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BOUNDS IN CAPACITY INEQUALITIES

FOR TWO SHEETED SPHERES

Mitsuru Nakai

Abstract

Take a pair of two disjoint nonpolar compact subsets A and B of the complex plane

C ¼ ĈCnfyg, the complex sphere less the point at infinity, with connected complement

ĈCnðAUBÞ and a simple arc g in ĈCnðAUBÞ. We form the two sheeted covering surface

ĈCg of ĈC by pasting ĈCng with another copy ĈCng crosswise along g. Embed A and B

in ĈCg either in the same sheet or in the di¤erent sheets and consider the variational

2-capacity capðA; ĈCgnBÞ of A contained in the open subset ĈCgnB of ĈCg. Concerning the

relation between the above capacity and the variational 2-capacity capðA; ĈCnBÞ of A

contained in the open subset ĈCnB of ĈC, we will establish the following capacity in-

equality for the two sheeted cover and its base:

0 < capðA; ĈCgnBÞ < 2 � capðA; ĈCnBÞ;

where the bound 2 in the above inequality is the best possible in the sense that, for any

0 < t < 2, there is a triple of A, B, and g such that capðA; ĈCgnBÞ > t � capðA; ĈCnBÞ,
where A and B may in the same sheet or in the di¤erent sheets.

1. Introduction

We have been using the notation ðRngÞ
S
�

g ðSngÞ for the Riemann surface
constructed from the two Riemann surfaces R and S and a common simple arc g
in R and S in the sense that there is a parametric disc V : jzj < 1 and a simple
arc g in V included both in R and S by pasting Rng and Sng crosswise along g
([11]). The arc g is referred to as the pasting arc for ðRngÞ

S
�

g ðSngÞ. We denote

by ĈC the complex sphere (the Riemann sphere) and by C the complex plane

ĈCnfyg where y is the point at infinity of C. Then ĈCg :¼ ðĈCngÞ
S
�

g ðĈCngÞ or
more precisely ðĈCg; ĈC; pgÞ is a covering surface of ĈC with the natural projection
p ¼ pg, where g is a simple arc in ĈC. For definiteness we let ĈCj ð j ¼ 1; 2Þ be two

copies of ĈC (so that ĈC1 ¼ ĈC2 ¼ ĈC) and g be a simple arc in ĈC and set
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ĈCg :¼ ðĈCngÞ
S
�

g ðĈCngÞ ¼ ðĈC1ngÞ
S
�

g ðĈC2ngÞ;
by which we can distinguish two sheets ĈCng of the covering surface

ðĈCngÞ
S
�
g ðĈCngÞ as ĈC1ng and ĈC2ng.

Consider two disjoint nonpolar compact subsets A and B in C such that both

of ĈCnA and ĈCnB and hence of course ĈCnAUB are connected. Let the pasting
arc g of ĈCg be taken from ĈCnAUB. There are two ways to embed AUB in
ĈCg: either AUBH ĈCj or AH ĈCi and BH ĈCj ði0 jÞ. In the former case we say
that A and B are embedded in the same sheet of ĈCg and in the latter case we
say that A and B are embedded in the di¤erent sheets of ĈCg. Observe that
ðĈC1nðAUBU gÞÞ

S
�

g ðĈC2ngÞ and ðĈC1ngÞ
S
�

g ðĈC2nðAUBU gÞÞ are conformally the
identical surfaces and the same is true of ðĈC1nðAU gÞÞ

S
�

g ðĈC2nðBU gÞÞ and
ðĈC1nðBU gÞÞ

S
�

g ðĈC2nðAU gÞ so that ĈCgnðAUBÞ has only two types: either A and
B are in the same sheet or in the di¤erent sheets. Unless stated explicitly which
is the case we allow for ĈCgnðAUBÞ to be either one of the above two cases.

Let X be a compact subset of a Riemann surface R and U be an open subset
of R such that X HU . We denote by capðX ;UÞ the capacity or more precisely
the variational 2-capacity of X relative to U which is given by

capðX ;UÞ :¼ inf
j

Dðj;RÞ;ð1:1Þ

where j runs over every function j in CyðRÞ such that jjX f 1 and the support
of j is contained in U . Here Dðj;RÞ is the Dirichlet integral

Ð
R
dj5�dj of

j over R. The fact that capðX ;UÞ > 0 is equivalent to that both of X and
RnU are nonpolar. In the sequel we will restrict ourselves only to the case of
capðX ;UÞ > 0 so that we always assume that both of X and RnU are nonpolar
whenever we consider capðX ;UÞ. There is a unique bounded locally Sobolev
function u with Dðu;RÞ < þy such that u ¼ 1 (u ¼ 0, resp.) on X (RnU , resp.)
except for a polar subset of X (RnU , resp.) and u j ðUnX Þ is harmonic and, as the
most important property,

capðX ;UÞ ¼ Dðu;RÞ:ð1:2Þ
The function u is referred to as the capacitary function for capðX ;UÞ (cf. e.g. [14],
[15], etc.).

In addition to the interest in its own sake it is important in connection with
the type problem (cf. e.g. [13], [16], [15], [10], [11], [12], [4], [6], [9], etc.) to clarify

the connection between two capacities capðA; ĈCgnBÞ and capðA; ĈCnBÞ, which we
have been studying from various view points ([5], [6], [7], [8]). The central theme
is to determine the range I of the function g 7! capðA; ĈCgnBÞ. It is known that
I is an open interval ð0; cðA;BÞÞ with capðA; ĈCnBÞ A ð0; cðA;BÞÞ. The purpose of
this paper is to show that cðA;BÞe 2 � capðA; ĈCnBÞ and this is, in a sense, the
best possible. Namely, we will prove the following result.

Theorem. For any two disjoint nonpolar compact subsets A and B in the
complex plane ĈC with connected complements and a simple arc g in ĈCnðAUBÞ, the
following capacity inequality holds:
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0 < capðA; ĈCgnBÞ < 2 � capðA; ĈCnBÞ:ð1:3Þ

Here the bound 2 in the above inequality is the best possible in the sense that, for
any 0 < t < 2, there exists a triple A, B, and g such that capðA; ĈCgnBÞ is strictly
greater than t � capðA; ĈCnBÞ, where A and B may either in the same sheet or in the

di¤erent sheets of ĈCg.

The proof of the first part of the above theorem, i.e. the proof of (1.3) will be
given in §§2–4. In §2 (Regular squeezer) approximations of A and B by smooth
An and Bn are discussed. In the next §3 (Wiener functions) the convergence of
capacity functions for capacities capðAn; ĈCnBnÞ and capðAn; ĈCgnBnÞ to those for

capacities capðA; ĈCnBÞ and capðA; ĈCgnBÞ are considered both in locally uniform
convergence and also the convergence in the Dirichlet integrals. The results in
these two sections are used in §4 (Generalized Dirichlet principle) to complete the
proof of (1.3). The proof of the second part of our theorem, i.e. the proof of
the best possibleness of the bound 2 in the inequality (1.3) in the sense that 2
cannot be replaced by any smaller one will be given in §§5–6. To show the best
possibleness of the bound 2, our plan is to make capðA; ĈCgnBÞ=capðA; ĈCnBÞ as
close to 2 as possible by choosing A :¼ ½�b;�a� and B :¼ ½a; b� with 1 < a < b <
2 and g :¼ ½�1; 1�. This particular capacity capðA; ĈCnBÞ can be estimated easily
by using the Teichmüller extremal annulus, which is performed in §5 (Teichmüller
annulus). To compute capðA; ĈCgnBÞ we use the Joukowski map J : ĈC ! ĈCg to

transform the annulus ĈCgnAUB to the same kind of annulus ĈCnJðAÞU JðBÞ as
ĈCnAUB, which completes our plan and this is done in §6 (Joukowski mapping).

To point out the importance of generalizing our present theorem to the case
of n sheeted sphere for arbitrary positive integer nf 2, we state a conjecture
(partly a theorem already), which is described in the final short §7 (Open
question). The di‰cult part is to show the best possibleness of the bound n
whose validity is entirely uncertain at present. The success of the n ¼ 2 case
heavily depend upon the existence of the Joukowski mapping while no coun-
terpart to it can be expected for the general n > 2 case.

2. Regular squeezers

We divide the proof of Theorem into two parts: the part treating the
validness of the inequality (1.3) and the part showing the best possibleness of
the bound 2 in the inequality (1.3). We start from the first part. If A and B
were smooth in the sense that ĈCnA and ĈCnB are regular subregions or we were to
prove the weaker version of (1.3) that the strict inequality < in (1.3) is replaced
by the nonstrict one e, then the proof would be straightforward in view of the
standard Dirichlet principle. However in the present setting some kind of labor
to an extent as described below may be in order. An extra work is, however,
mostly the reduction to the case ĈCnA and ĈCnB being regular.

For a nonpolar compact subset A of C with the connected complement ĈCnA,
we now consider, what we call, a regular squeezer or simply squeezer of A. A
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regular squeezer, or often more simply squeezer, of A is a sequence ðAnÞn AN, N
being the set of positive integers, of compact subsets An of C satisfying the
following 5 conditions: each An ðn A NÞ is a union of a finite number of mutually
disjoint closed analytic Jordan regions (where a closed analytic Jordan region is
the closure of a Jordan region whose boundary Jordan curve is analytic); the
interior of An contains Anþ1 ðn A NÞ; the interior of each An contains A; each
component of An ðn A NÞ has a nonempty intersection with A; 7

n AN An ¼ A.

A sequence ðAnÞn AN is a regular squeezer of A if and only if ðĈCnAnÞn AN is a

regular exhaustion of ĈCnA, where the fourth condition in the above definition of
squeezers corresponds to one of the conditions for ðĈCnAnÞn AN to be a regular

exhaustion of ĈCnA that each complement of ĈCnAn ðn A NÞ (i.e. An) has no
compact component in ĈCnA. Hence the conditions of a regular squeezer of A
is the complete dual of the conditions of a regular exhaustion of ĈCnA. This last
observation assures the existence of a regular squeezer of A since the existence of
a regular exhaustion of ĈCnA is a basic knowledge.

Now we choose an arbitrary pair of mutually disjoint nonpolar compact
subsets A and B of C with connected complements ĈCnA and ĈCnB and an
arbitrary simple arc g in ĈCnðAUBÞ. We embed A and B in ĈCg in either in the
same sheet or in the di¤erent sheets. In order to reduce the study of the relation
between capðA; ĈCgnBÞ and capðA; ĈCnBÞ for general A and B to that for regular A
and B, we take squeezers ðAnÞn AN of A and ðBnÞn AN of B such that A1 VB1 ¼ j.
Since X 7! capðX ;UÞ is increasing for compact subsets X moving in a fixed open
subset U of a Riemann surface R and U 7! capðX ;UÞ is decreasing for open
subsets U moving in R containing a fixed compact subset X (cf. e.g. [3]),

capðA; ĈCgnBÞe capðAn; ĈCgnBÞe capðAn; ĈCgnBnÞ

e capðAn; ĈCgnBmÞe capðAm; ĈCgnBmÞ

for every pair of m and n in N with me n. Thus ðcapðAn; ĈCgnBnÞÞn AN is a
decreasing sequence with

capðA; ĈCgnBÞe capðAn; ĈCgnBnÞe capðAn; ĈCgnBmÞ

for every nfm with an arbitrarily fixed m A N. Hence, on making n " y in the
above displayed inequality, we deduce

capðA; ĈCgnBÞe lim
n!y

capðAn; ĈCgnBnÞe capðA; ĈCgnBmÞ;ð2:1Þ

for any m A N, since X 7! capðX ;UÞ is right continuous in the sense that
capðXn;UÞ # capðX ;UÞ if Xn IXnþ1 ðn A NÞ and 7

n AN Xn ¼ X for a sequence
ðXnÞn AN of compact subsets Xn in R (cf. e.g. [3]). Observe that

capðA; ĈCgnBmÞ ¼ capðBm; ĈCgnAÞ #
capðB; ĈCgnAÞ ¼ capðA; ĈCgnBÞ ðm ! yÞ;

we deduce from (2.1) on making m " y that
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lim
n!y

capðAn; ĈCgnBnÞ ¼ capðA; ĈCgnBÞ:ð2:2Þ

Similarly we see that

lim
n!y

capðAn; ĈCnBnÞ ¼ capðA; ĈCnBÞ:ð2:3Þ

3. Wiener functions

For simplicity we set V :¼ ĈCgnðAUBÞ and W :¼ ĈCnðAUBÞ. Similarly
Vn :¼ ĈCgnðAn UBnÞ and Wn :¼ ĈCnðAn UBnÞ for every n A N. Let A 0 :¼
p�1ðAÞnA, B 0 :¼ p�1ðBÞnB, A 0

n :¼ p�1ðAnÞnAn, and B 0
n :¼ p�1ðBnÞnBn for every

n A N. We also need to consider V 0 :¼ VnðA 0 UB 0Þ ¼ p�1ðWÞ and V 0
n :¼

VnnðA 0
n UB 0

nÞ. Choose a function g A CyðĈCÞ such that 0e ge 1 on ĈC, g ¼ 1 on
a neighborhood of A1, and g ¼ 0 on a neighborhood of B1 U gU fyg and set
f :¼ g � p so that f A CyðĈCgÞ with 0e f e 1 on ĈCg, f ¼ 1 on a neighborhood of
A1 UA 0

1 ¼ p�1ðA1Þ, and f ¼ 0 on a neighborhood of B1 UB 0
1 U p�1ðgU fygÞ ¼

p�1ðB1 U gU fygÞ. Clearly Dðg; ĈCÞ < þy and Dð f ; ĈCgÞ < þy and thus g is a
Dirichlet function on ĈC and f is a Dirichlet function on ĈCg (cf. e.g. [2], [15]).
Therefore g is a Wiener function on W and f is a Wiener function on V and also
on V 0 (cf. e.g. [2], [15]). Hence if we denote by e.g. HV

f the Dirichlet solution
on V with boundary values f jqV , then

HV
f ¼ lim

n!y
HVn

f HV 0

f ¼ lim
n!y

H
V 0

n

f ; resp:
� �

ð3:1Þ

locally uniformly on V (V 0, resp.) and similarly

HW
g ¼ lim

n!y
HWn

gð3:2Þ

locally uniformly on W . It is also clear that

HV 0

f ¼ HW
g � p; H

V 0
n

f ¼ HWn
g � p ðn A NÞ:ð3:3Þ

We extend HVn

f and H
V 0

n

f to ĈCg by setting HVn

f ¼ 1 on An and HVn

f ¼ 0 on

Bn and similarly H
V 0

n

f ¼ 1 on An UA 0
n and H

V 0
n

f ¼ 0 on Bn UB 0
n. Then by the

Stokes formula

DðHVn

f �HVm

f ;HVn

f ;VÞ :¼
ð
V

dðHVn

f �HVm

f Þ5�dHVn

f

¼
ð
qVn

ðHVn

f �HVm

f Þ � dHVn

f ¼ 0 ðnfmÞ

and thus DðHVm

f ;HVn

f ;VÞ ¼ DðHVn

f ;VÞ so that

DðHVn

f �HVm

f ;VÞ ¼ DðHVn

f ;VÞ þDðHVm

f ;VÞ � 2DðHVn

f ;HVm

f ;VÞ

¼ DðHVn

f ;VÞ þDðHVm

f ;VÞ � 2DðHVn

f ;VÞ

¼ DðHVm

f ;VÞ �DðHVn

f ;VÞ:
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Hence the sequence ðDðHVn

f ;VÞÞn AN is a decreasing sequence and the sequence

ðHVn

f Þn AN is Dð�;VÞ-Cauchy, which assure, by the Fatou lemma and (3.1), that

lim
n!y

DðHVn

f �HV
f ;VÞ ¼ 0:ð3:4Þ

By exactly the same fashion we see that

lim
n!y

DðHV 0
n

f �HV 0

f ;V 0Þ ¼ 0ð3:5Þ

and

lim
n!y

DðHWn
g �HW

g ;WÞ ¼ 0:ð3:6Þ

Since the usual standard Dirichlet principle assures that capðAn; ĈCgnBnÞ ¼
DðHVn

f ;VnÞ, we conclude also by (2.2) and (3.4) that

capðA; ĈCgnBÞ ¼ DðH ĈCgnðAUBÞ
f ; ĈCgnðAUBÞÞ:ð3:7Þ

Similarly we see that

capðA; ĈCnBÞ ¼ DðHĈCnðAUBÞ
g ; ĈCnðAUBÞÞ:ð3:8Þ

4. Generalized Dirichlet principle

Our task of comparing capðA; ĈCgnBÞ and capðA; ĈCnBÞ has been reduced, in

view of (3.7) and (3.8), to that of DðHV
f ;VÞ ðV ¼ ĈCgnðAUBÞÞ and DðHW

g ;WÞ
ðW ¼ ĈCnðAUBÞÞ. By (3.3) we see the following crucial relation that

DðHV 0

f ;V 0Þ ¼ DðHW
g�p; p

�1ðWÞÞ ¼ 2DðHW
g ;WÞ:

Therefore (3.8) takes the form

2 � capðA; ĈCnBÞ ¼ DðHĈCgnðAUBUA 0UB 0Þ
f ; ĈCgnðAUBUA 0 UB 0ÞÞ:ð4:1Þ

Hence the proof of (1.3): capðA; ĈCgnBÞ < 2 � capðA; ĈCnBÞ is reduced to

DðHĈCgnðAUBÞ
f ; ĈCgnðAUBÞÞð4:2Þ

< DðHĈCgnðAUBUA 0UB 0Þ
f ; ĈCgnðAUBUA 0 UB 0ÞÞ:

The above relation can be understood to be the assertion that, since H
ĈCgnðAUBÞ
f is

obtained from H
ĈCgnðAUBUA 0UB 0Þ
f ¼ H

ðĈCgnðAUBÞÞnðA 0UB 0Þ
f by harmonizing it on A 0 UB 0,

the Dirichlet integral of H
ĈCgnðAUBÞ
f must be less than that of H

ðĈCgnðAUBÞÞnðA 0UB 0Þ
f

by the ‘‘Dirichlet principle’’. However the applicability of the usual Dirichlet

principle requires the continuity of H
ðĈCgnðAUBÞÞnðA 0UB 0Þ
f on A 0 UB 0, which in general

fails in the present situation, i.e. H
ðĈCgnðAUBÞÞnðA 0UB 0Þ
f can be discontinuous on some

nonpolar subset of qððĈCgnðAUBÞÞnðA 0 UB 0ÞÞV ðA 0 UB 0Þ. Thus a proof for (4.2)
is here in order.
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Now we prove (4.2): DðHV
f ;VÞ < DðHV 0

f ;V 0Þ ðV 0 ¼ VnðA 0 UB 0Þ ¼
ðĈCgnðAUBÞÞnðA 0 UB 0ÞÞ. Recall that Vn ¼ ĈCgnðAn UBnÞ exhausts V and V 0

n ¼
VnnðA 0

n UB 0
nÞ exhausts V 0 as n ! y. Observe that, by the Stokes formula,

DðHV 0
n

f ;HVn

f ;V 0
nÞ ¼

ð
qVn

H
V 0

n

f � dHVn

f þ
ð
qV 0

nnqVn

H
V 0

n

f � dHVn

f

¼
ð
qVn

HVn

f � dHVn

f þ
ð
ðqV 0

nnqVnÞVA 0
n

� dHVn

f

¼ DðHVn

f ;VnÞ þ
ð
A 0

n

dð�dHVn

f Þ ¼ DðHVn

f ;VnÞ

since H
V 0

n

f j ðqVnÞVA 0
n ¼ 1 ¼ HVn

f j ðqVnÞVA 0
n and H

V 0
n

f j ðqVnÞVB 0
n ¼ 0 ¼

HVn

f j ðqVnÞVB 0
n and HVn

f is harmonic on A 0
n. Thus

DðHV 0
n

f �HVn

f ;V 0
nÞ ¼ DðHV 0

n

f ;V 0
nÞ þDðHVn

f ;V 0
nÞ � 2DðHV 0

n

f ;HVn

f ;V 0
nÞ

¼ DðHV 0
n

f ;V 0
nÞ þDðHVn

f ;V 0
nÞ � 2DðHVn

f ;VnÞ

eDðHV 0
n

f ;V 0
nÞ þDðHVn

f ;VnÞ � 2DðHVn

f ;VnÞ

or

DðHVn

f ;VnÞ þDðHV 0
n

f �HVn

f ;V 0
nÞeDðHV 0

n

f ;V 0Þ
for every n A N. Hence on making n ! y in these inequalities we see that

DðHV
f ;VÞ þDðHV 0

f �HV
f ;V 0ÞeDðHV 0

f ;V 0Þ;ð4:3Þ

where V ¼ ĈCgnðAUBÞ and V 0 ¼ ĈCgnðAUBUA 0 UB 0Þ. Then (4.3) implies (4.2)
if

DðHV 0

f �HV
f ;V 0Þ > 0ð4:4Þ

is valid. Contrary to the assertion assume that DðHV 0

f �HV
f ;V 0Þ ¼ 0. First of

all this assures that HV 0

f �HV
f is a constant on V 0. Since the boundary values

of HV 0

f �HV
f at qV are f � f ¼ 0 except for the subset of irregular points of qV

which is a polar set. Hence we must conclude that HV 0

f ¼ HV
f identically on V 0.

However HV
f is harmonic in a neighborhood of A 0 UB 0 and hence 0 < HV

f < 1

there and in particular on qV 0nqV . On the other hand the boundary values of
HV 0

f which is of course identical with HV
f is either 0 or 1 at qV 0nqV except for

its polar subset. This is clearly a contradiction and the proof of (1.3) is herewith
complete.

5. Teichmüller annulus

An annulus Y in ĈC is a doubly connected subregion Y :¼ ĈCnðF1 UF2Þ of ĈC,

where F1 and F2 are disjoint closed subsets of ĈC such that each of ĈCnFj ð j ¼ 1; 2Þ
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is connected and hence a subregion of ĈC. In particular, if F1 ¼ fjz� ajemg
and F2 ¼ fjz� ajfMgU fyg with a A C fixed and 0em < Meþy, then
Y ¼ ĈCnðF1 UF2Þ ¼ fm < jz� aj < Mg is said to be a circular annulus. In this
paper we only consider nondegenerate annulus in the sense that F1 and F2 are
nondegenerate, i.e. not single point sets, so that we simply say annuli meaning
nondegenerate annuli. Hence in the case of a circular annulus fm < jz� aj < Mg
the inner radius m and the outer radius M are assumed to satisfy 0 < m < M <
þy. Any annulus Y is conformally a circular annulus f1 < jzj < Mg and the
conformal invariant log M associated with Y is referred to as the modulus of Y
and denoted by mod Y . Probably the present definition is adopted more fre-
quently than to use ð1=2pÞ mod Y as the modulus of Y which is but not too
rarely used. Anyway, if Y ¼ ĈCnðF1 UF2Þ is any annulus, then Y is conformally
equivalent to the circular annulus f1 < jzj < expðmod Y Þg and thus we see that

capðF1; ĈCnF2Þ ¼ 2p=modðĈCnðF1 UF2ÞÞ:ð5:1Þ

Based on the Teichmüller theorem that among annuli separating the pair
f�1; 0g from the pair fw;yg with y > jwj ¼ R > 0 the annulus

TðRÞ :¼ ĈCnð½�1; 0�U ½R;þy�Þð5:2Þ

has the greatest modulus, where ½�1; 0� is the interval (the line segment) fx A R :
�1e xe 0g and ½R;þy� is the half straight line segment fx A R : xfRgU fyg
with R the real line in C. The above extremal annulus TðRÞ is referred to as
the Teichmüller annulus with index R. We need to know the concrete value of
mod TðRÞ for our purpose. The following estimate (cf. e.g. [1]) is handy to use:

log 16þ log Remod TðRÞe log 16þ logðRþ 1Þ:ð5:3Þ
The estimate is getting better and better as R is becoming larger and larger. To
obtain a good estimate for small R, noting 1=R is large for small R, we use the
relation ðmod TðRÞÞ � ðmod Tð1=RÞÞ ¼ p2 reducing the estimate of mod TðRÞ to
that of mod Tð1=RÞ with large 1=R.

Taking four real numbers aj A R ð1e je 4Þ satisfying �y < a1 < a2 <

a3 < a4 < þy, we consider the annulus ĈCn½a1; a2�U ½a3; a4� and we wish to
evaluate its modulus modðĈCn½a1; a2�U ½a3; a4�Þ. We introduce the number R ¼
Rða1; a2; a3; a4Þ defined by

R ¼ Rða1; a2; a3; a4Þ :¼
a4 � a1

a4 � a3
� a3 � a2

a2 � a1
:ð5:4Þ

Consider the Möbius transformation S : ĈC ! ĈC given by

SðzÞ :¼ � a1 � a4

a1 � a2
� z� a2

z� a4
:

Observe that Sða1Þ ¼ �1, Sða2Þ ¼ 0, Sða3Þ ¼ R ¼ Rða1; a2; a3; a4Þ, and Sða4Þ ¼
y. Hence S maps the annulus ĈCn½a1; a2�U ½a3; a4� conformally onto the Teich-
müller annulus TðRÞ with index R ¼ Rða1; a2; a3; a4Þ. Therefore we deduce
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log 16þ log RemodðĈCn½a1; a2�U ½a3; a4�Þe log 16þ logðRþ 1Þ;ð5:5Þ
where R ¼ Rða1; a2; a3; a4Þ is given by (5.4). Using (5.1) we have

2p

log 16þ logðRþ 1Þ e capð½a1; a2�; ĈCn½a3; a4�Þe
2p

log 16þ log R
:ð5:6Þ

Next we specialize the above situation. Choose two arbitrary real numbers
a and b with 1 < a < b < 2 and let a1 ¼ �b, a2 ¼ �a, a3 ¼ a, and a4 ¼ b. Then
we have

Rða; bÞ :¼ Rð�b;�a; a; bÞ ¼ 4ab

ðb� aÞ2
ð5:7Þ

and (5.6) takes the form

2p

log 16þ logðRða; bÞ þ 1Þ e capð½�b;�a�; ĈCn½a; b�Þe 2p

log 16þ log Rða; bÞ :

Since Rða; bÞ > ð2=ðb� aÞÞ2 in view of b > a > 1 and Rða; bÞ þ 1 ¼
ðbþ aÞ2=ðb� aÞ2 < ð4=ðb� aÞÞ2 by virtue of a < b < 2, the above displayed
inequalities yield

p

log 16� logðb� aÞ e capð½�b;�a�; ĈCn½a; b�Þe p

log 8� logðb� aÞ :ð5:8Þ

Now observe that two compact subsets A and B in ĈC given by

A ¼ Aða; bÞ :¼ ½�b;�a� B ¼ Bða; bÞ :¼ ½a; b�ð5:9Þ
are disjoint nonpolar compact subsets of ĈC and both of ĈCnA and ĈCnB are
connected. Then (5.8) says that

p

log 16� logðb� aÞ e capðAða; bÞ; ĈCnBða; bÞÞe p

log 8� logðb� aÞ :ð5:10Þ

with 1 < a < b < 2.

6. Joukowski mapping

Consider the quantity

sj :¼ sup
ðA;BÞ

sup
gHĈCnAUB

capðA; ĈCgnBÞ
capðA; ĈCnBÞ

 !
ð j ¼ 1; 2Þ;ð6:1Þ

where ðA;BÞ runs over every pair of two disjoint nonpolar compact subsets A

and B in C with connected ĈCnA and CnB and g runs over every simple arc
gH ĈCnAUB and moreover A and B are embedded in the same sheet of
ĈCg ð j ¼ 1Þ or in the di¤erent sheets of ĈCg ð j ¼ 2Þ. We have seen in §§2–4 that
sj e 2 ð j ¼ 1; 2Þ. The best possibleness of the bound 2 in (1.3) thus means that
sj ¼ 2 ð j ¼ 1; 2Þ and it su‰ces to show that sj f 2 ð j ¼ 1; 2Þ.
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We now watch the particular pair ðAða; bÞ;Bða; bÞÞ given in (5.9) of two
disjoint nonpolar compact subsets Aða; bÞ and Bða; bÞ in C with connected
complements ĈCnAða; bÞ and ĈCnBða; bÞ and the particular pasting arc g ¼
½�1; 1�H ĈCnAða; bÞUBða; bÞ ð1 < a < b < 2Þ. Then

capðAða; bÞ; ĈC½�1;1�nBða; bÞÞ
capðAða; bÞ; ĈCnBða; bÞÞ

e sj ð j ¼ 1; 2Þð6:2Þ

for every 1 < a < b < 2 and we will show that the term on the left hand side of
the above inequality tends to 2 as a # 1 first and then b # 1. The estimation of
the term we are presently observing is already evaluated by (5.8). The esti-
mation of the numerator of the same term is not as straightforward as that of the
denominator above. This will be done below.

Observe that the Joukowski mapping

w ¼ JðzÞ ¼ 1

2
zþ 1

z

� �
ð6:3Þ

maps the sphere ĈC conformally onto the two sheeted sphere

ĈC½�1;1� ¼ ðĈC1n½�1; 1�Þ
S
� ½�1;1� ðĈC2n½�1; 1�Þ:

We assume that J�1 maps ĈC1n½�1; 1� conformally onto fjzj < 1gH ĈC

and ĈC2n½�1; 1� to f1 < jzjeþygH ĈC. We wish to express the annulus
ĈCnJ�1ð½�b;�a�U ½a; b�Þ as concretely as possible, where we note that ½�b;�a� ¼
Aða; bÞ and ½a; b� ¼ Bða; bÞ. For the purpose we must treat two cases separately:
the case ½�b;�a� and ½a; b� are embedded in the same sheet of ĈC½�1;1�; the case
½�b;�a� and ½a; b� are embedded in the di¤erent sheets of ĈC½�1;1�.

6.1. The case ½�b;�a� and ½a; b� are in the same sheet of ĈC½�1;1�. We may
assume that ½�b;�a� and ½a; b� are on ĈC2n½�1; 1�. By (6.3) we see that

J�1½�b;�a� ¼ ½�b�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 1

p
;�a�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 1

p
� ¼: ½�b 0;�a 0�

and

J�1½a; b� ¼ ½aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 1

p
; bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 1

p
� ¼: ½a 0; b 0�:

Here we have 1 < a 0 < b 0 < 2 by taking 1 < a < b < 2 close enough to 1. Then
the annulus ĈC½�1;1�n½�b;�a�U ½a; b� is mapped by J�1 conformally onto the
annulus ĈCn½�b 0;�a 0�U ½a 0; b 0� and hence by (5.10) and the conformal invariance
of capacities we have

p

log 16� logðb 0 � a 0Þe capðAða; bÞ; ĈC½�1;1�nBða; bÞÞð6:1:1Þ

e
p

log 8� logðb 0 � a 0Þ ;

where 1 < a < b < 2 are chosen close enough to 1 so as to have 1 < a 0 < b 0 < 2
and Aða; bÞ ¼ ½�b;�a� and Bða; bÞ ¼ ½a; b�. By using the inequality on the most
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right hand side of (5.10) and the inequality on the most left hand side of (6.1.1)
we see that

s1 f
capð½�b;�a�; ĈC½�1;1�n½a; b�Þ
capð½�b;�a�; ĈCn½a; b�Þ

f
p=ðlog 16� logðb 0 � a 0ÞÞ
p=ðlog 8� logðb� aÞÞ ;

which is true for every 1 < a < b < 2 su‰ciently close to 1. On letting a # 1 (so
that a 0 # 1) in the above displayed inequality we obtain by noting b 0 � a 0 !
b� 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 1

p
that

log 8� logðb� 1Þ
log 16� logðb� 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 1

p
Þ
e s1:

Since b� 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 1

p
¼

ffiffiffiffiffiffiffiffiffiffiffi
b� 1

p
ð
ffiffiffiffiffiffiffiffiffiffiffi
b� 1

p
þ

ffiffiffiffiffiffiffiffiffiffiffi
bþ 1

p
Þ and hence logðb� 1þffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 � 1
p

Þ ¼ ð1=2Þ logðb� 1Þ þ logð
ffiffiffiffiffiffiffiffiffiffiffi
b� 1

p
þ

ffiffiffiffiffiffiffiffiffiffiffi
bþ 1

p
Þ, the above displayed in-

equality implies that

log 8=logðb� 1Þ � 1

log 16=logðb� 1Þ � 1=2� logð
ffiffiffiffiffiffiffiffiffiffiffi
b� 1

p
þ

ffiffiffiffiffiffiffiffiffiffiffi
bþ 1

p
Þ=logðb� 1Þ

e s1

for every 1 < b < 2 su‰ciently close to 1. On making b # 1 in the above
inequality we obtain 2e s1, as desired.

6.2. The case ½�b;�a� and ½a; b� are in the di¤erent sheets of ĈCg. We may

assume that ½�b;�a� is on ĈC1n½�1; 1� and ½a; b� is on ĈC2n½�1; 1�. By (6.3) we see
that

J�1½�b;�a� ¼ ½�aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 1

p
;�bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 1

p
�

and

J�1½a; b� ¼ ½aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 1

p
; bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 1

p
�:

Thus the annulus ĈC½�1;1�n½�b;�a�U ½a; b� is mapped by J�1 conformally onto the

annulus ĈCn½�aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 1

p
;�bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 1

p
�U ½aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 1

p
; bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 1

p
�. Back to

the original observation we set a1 ¼ �aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 1

p
, a2 ¼ �bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 1

p
, a3 ¼

aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 1

p
, a4 ¼ bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 1

p
and therefore we have

R ¼ Rða1; a2; a3; a4Þ

¼ ðbþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 1

p
Þ � ð�aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 1

p
Þ

ðbþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 1

p
Þ � ðaþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 1

p
Þ
� ðaþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 1

p
Þ � ð�bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 1

p
Þ

ð�bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 1

p
Þ � ð�aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 1

p
Þ

¼ abþ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 1

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 1

p

ab� 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 1

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 1

p

and
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Rþ 1 ¼ ðabþ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 1

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 1

p
Þ þ ðab� 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 1

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 1

p
Þ

ab� 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 1

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 1

p

¼ 2ab

ab� 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 1

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 1

p

and a fortiori we see, by (5.6), that

2p

log 16þ logðRþ 1Þ e capðAða; bÞ; ĈC½�1;1�nBða; bÞÞe
2p

log 16þ log R
;ð6:2:1Þ

where Aða; bÞ ¼ ½�b;�a�, Bða; bÞ ¼ ½a; b�, and

Rþ s ¼ Rð�aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 1

p
;�bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 1

p
; aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 1

p
; bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 1

p
Þ þ s;

with s ¼ 0 and 1, are computed above. From the inequality on the right most
hand side of (5.10) and that on the left most hand side of (6.2.1) above, it follows
that

s2 f
capð½�b;�a�; ĈC½�1;1�n½a; b�Þ
capð½�b;�a�; ĈCn½a; b�Þ

f

2p

�
log 16þ log

2ab

ab� 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 1

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 1

p
� �

p=ðlog 8� logðb� aÞÞ :

This is true for every 1 < a < b < 2 su‰ciently close to 1. Firstly on making
a # 1 in the above displayed inequality we derive

s2 f 2 � log 8� logðb� 1Þ

log 16þ log
2b

b� 1

¼ 2 � log 8� logðb� 1Þ
log 16þ log 2b� logðb� 1Þ

valid for every 1 < b < 2 enough close to 1. On making b # 1 in the above
displayed inequality we deduce s2 f 2, as desired.

7. Open question

Choose an arbitrary n A N with nf 2. Let ðĈCkÞ1eken be the sequence of

replicas ĈCk ¼ ĈC of ĈC ð1e ke nÞ, A and B be two disjoint nonpolar compact
subsets of C with connected complements ĈCnA and ĈCnB, and G ¼ ðgkÞ1eken�1 be

a sequence of simple arcs gk H ĈCnðAUBÞ ð1e ke n� 1Þ such that gk V gkþ1 ¼ j
ð1e ke n� 1Þ with g0 ¼ j. Paste ĈC1ng1 to ĈC2ng1 U g2 crosswise along g1 to

produce ðĈC1ng1Þ
S
�

g1
ðĈC2ng1 U g2Þ, which is pasted to ĈC3ng2 U g3 crosswise along g2

to produce

ððĈC1ng1Þ
S
�

g1
ðĈC2ng1 U g2ÞÞ

S
�

g2
ðĈC3ng2 U g3Þ:
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Repeating this process we obtain ĈCG as

ð� � � ðððĈC1ng1Þ
S
�

g1
ðĈC2ng1 U g2ÞÞ

S
�

g2
ðĈC3ng2 U g3ÞÞ � � �Þ

S
�

gn�1
ðĈCnngn�1Þ;

which is an n sheeted covering surface of ĈC. Embed A and B to ĈCG either in
the same sheet ĈCi or in the di¤erent sheets ĈCi and ĈCj ði0 jÞ of ĈCG. We have
proved the following conjecture in the case n ¼ 2 as our main theorem of this
paper stated in §1.

Conjecture. For the n sheeted covering surface ĈCG of ĈC ðn A N; nb 2Þ as
constructed above the following inequality

capðA; ĈCGnBÞ < n � capðA; ĈCnBÞð7:1Þ

is valid. The bound n in the above inequality is the best possible in the sense
that for any 0 < t < n there is a triple A, B, and G ¼ ðgkÞ1eken�1 such that

capðA; ĈCGnBÞ is strictly greater than t � capðA; ĈCnBÞ, where A and B may either in
the arbitrarily chosen same sheet or in the arbitrarily chosen di¤erent sheets of ĈCG.

Actually, by mimicking the proof of (1.3) we can prove (7.1) for every nf 2
without any further elaboration beyond the notational complexity. Hence the
question is whether the second part of the above conjecture about the best pos-
sibleness of the bound n is true or not.
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