
M. SHIROSAKI

KODAI MATH. J.
30 (2007), 213–222

A NEW CHARACTERIZATION OF COLLECTIONS OF TWO-POINT

SETS WITH THE UNIQUENESS PROPERTY

Manabu Shirosaki

Abstract

We give a necessary and su‰cient condition for a collection of two-point sets to

have the uniqueness property for meromorphic functions.

1. Introduction

In the previous paper ([OS]) the author and his collaborator give a su‰cient
condition for a collection of two-point sets to have the uniqueness property for
meromorphic functions. However it is not seemed to be necessary.

For nonconstant meromorphic functions f and g on C and a finite set S
in ĈC ¼ C U fyg (or C), we write f �ðSÞ ¼ g�ðSÞ if f �1ðSÞ ¼ g�1ðSÞ and if for
each z0 A f �1ðSÞ two functions f � f ðz0Þ and g� gðz0Þ have the same multi-
plicity of zero at z0, where f �y and g�y mean that of 1=f and 1=g, re-
spectively.

Let A ¼ fS1; . . . ;Sqg be a finite collection of pairwise disjoint finite sets in
ĈC . If f �ðSjÞ ¼ g�ðSjÞ ð1a ja qÞ imply f ¼ g for two nonconstant meromor-
phic functions f and g on C , then the collection A is said to have the uniqueness
property for meromorphic functions (abbreviated to UPM). As an example of
such collections, we know Nevanlinna’s four values theorem ([N]):

Theorem A. Let f and g be two distinct nonconstant meromorphic functions
on C and aj ð j ¼ 1; . . . ; 4Þ four distinct point of ĈC . If f �ðfajgÞ ¼ g�ðfajgÞ
ð j ¼ 1; . . . ; 4Þ, then f is a Möbius transformation of g and two of aj (say a3, a4)
are exceptional values of f and g, and the cross ratio ða1; a2; a3; a4Þ ¼ �1.

The author and his collaborator showed in [OS]

Theorem B. Let qb 6 be an integer and A ¼ fS1; . . . ;Sqg a collection of
pairwise disjoint two-point sets. Assume that there is no Möbius transformation T
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such that TðxjÞ ¼ hj and TðhjÞ ¼ xj for three distinct j’s, where Sj ¼ fxj; hjg.
Then the collection has UPM.

Let A ¼ fSjgq
j¼1 be a collection of pairwise disjoint sets in ĈC , and T a

Möbius transformation. Put S0 :¼ ĈCnð6q

j¼1
SjÞ. If z0 and Tðz0Þ do not belong

to the same Sj ð0a ja qÞ, we call z0 a wandering point of T for A.
The aim of this paper is to give a necessary and su‰cient condition for a

collection of two-point sets to have the uniqueness property which is expressed by
wandering points, and so we prove

Theorem 1.1. Let qb 6 be an integer and A ¼ fS1; . . . ;Sqg a collection of
pairwise disjoint two-point sets in ĈC . Assume that there is no Möbius trans-
formation T except the identity with at most two wandering point for A. Then A
has UPM.

We assume that the reader is familiar with the standard notations and
results of the value distribution theory (see, e.g., [C], [H], [R]). In particular, we
use symbols Tðr; f Þ and Tf ðrÞ as characteristic functions of a meromorphic
function f on C and a holomorphic mapping f of C into PnðCÞ, respec-
tively, and moreover, we express by Sðr; f Þ and Sf ðrÞ quantities such that
limr!y; r BE Sðr; f Þ=Tðr; f Þ ¼ 0 and limr!y; r BE Sf ðrÞ=Tf ðrÞ ¼ 0, respectively,
where E is a subset of ð0;yÞ with finite linear measure and it is variable in each
cases.

2. Fundamental properties

Let A ¼ fS1; . . . ;Sqg be a collection of pairwise disjoint finite sets of ĈC .
We denote fundamental properties of wandering points and UPM, and it is easy
to show them.

(P1) Any Möbius tranformation does not have only one wandering point
for A.

(P2) If a Möbius transformation T not the identity has no wandering point
for A, then A does not have UPM by considering g and f ¼ TðgÞ,
where g is an arbitrary nonconstant meromorphic function.

(P3) If a Möbius transformation T has only two wandering points w1 and
w2 for A, then A does not have UPM by considering g and f ¼ TðgÞ,
where g is a nonconstant meromorphic function with two exceptional
values w1 and w2.

By (P1), (P2) and (P3), it is necessary for A to have UPM that there exists no
Möbius transformation except the identity with at most two wandering points
for A.

(P4) If a subcollection of A has UPM, then A has UPM.
Let B ¼ fS 0

1; . . . ;S
0
pg be another collection. If there exists partition I1 U � � �U Ik

¼ f1; . . . ; pg such that 6
j A It

S 0
j ¼ St, 1a ta k, then we call B a refinement

of A.
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(P5) If a refinement of A does not have UPM, then neither does A.
We also prove

Lemma 2.1. Let A ¼ fS1; . . . ;Sqg be a collection of pairwise disjoint finite
sets in ĈC . Let g a nonconstant meromorphic function on C and T a Möbius
transformation not the identity. Put f ¼ TðgÞ. If f �ðSjÞ ¼ g�ðSjÞ, 1a ja q,
then T has at most two wandering points for A.

Proof. Take any w0 A ĈC . If there exists a point z0 such that gðz0Þ ¼ w0,
then f ðz0Þ ¼ Tðw0Þ. Since gðz0Þ and f ðz0Þ belong to the same Sj ð0a ja qÞ by
assumption, where S0 ¼ ĈCnð6q

j¼1
SjÞ, w0 is not a wandering point of T for A.

Hence by the little Picard theorem, T has at most two wandering point for A.
r

3. Preliminaries from the value distribution theory

In this section we denote the results from the value distribution theory which
are used in the next section.

Lemma 3.1 (for the proof, see [S]). Let f be a nonconstant meromorphic
function on C and aj ð1a ja qÞ distinct points in ĈC . If all the zeros of f � aj
have the multiplicities at least mj for each j, where mj are arbitrarily fixed positive
integers, then

Xq

j¼1

1� 1

mj

� �
a 2:

For a nonconstant meromorphic function f and a point a A ĈC we call a a
completely ramified value of f if all zeros of f � a have multiplicities greater
than one.

Corollary 3.2. (i) Each nonconstant entire function has at most two finite
completely ramified values.

(ii) Each nonconstant entire function without zero has no completely ramified
values except zero and y.

Lemma 3.3 ([LY, Lemma 7]). Let f1 and f2 be two nonconstant meromorphic
functions on C satisfying

Nðr; fjÞ þNðr; 1=fjÞ ¼ SðrÞ; j ¼ 1; 2:

If f m
1 f n

2 D 1 for all nonzero integers m and n, then for any e > 0, we have

Nðr; 1; f1; f2Þa eTðrÞ þ SðrÞ:
Here Nðr; 1; f1; f2Þ denotes the counting function of common zeros f1 � 1 and
f2 � 1 counted once and TðrÞ ¼ Tðr; f1Þ þ Tðr; f2Þ, SðrÞ ¼ oðTðrÞÞ as r ! y
outside some set of r with finite linear measure.
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The following is a degeneracy theorem of holomorphic mapping of C into
P2ðCÞ.

Theorem 3.4. Let f ¼ ð f0 : f1 : f2Þ be a linearly nondegenerate holomorphic
mapping of C into P2ðCÞ. Assume that all fj are entire functions without zeros
and that

Nð2ðr; 1=FÞb ð1� eÞTf ðrÞ þ Sf ðrÞ
for any e > 0, where F :¼ f0 þ f1 þ f2 and Nðpðr; 1=FÞ is the counting function of
zero of F with multiplicity greater than or equal to p for positive integer p. Then
fj1 fj2=f

2
j0

is constant for some j0, j1, j2 with f j0; j1; j2g ¼ f0; 1; 2g.

Proof. By replacing fj by fj=f0 and the conclusion by that one of f1 f2,
f 22 =f1, f 21 =f2 is constant, we may assume that f0 1 1.

Define meromorphic functions g1 and g2 by

g1 ¼ �f1 �
ð f 0

2 =f2Þ � ð f 0
1 =f1Þ

f 0
2 =f2

; g2 ¼ f2 �
ð f 0

2 =f2Þ � ð f 0
1 =f1Þ

f 0
1 =f1

which are nonconstant since f is linearly nondegenerate. If Fðz0Þ ¼ F 0ðz0Þ ¼ 0,
then g1ðz0Þ ¼ g2ðz0Þ ¼ 1. Hence we get

Nð2ðr; 1=F ÞaNðr; 1; g1; g2Þ;ð3:1Þ
where Nð pðr; 1=FÞ is the counting function of zero of F with multiplicity greater
than or equal to p counted once for positive integer p. Since all fj have no
zeros, we have, by H. Cartan’s second main theorem and the first main theorem,

Tf ðrÞ ¼ N 2ðr; 1=F Þ þ Sf ðrÞ;
where N 2ðr; 1=F Þ is the counting function of zero of F with multiplicity truncated
by 2. On the other hand N 2

ð3ðr; 1=F Þ ¼ Sf ðrÞ since it counts twice some of zeros
of the function

f 0
1 =f1 f 0

2 =f2

f 00
1 =f1 f 00

2 =f2

����
����

and f1 and f2 are entire functions without zeros. Hence, by assumption, we
have for any e > 0

2Nð2ðr; 1=F Þ ¼ Nð2ðr; 1=F Þ þ Sf ðrÞb ð1� eÞTðr; f Þb 1� e

2
TðrÞ þ Sf ðrÞ;

where TðrÞ ¼ Tðr; f1Þ þ Tðr; f2Þ. By this inequality and (3.1) we have

Nðr; 1; g1; g2Þb
1� e

4
TðrÞ þ Sf ðrÞ:

Since f1 and f2 are nonconstant entire functions without zeros, we have

Nðr; gjÞ þNðr; 1=gjÞ ¼ oðTðrÞÞ ð j ¼ 1; 2Þ:
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Note Tðr; g1Þ þ Tðr; g2Þ ¼ ð1þ oð1ÞÞTðrÞ and apply Lemma 3.3, then there exist
two nonzero integers m and n such that gm

1 g
n
2 ¼ 1.

Now put F ¼ f 0
1 =f1
f 0
2 =f2

, then

f m
1 f n

2 ¼ ð�1Þm

Fmð1� 1=FÞmþn :ð3:2Þ

Since the lefthand side is an entire function without zero, so is the righthand side.
If mþ n ¼ 0, then f1=f2 ¼ �o=F, where o is an m-th root of one. We

get f1 ¼ �of2 þ C for some constant C, which contradicts to the linear non-
degeneracy of f .

Now m0 0, n0 0, mþ n0 0, and F omits three values 0, 1 and y by (3.2).
Hence F is constant. So

f m
1 f n

2 ¼ C;ð3:3Þ

where C is a nonzero constant and we may assume that m and n are relatively
prime and that mþ n > 0. Take integers s and t such that ms� nt ¼ 1 and put
C ¼ f t

1 f
s
2 , which is an entire function without zeros. Then by (3.3)

C�n ¼ 1

Cs
f1; Cm ¼ Ctf2

which shows that C is not constant, and

F ¼ 1þ CsC�n þ 1

Ct
Cm ¼ C�n C s þCn þ 1

Ct
Cmþn

� �
;

F 0 ¼ C 0 �C�n�1 �nCs þ m

Ct
Cmþn

� �
:

The multiple zeros of F except those of C 0 are those of Cs þCn þ 1

Ct
Cmþn

and of �nCs þ m

Ct
Cmþn and hence those of 1þ 1

Ct

m

n
þ 1

� �
Cm and

1þ Cs 1þ n

m

� �
C�n. Therefore if Fðz0Þ ¼ F 0ðz0Þ ¼ 0 and C 0ðz0Þ0 0, then

Cðz0Þn¼ �Cs mþ n

m
, Cðz0Þm ¼ �Ct n

mþ n
and hence Cðz0Þ ¼ ð�1Þs�t nsmt

ðmþ nÞsþt .

For any solution w0 of Cs þ X n þ 1

Ct
X mþn ¼ 0 there exists a point z0 such that

Cðz0Þ ¼ w0, F 0ðz0Þ ¼ 0 and C 0ðz0Þ0 0 by assumption. Hence the equation

Cs þ X n þ 1

Ct
X mþn ¼ 0 has only one solution. We can induce that ðm; nÞ ¼

ð1; 1Þ; ð2;�1Þ; ð�1; 2Þ. This implies the conclusion of the theorem. r

The following collorary precises a part of Theorem 7.2 of [NWY].
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Corollary 3.5. Let f0, f1, f2 be entire functions without zeros. Assume
that f0, f1, f2 are linearly independent over C and that F :¼ f0 þ f1 þ f2 has no
simple zero. Then fj1 fj2=f

2
j0

is constant for some j0, j1, j2 with f j0; j1; j2g ¼
f0; 1; 2g.

4. Proof of Theorem 1.1

It su‰ces to treat the case of q ¼ 6 by (P4) in §2. Assume that f �ðSjÞ ¼
g�ðSjÞ for two nonconstant meromorphic functions f and g. We may write
f ¼ f1=f0 by entire functions f0, f1 without common zeros, and g ¼ g1=g0 in a
similar manner. Also, we put Sj ¼ fxj ; hjg, 1a ja 6.

By Theorem B, it is enough to consider the case where there exists a Möbius
transformation exchanging three pairs of A. By renumbering of Sj and by
considering a suitable Möbius transformation, we may assume that hj ¼ �xj,
j ¼ 1; 2; 3, where xj 0 0;y.

Then, by the assumption f �ðSjÞ ¼ g�ðSjÞ, there are entire functions aj without
zeros such that

f 2
1 þ bj f

2
0 ¼ ajðg21 þ bjg

2
0Þ; j ¼ 1; 2; 3;ð4:1Þ

where bj ¼ �x2j . Note that b1, b2, b3 are distinct nonzero values.
It follows that

g2fðb3 � b2Þa1 þ ðb1 � b3Þa2 þ ðb2 � b1Þa3g
¼ �fðb3 � b2Þb1a1 þ ðb1 � b3Þb2a2 þ ðb2 � b1Þb3a3g;

f 2fðb3 � b2Þa2a3 þ ðb1 � b3Þa3a1 þ ðb2 � b1Þa1a2g
¼ �fðb3 � b2Þb1a2a3 þ ðb1 � b3Þb2a3a1 þ ðb2 � b1Þb3a1a2g:

If among four functions of the lefthand sides and the righthand sides above there
is one which is identically zero, then we have a1 ¼ a2 ¼ a3. In this case f 2 ¼ g2

is induced from (4.1), and we get f ¼ g by using Lemma 2.1.
Now we may assume that any of these are not identically zero. Hence, we

have

g2 ¼ �ðb3 � b2Þb1a1 þ ðb1 � b3Þb2a2 þ ðb2 � b1Þb3a3
ðb3 � b2Þa1 þ ðb1 � b3Þa2 þ ðb2 � b1Þa3

;ð4:2Þ

f 2 ¼ �ðb3 � b2Þb1a2a3 þ ðb1 � b3Þb2a3a1 þ ðb2 � b1Þb3a1a2
ðb3 � b2Þa2a3 þ ðb1 � b3Þa3a1 þ ðb2 � b1Þa1a2

:ð4:3Þ

For a1, a2, a3, we consider three cases: (I) they are linearly dependent over
C ; (II) they are linearly independent over C and ða3=a1Þmða2=a1Þn ¼ 1 for some
nonzero constants m and n; (III) they are linearly independent over C and
ða3=a1Þmða2=a1Þn 0 1 for any nonzero constants m and n.

The case (I).
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If a3 ¼ c1a1 þ c2a2 with constants c1 and c2 either nonzero, then by sub-
stituting it into (4.2) we have

g2 ¼ �fðb3 � b2Þb1 þ ðb2 � b1Þb3c1ga1 þ fðb1 � b3Þb2 þ ðb2 � b1Þb3c2ga2
fðb3 � b2Þ þ ðb2 � b1Þc1ga1 þ fðb1 � b3Þ þ ðb2 � b1Þc2ga2

:ð4:4Þ

If a2=a1 is constant, so is g. Hence it is nonconstant and by Corollary 3.2 it has
no more completely ramified finite values except zero. It follows from (4.4) that

ðb3 � b2Þb1 þ ðb2 � b1Þb3c1 ¼ ðb1 � b3Þ þ ðb2 � b1Þc2 ¼ 0ð4:5Þ
or

ðb1 � b3Þb2 þ ðb2 � b1Þb3c2 ¼ ðb3 � b2Þ þ ðb2 � b1Þc1 ¼ 0;ð4:6Þ
and

g2 ¼ �b3
a1

a2
ð4:7Þ

or

g2 ¼ �b3
a2

a1
ð4:8Þ

if (4.5) or (4.6) holds, respectively. By the same way from (4.3), we have

f 2 ¼ �ðb1 � b3Þb2c1a21 þ fðb3 � b2Þb1c1 þ ðb1 � b3Þb2c2 þ ðb2 � b1Þb3ga1a2 þ ðb3 � b2Þb1c2a22
ðb1 � b3Þc1a21 þ fðb3 � b2Þc1 þ ðb1 � b3Þc2 þ ðb2 � b1Þga1a2 þ ðb3 � b2Þc2a22

;

and hence, by noting that none of four coe‰cients of a21 and a22 is zero,

fðb3 � b2Þb1c1 þ ðb1 � b3Þb2c2 þ ðb2 � b1Þb3g2 ¼ 4ðb1 � b3Þb2c1 � ðb3 � b2Þb1c2;

fðb3 � b2Þc1 þ ðb1 � b3Þc2 þ ðb2 � b1Þg2 ¼ 4ðb1 � b3Þc1 � ðb3 � b2Þc2:
and

f ¼G
1

x2

2ðb1 � b3Þb2c1ða1=a2Þ þ fðb3 � b2Þb1c1 þ ðb1 � b3Þb2c2 þ ðb2 � b1Þb3g
2ðb1 � b3Þc1ða1=a2Þ þ fðb3 � b2Þc1 þ ðb1 � b3Þc2 þ ðb2 � b1Þg

:

Therefore f is a Möbius tranformation of g2 by (4.7) or (4.8) and we have

Tðr; f Þ ¼ 2Tðr; gÞ þOð1Þ:ð4:9Þ
On the other hand, since f and g share Sj, 1a ja 6,

10Tðr; f Þa
X6

j¼1

ðNðr; 1=ð f � xjÞÞ þNðr; 1=ð f � hjÞÞÞ þ Sðr; f Þ

¼
X6

j¼1

ðNðr; 1=ðg� xjÞÞ þNðr; 1=ðg� hjÞÞÞ þ Sðr; f Þ

a 12Tðr; gÞ þ Sðr; f Þ:
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This contradicts to (4.9) since Sðr; f Þ and Sðr; gÞ are not distinguished in this
case.

The case (II).
Note that none of m, n and mþ n is zero since a1, a2, a3 are linearly

independent over C . We may assume m > 0. For suitable m-th roots bj of aj,
j ¼ 1; 2, we have from (4.2)

g2 ¼ �ðb3 � b2Þb1bm
1 þ ðb1 � b3Þb2bm

2 þ ðb2 � b1Þb3bmþn
1 b�n

2

ðb3 � b2Þbm
1 þ ðb1 � b3Þbm

2 þ ðb2 � b1Þbmþn
1 b�n

2

Let d > 0 be the greatest common divisor of m and n, and take integers p and q
such that m ¼ dp and n ¼ dq. Put g ¼ ðb1=b2Þ

d , then

g2 ¼ �ðb3 � b2Þb1gp þ ðb1 � b3Þb2 þ ðb2 � b1Þb3gpþq

ðb3 � b2Þgp þ ðb1 � b3Þ þ ðb2 � b1Þgpþq
:ð4:10Þ

Recall p > 0 and first assume that pþ q > 0. Consider the denominator and the
numerator as polynomials of g. Obviously they have not the factor g, and by
Corollary 3.2 they must have only factors with even exponents except g after
reduction. Also, they have the common factor g� 1 but it is not simultaneously
multiple factor of both. Finally, each of them has at most one multiple factor
and the exponents of multiple factors are two if they exist. After all, the right-
hand side of (4.10) is written as

C
ðg� 1Þðg� l1Þ2

ðg� 1Þðg� l2Þ2

before reduction, where l1, l2 and C are nonzero constants and l1 0 1, l2 0 1,
l1 0 l2. However, it is expanded as

C
g3 � ð2l1 þ 1Þg2 þ l1ðl1 þ 2Þg� l21

g3 � ð2l2 þ 1Þg2 þ l2ðl2 þ 2Þg� l22
;

which induces a contradiction l1 ¼ l2 since the coe‰cients of g2 or g are zero by
comparing this with the righthand side of (4.10). In the case of pþ q < 0, we
can also induce a contradiction by the same way as above.

The case (III).
In this case by Lemma 3.3, for any e > 0, we have

Nðr; 1; f1; f2Þa eTðrÞ þ SðrÞ;ð4:11Þ
where f1 ¼ a2=a1, f2 ¼ a3=a1 and TðrÞ and SðrÞ are as in Lemma 3.3. If z0 is a
zero of F :¼ ðb3 � b2Þ þ ðb1 � b3Þ f1 þ ðb2 � b1Þ f2 and not common zero of f1 � 1
and f2 � 1, then it is a zero of the denominator of the righthand side of (4.2)
and not a zero of the numerator. Hence z0 is a multiple zero of F . So we
have

Nð2ðr; 1=F ÞbNðr; 1=F Þ �Nðr; 1; f1; f2Þ:ð4:12Þ

By H. Cartan’s second main theorem and the first main theorem
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Nðr; 1=FÞ ¼ TjðrÞ þ SjðrÞ;
and TðrÞ ¼ Tðr; f1Þ þ Tðr; f2Þa 2TjðrÞa 2TðrÞ holds, where j :¼ ððb3 � b2Þ :
ðb1 � b3Þ f1 : ðb2 � b1Þ f2Þ. These and (4.11), (4.12) induce

Nð2ðr; 1=F ÞbTjðrÞ þ SjðrÞ � ðeTðrÞ þ SðrÞÞb ð1� 2eÞTjðrÞ þ SjðrÞ:
Hence j satisfies the assumption of Theorem 3.4. Therefore one of the fol-
lowings holds: (i) a3 ¼ ca22=a1; (ii) a2 ¼ ca21=a3; (iii) a1 ¼ ca23=a2, where c is a
nonzero constant.

The case (i).
The case of a3 ¼ ca22=a1, where c0 0 is a constant. By substituing this into

(4.2) and (4.3),

g2 ¼ �ðb3 � b2Þb1 þ ðb1 � b3Þb2ða2=a1Þ þ ðb2 � b1Þb3cða2=a1Þ2

ðb3 � b2Þ þ ðb1 � b3Þða2=a1Þ þ ðb2 � b1Þcða2=a1Þ2
;

f 2 ¼ �ðb3 � b2Þb1cða2=a1Þ2 þ ðb1 � b3Þb2cða2=a1Þ þ ðb2 � b1Þb3
ðb3 � b2Þcða2=a3Þ2 þ ðb1 � b3Þcða2=a1Þ þ ðb2 � b1Þ

:

Since a2=a1 is not constant and b1, b2, b3 are distinct nonzero constants, by
Corollary 3.2 all denominators and numerators above have double roots as

quadratic polynomials of a2=a1. So we have b22 ¼ b1b3, c ¼
ðb1 � b3Þ2

4ðb2 � b1Þðb3 � b2Þ
¼ ðb2 þ b1Þ2

4b1b2
and c ¼ 4ðb2 � b1Þðb3 � b2Þ

ðb1 � b3Þ2
¼ 4b1b2

ðb2 þ b1Þ2
. Hence c ¼G1, but c ¼ 1

implies b1 ¼ b2 which is a contradiction. So c ¼ �1, and we have

g2 ¼ �
b1 b2ða2=a1Þ þ

b1 þ b2

2

� �2

b1ða2=a1Þ þ
b1 þ b2

2

� �2
; f 2 ¼ �

b22 b1ða2=a1Þ �
b1 þ b2

2

� �2

b1 b2ða2=a1Þ �
b1 þ b2

2

� �2
:

Therefore f is a Möbius transformation of g, and the conclusion f ¼ g follows
from Lemma 2.1 and the assumption.

We can induce f ¼ g by the same way in the cases (ii) and (iii), and the
proof is completed.

Problem. In Theorem 1.1 can we remove the condition qb 6? However q
must be greater than or equal to 3.
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