coxeter group W

of M and u is W -invariant, we have hðgrad uÞv; ðviÞx0i
c ¼ 0. This implies that

hgrad u; ðviÞx0i
c is divisible by 1� lijT?

x0
M . Hence the statement follows.

q.e.d.

Furthermore, we can show the following fact.
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Lemma 4.7. The function
Pg

i¼1

mi

1� lijT?
x0
M

hgrad u; ðviÞx0i
c over S is W-

invariant.

Proof. For simplicity, let ûu :¼
Pg

i¼1

mihgrad u; ðviÞx0i
c

1� lijT?
x0
M

and denote T x0
j

(resp. Rx0
j ) by Tj (resp. Rj), where T x0

j and Rx0
j are as in Section 3. Take

v A Sð¼ T?
x0
MÞ. Since u is W -invariant, we have

ûuðTjðvÞÞ ¼
Xg
i¼1

mihðgrad uÞv;RjððviÞx0Þi
c

1� liðTjðvÞÞ
:ð4:2Þ

Take a A 7g

k¼1
l x0k , where we note that 7g

k¼1
l x0k 0j by Proposition 3.2. The

complex reflection Tj is expressed as Tj ¼ Pa � Rj � P�a, where PGa is defined by

PGaðvÞ ¼ vG a ðv A S ¼ T?
x0
MÞ. Let fj and sj ð j ¼ 1; . . . ; gÞ be as in Section

3. Since RjððviÞx0Þ ¼ ðviÞfjðx0Þ and ðliÞfjðx0Þ ¼
ðlsjðiÞÞx0

1� ðlsjðiÞÞx0ðfjðx0Þ � x0Þ
, we have

liðTjðvÞÞ ¼
ðlsjðiÞÞx0ðvÞ � 1

1� ðlsjðiÞÞx0ðfjðx0Þ � x0Þ
þ 1:ð4:3Þ

On the other hand, we have hðgrad uÞv;RjððviÞx0Þi
c ¼ 1

2

ðlsjðiÞÞx0ððgrad uÞvÞ
1� ðlsjðiÞÞx0ðfjðx0Þ � x0Þ

.

Substituting this relation and ð4:3Þ into ð4:2Þ, we have ûuðTjðvÞÞ ¼
Pg

i¼1 �
miðliÞx0ððgrad uÞvÞ
2ð1� ðliÞx0ðvÞÞ

¼ ûuðvÞ, where we note msjðiÞ ¼ mi. Thus ûu is W -invariant.

q.e.d.

From Lemmas 4.5, 4.6 and 4.7, we have the following fact.

Lemma 4.8. Let u and f be as in Lemma 4.3. Then sf is an extension (as
in Lemma 4.3) of the restriction of a W-invariant homogeneous polynomial of
degree ðk � 2Þ over S to exp?ðBÞVS.

Proof. According to Lemma 4.5, sf is an extension of ðsuþ ûuÞjexp?ðBÞVS,
where ûu is as in the proof of Lemma 4.7. According to Lemmas 4.6 and 4.7, ûu
is a W -invariant homogeneous polynomial of degree ðk � 2Þ. Also, it is clear
that so is also su. Hence the statement follows. q.e.d.

By using Lemmas 4.4 and 4.8, we shall prove Theorem 4.2.

Proof of Theorem 4.2. It is clear that the restriction map r : PolcðVÞF !
PolcðSÞW is an injective homomorphism. By the induction for the degree, we
shall show that r is surjective. It is clear that all elements of degree zero of
PolcðSÞW belong to the image of r. Assume that all elements of degree at most
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ðk � 1Þ of PolcðSÞW belong to the image of r. Take an element u of degree k of
PolcðSÞW . From Lemmas 4.4 and 4.8, we can show that u belongs to the image
of r by imitating the proof of Theorem C of [T1]. Therefore, by the induction,
we see that r is surjective. q.e.d.

Let V be a finite dimensional anti-Kaehlerian space and f ¼ ð f1; . . . ; fkÞ :
V ! Ck be a polynomial map. In this paper, we call f a proper anti-Kaehlerian
isoparametric polynomial map if it satisfies the following conditions:

(i) f has a regular point,
(ii) hgrad fi, grad fji

c ð1 a i a k; 1 a j a kÞ and sfi ð1 a i a kÞ are
functions of f1; . . . ; fk,

(iii) ½grad fi; grad fj �c ð1 a i a k; 1 a j a kÞ are linear combinations of
grad f1; . . . ; grad fk having functions of f1; . . . ; fk as the coe‰cients,

where grad fi is the complex vector field defined by grad fi :¼ gradð fiÞR þ
ffiffiffiffiffiffiffi
�1

p
�

gradð fiÞI (ð fiÞR (resp. ð fiÞI ): the real (resp. imaginary) part of fi), h ; ic is the
complexification of the non-degenerate symmetric bilinear form h ; i of V and
½ ; �c is that of the bracket product ½ ; �. By using Theorem 4.2, we can prove the
following fact for existence of a proper anti-Kaehlerian isoparametric polynomial
map having a given proper anti-Kaehlerian isoparametric submanifold as a reg-
ular level set.

Theorem 4.9. Let M, V , S and W be as in Theorem 4.2. Then there exists
a proper anti-Kaehlerian isoparametric polynomial map f ¼ ð f1; . . . ; fkÞ : V ! Ck

satisfying the following conditions:
(i) f has M as a regular level set,
(ii) the focal set of M coincides with the set of all critical points of f ,
(iii) f ðVÞ ¼ f ðSÞ,
(iv) for v A S, v is a regular point of f if and only if v is a W-regular point.

Proof. Let W be the complex Coxeter group associated with M. Accor-
ding to the theorem of Chevalley [Ch] for the ring of all polynomials on Km

(K: a field of characteristic zero) which are invariant with respect to a finite
reflection group, we can show that the ring of all W -invariant (complex) poly-
nomials on Sð¼ Cm�nÞ is generated by ðm� nÞ pieces of generators u1; . . . ; um�n.
Let f1; . . . ; fm�n be their extended polynomials on V , whose existences are assured
by Theorem 4.2. Let f :¼ ð f1; . . . ; fm�nÞð: V ! Cm�nÞ. According to Lemma
4.4, the polynomial hgrad fi; grad fji

c is the extension of a W -invariant poly-
nomial u on S. Let u ¼

P
k1;...;km�n

ck1���km�n
uk1
1 � � � ukm�n

m�n . Then it is clear that

hgrad fi; grad fji
c ¼

P
k1;...;km�n

ck1���km�n
f k1
1 � � � f km�n

m�n . Thus hgrad fi; grad fji
c is

a function of f1; . . . ; fm�n. Similarly, by using Lemma 4.8, we can show that
sfi is a function of f1; . . . ; fm�n. Also, since fi’s are polynomials, it is shown
that ½grad fi; grad fj �c’s are linear combinations of grad f1; . . . ; grad fm�n having
functions of f1; . . . ; fm�n as the coe‰cients. Thus f is a proper anti-Kaehlerian
isoparametric polyomial map. Furthermore, it is easy to show that f satisfies
the conditions (i)@(v). This completes the proof. q.e.d.
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5. Proofs of Theorems A and B

In this section, we prove Theorems A and B. First we prove Theorem A.
For its purpose, we prepare the following lemma.

Lemma 5.1. Let G be a compact subgroup of the a‰ne transformation group
ðOð2nÞVGLðn;CÞÞyCn of Cnð¼ R2nÞ.

(i) The ring PolcðCnÞG of all G-invariant complex polynomials over Cn is finitely
generated.

(ii) Any G-invariant complex-valued Cy-function f over Cn is expressed as
f ¼ f � ðu1; . . . ; ukÞ in terms of some complex-valued Cy-function f on Ck, where
u1; . . . ; uk are generators of PolcðCnÞG.

Proof. The statement (i) is trivial. Let uR
i (resp. uI

i ) be the real (resp.
imaginary) part of ui ði ¼ 1; . . . ; kÞ. It is clear that uR

1 ; u
I
1 ; . . . ; u

R
k ; u

I
k are gen-

erators of the ring PolRðR2nÞG of G-invariant real-valued polynomials over
R2nð¼ CnÞ. Let f R (resp. f I ) be the real (resp. imaginary) part of f . Since

f R and f I are G-invariant, it follows from the Schwarz’s theorem [Sc] that they
are expressed as f R ¼ f1 � ðuR

1 ; u
I
1 ; . . . ; u

R
k ; u

I
kÞ and f I ¼ f2 � ðuR

1 ; u
I
1 ; . . . ; u

R
k ; u

I
kÞ

in terms of real-valued Cy-functions f1 and f2 over R2k, respectively. Under
the identification of R2k and Ck, we regard f1 þ

ffiffiffiffiffiffiffi
�1

p
f2 as the complex-valued

Cy-function over Ck. Then we have f ¼ ðf1 þ
ffiffiffiffiffiffiffi
�1

p
f2Þ � ðu1; . . . ; ukÞ. q.e.d.

By imitating the proof of Theorem 10.1 of [T2], we prove Theorem A, where
we use Theorems 4.1, 4.2 and the above lemma.

Proof of Theorem A. Let x0 A M VS. Then we have S ¼ exp?ðT?
x0
MÞ,

where exp? is the normal exponential map of M and T?
x0
M is the normal space

of M at x0. We identify S with T?
x0
M. It is clear that the restriction map

r in the statement is injective. We shall show that r is surjective. Take
f A CyðS;CÞW . Since f is W -invariant, it is uniquely extended to the function
on V which is constant along each leaf of F. Denote by ~ff its extension. We
have only to show that ~ff is of class Cy. First we shall show that ~ff is of
class Cy at a non-focal point p1 of M. Let s be a fundamental domain of
W containing x0 and s0 be its interior, where we note that the choice of s is
not unique. Define a map F of M �s0 into V by Fðx; vÞ :¼ xþ ~vvx ððx; vÞ A
M �s0Þ, where ~vv is the global parallel normal vector field of M with ~vvx0 ¼ v.
It is easy to show that FðM �s0Þ is open and dense in V and that F is a
Cy-di¤eomorphism of M �s0 onto FðM �s0Þ. We may assume that p0 A
FðM �s0Þ by retaking s if necessary. Since ð ~ff �FÞðx; vÞ ¼ f ðvÞ ððx; vÞ A
M �s0Þ, ~ff �F is a Cy-function over M �s0. Hence ~ff is of class Cy over
FðM �s0Þ. In particular, ~ff is of class Cy at p0. Next we shall show that ~ff
is of class Cy at a focal point p1 of M. Let p1 ¼ x1 þ v ðx1 A M; v A T?

x1
MÞ and
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~vv be the global parallel normal vector field of M with ~vvx1 ¼ v. The focal map
p~vv : M ! V is defined by p~vvðxÞ :¼ xþ ~vvx ðx A MÞ and the focal submanifold
M~vv is defined by M~vv :¼ p~vvðMÞ. Let s be a section of p~vv through x1 over a
neighborhood U of p1 in M~vv. Let O be the complex Banach space of all
compact operators of V which are commutative with the complex structure J
of V and OJðVÞ be the Banach group of all linear isometries of V which are
commutative with J. The action of OJðVÞ on O is defined by B � C :¼ B �
C � B�1 ðB A OJðVÞ;C A OÞ. For each x A M, we define ~AA~vvx A O by ~AA~vvx jTxM

¼ A~vvx

and ~AA~vvx jT?
x M ¼ 0, where A is the shape tensor of M. Since M is proper anti-

Kaehlerian isoparametric, for any x A M, ~AA~vvx belongs to the OJðVÞ-orbit through
~AAv. The orbit map c : OJðVÞ ! OJðVÞ � ~AAv is defined by cðBÞ ¼ B � ~AAv � B�1

ðB A OJðVÞÞ. Take a Cy-section g of c through the identity transformation idV
of V over a neighborhood of ~AAv in OJðVÞ � ~AAv containing f ~AA~vvsðxÞ j x A Ug, where
we shrink U if necessary. Let fli j i A Ig be the set of all complex principal
curvatures of M and Ei ði A IÞ be the complex curvature distribution for li. Set
Iv :¼ fi A I j v A ðliÞ�1

x1
ð1Þg, which is finite. Define a map C : U � T?

x1
M �

ð0
i A Iv

ðEiÞx1Þ ! T?M~vvjU by Cðp; u;wÞ :¼ ~uusðpÞ þ gð ~AA~vvsð pÞ ÞðwÞ. The map C is a

bundle isomorphism. Take a tubular neighborhood T of the 0-section of
T?M~vvjU such that the restriction exp?jT of the normal exponential map of M~vv to

T is a di¤eomorphism. Since ð ~ff � exp? �CÞðp; u;wÞ ¼ ð ~ff � exp? �CÞðp1; u;wÞ
ððp; u;wÞ A C�1ðTÞÞ, we have only to show that ~ff is of class Cy over
exp?ðT VT?

p1
M~vvÞ in order to show that it is class Cy over exp?ðTÞ (hence

at p1). We shall show that ~ff is of class Cy over V 0 :¼ exp?ðT?
p1
M~vvÞ. Since Iv

is finite, we have dim V 0 < y. According to Theorem 4.1, p�1
~vv ðp1Þ is a proper

anti-Kaehlerian isoparametric submanifold in V 0. Let F 0 be a foliation (which
have singular leaves) consisting of parallel submanifolds and focal submanifolds
of p�1

~vv ðp1Þ. Since the foliation F in the statement is defined on the whole of V
by the assumption and leaves of F 0 are the intersections of those of F with V 0, F 0

is defined on the whole of V 0. Let S 0 :¼ exp?ðT?
x1
MÞ, which is a section of

p�1
~vv ðp1Þ. Let k :¼ codim M, that is, dim S 0 ¼ k. Let W 0 be the (finite) complex

Coxeter group associated with the proper anti-Kaehlerian isoparametric sub-

manifold p�1
~vv ðp1Þ. The ring PolcðS 0ÞW

0
of all W 0-invariant complex polynomials

over S 0 have k pieces of generators u1; . . . ; uk. Since ~ff is constant along leaves
of F 0, ~ff jS 0 is invarinat with respect to W 0. According to Lemma 5.1, ~ff jS 0 is
expressed as ~ff jS 0 ¼ f � ðu1; . . . ; ukÞ in terms of some complex-valued Cy-function
f over Ck. According to Theorem 4.2, each ui ði ¼ 1; . . . ; kÞ is extended to the
complex valued polynomial over V 0 which is constant along leaves of F 0.
Denote by ~uui this extension. Since both ~ff jV 0 and f � ð~uu1; . . . ; ~uukÞ are constant
along leaves of F 0 and those restrictions to S 0 coincide with each other, we have
~ff jV 0 ¼ f � ð~uu1; . . . ; ~uukÞ. Thus ~ff jV 0 is of class Cy. Hence so is ~ff jexp?ðTÞ. In

particular, ~ff is of class Cy at p1. Therefore, ~ff is of class Cy over V . This
completes the proof. q.e.d.

Now we prepare the following lemma to prove Theorem B.
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Lemma 5.2. Let M, W and WS be as in the statement of Theorem B. Re-
gard Sc as the section of ~MM c through a fixed point u0 A ~MM c. Let fli j i A Ig be the
set of all focal complex hyperplanes (in Sc ¼ T?

u0
~MM c) of ð ~MM c; u0Þ and Ri ði A IÞ be

the complex reflection of order two with respect to li, where we note that W ¼
hfRi j i A Igi. Then the following statements (i), (ii) and (iii) hold:

(i) WS ¼ hfRijS j i A I s:t: codimðli VSÞ ¼ 1gi (this group is a Coxeter group),
where codimðli VSÞ is the codimension of li VS in S,

(ii) each WS-orbit is contained in the intersection of one leaf of F with S,
where Sð¼ exp?ðT?

x0
MÞÞ ðx0 A M VSÞ is identified with T?

x0
M,

(iii) the image of the restriction map rS : CyðScÞW ! CyðSÞ to S coincides
with CyðSÞWS .

Proof. Easily we have li VS ¼ j or codimðli VSÞ A f1; 2g. By the elemen-
tary geometric methods, we can show

RiðSÞVS ¼ j ðwhen li VS ¼ jÞ
RiðSÞ ¼ S ðwhen codimðli VSÞ ¼ 1Þ
RiðSÞVS ¼ li VS ðwhen codimðli VSÞ ¼ 2Þ.

8><
>:ð5:1Þ

Hence the statement (i) is shown. In case of codimðli VSÞ ¼ 1, it follows from
RiðSÞ ¼ S that li VS is contained in the focal set of ðM; x0Þ. Furthermore we
see that the sum of li VS’s ði A I s:t: codimðli VSÞ ¼ 1Þ is contained in the focal
set of ðM; x0Þ. From this fact, the statement (ii) follows. Next we show the
statement (iii). Clearly we have rSðCyðScÞW ÞHCyðSÞWS . Take an arbitrary

f A CyðSÞWS . From ð5:1Þ, we see that there exists a fundamental domain s of
W such that sVS is contained in that of WS. Clearly there exists f̂f A CyðsÞ
such that f̂f jsVRðSÞ ¼ ð f � RÞjsVRðSÞ for all R A W . Furthermore we can take f̂f
as one which can be extended to an element of CyðScÞW . Denote by ~ff the
extension. From ~ff jS, f A CyðSÞWS and ~ff jsVRðSÞ ¼ ð f � RÞjsVRðSÞ for all R A W ,

we have ~ff jS ¼ f , that is, f A rSðCyðScÞW Þ. From the arbitrariness of f , we

have rSðCyðScÞW Þ ¼ CyðSÞWS . q.e.d.

Now we prove Theorem B in terms of Theorem A and this lemma.

Proof of Theorem B. Let M c be the extrinsic complexification of M. Let
fc : H 0ð½0; 1�; gcÞ ! G c be the parallel transport map for G c and pc : G c !
G c=K c be the natural projection. Set ~ffc :¼ pc � fc and ~MM c :¼ ~ffc�1ðM cÞ, which
is a proper anti-Kaehlerian isoparametric submanifold in H 0ð½0; 1�; gcÞ (see
[K2]). Since this foliation Fc in the statement is defined on the whole of G c=K c,
~FFc is defined on the whole of H 0ð½0; 1�; gcÞ. According to (ii) of Lemma 5.2,
the image of the restriction map r : CyðG=KÞF ! CyðSÞ to S is contained in

CyðSÞWS . Since all leaves of F intersect with S, r is injective. In the sequel, we
shall show that rðCyðG=KÞFÞ ¼ CyðSÞWS . Let Sc be the extrinsic complex-
ification of S and ~SSc be the horizontal lift of Sc to some point of ~MM c. The
group W acts on both Sc and ~SSc. Take an arbitrary f A CyðSÞWS . According
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to (iii) of Lemma 5.2, there exists ~ff A CyðScÞW with ~ff jS ¼ f . Under the iden-

tification of Sc with ~SSc, we regard ~ff as an element of Cyð~SScÞW . According to

Theorem A, ~ff extends to an element of CyðH 0ð½0; 1�; gcÞÞ~FF
c

, which we denote by
F . Since G c is simply connected and hence each fibre of ~ffc is connected, each
leaf of ~FFc is the inverse image of a leaf of Fc by ~ffc. Hence we see that there
uniquely exists F A CyðG c=K cÞF

c

with F � ~ffc ¼ F . Easily we can show F jG=K A

CyðG=KÞF and F jS ¼ f . That is, we have f ¼ rðF jG=KÞ A rðCyðG=KÞFÞ. From

the arbtrariness of f , we have rðCyðG=KÞFÞ ¼ CyðSÞWS . This completes the
proof. q.e.d.
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