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A NEW CHARACTERIZATION OF COLLECTIONS OF TWO-POINT
SETS WITH THE UNIQUENESS PROPERTY

MANABU SHIROSAKI

Abstract

We give a necessary and sufficient condition for a collection of two-point sets to
have the uniqueness property for meromorphic functions.

1. Introduction

In the previous paper ([OS]) the author and his collaborator give a sufficient
condition for a collection of two-point sets to have the uniqueness property for
meromorphic functions. However it is not seemed to be necessary.

_For nonconstant meromorphic functions f and g on C and a finite set S
in C=CU{x} (or C), we write f*(S)=g*(S) if f~'(S) =g¢7'(S) and if for
each zyp e f~'(S) two functions f — f(z9) and g — g(zo) have the same multi-
plicity of zero at z;, where f — oo and g — oo mean that of 1/f and 1/g, re-
spectively.

_ Let .o/ ={S1,...,S,} be a finite collection of pairwise disjoint finite sets in
C. If f*(S;)) =g*(S;) (1 <j<gq) imply f =g for two nonconstant meromor-
phic functions f and g on C, then the collection .o/ is said to have the uniqueness
property for meromorphic functions (abbreviated to UPM). As an example of
such collections, we know Nevanlinna’s four values theorem ([N]):

THEOREM A. Let [ and g be two distinct nonconstant meromorphic functions
on C and a; (j=1,...,4) four distinct point of C. If f*({a;})=9g*{a})
(j=1,...,4), then f is a Mobius transformation of g and two of a; (say az, as)
are exceptional values of f and g, and the cross ratio (ay,az,as,as) = —1.

The author and his collaborator showed in [OS]

THEOREM B. Let q > 6 be an integer and o/ ={Sy,...,S,} a collection of
pairwise disjoint two-point sets. Assume that there is no Mébius transformation T
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such that T(;) =n; and T(n;) =& for three distinct j's, where S;={;,n;}.
Then the collection has UPM.

Let o = {S]};’:1 be a collectior} of pairwise disjoint sets in C,and T a
Mébius transformation. Put Sy := C \(qu:1 S;). 1If zo and T'(zp) do not belong
to the same S; (0 < j <gq), we call zo a wandering point of T for .</.

The aim of this paper is to give a necessary and sufficient condition for a
collection of two-point sets to have the uniqueness property which is expressed by

wandering points, and so we prove

TueoreM 1.1.  Let q > 6 be an integer and o/ = {Si,...,S,;} a collection of
pairwise disjoint two-point sets in C. Assume that there is no Modbius trans-
formation T except the identity with at most two wandering point for /. Then </
has UPM.

We assume that the reader is familiar with the standard notations and
results of the value distribution theory (see, e.g., [C], [H], [R]). In particular, we
use symbols T'(r,f) and Ty(r) as characteristic functions of a meromorphic
function f on C and a holomorphic mapping f of C into P"(C), respec-
tively, and moreover, we express by S(r,f) and Sy(r) quantities such that
lim, o ¢ S(r, f)/T(r, /) =0 and lim,., ,¢g Sp(r)/Ty(r) =0, respectively,
where E is a subset of (0, c0) with finite linear measure and it is variable in each
cases.

2. Fundamental properties

Let o/ = {Si,...,S,;} be a collection of pairwise disjoint finite sets of C.
We denote fundamental properties of wandering points and UPM, and it is easy
to show them.
(P1) Any Mobius tranformation does not have only one wandering point
for of.
(P2) If a Mobius transformation 7' not the identity has no wandering point
for .o/, then o/ does not have UPM by considering g and f = T(g),
where ¢ is an arbitrary nonconstant meromorphic function.
(P3) If a Mobius transformation 7' has only two wandering points w; and
wsy for .o/, then .o/ does not have UPM by considering g and f = T(g),
where ¢ is a nonconstant meromorphic function with two exceptional
values wy; and ws.
By (P1), (P2) and (P3), it is necessary for ./ to have UPM that there exists no
Mobius transformation except the identity with at most two wandering points
for <.
(P4) If a subcollection of .o has UPM, then ./ has UPM.
Let # = {S],...,S,} be another collection. If there exists partition /; U---UJx
:f{i{,...,p} such that Ujd[ S =8, 1<t<k, then we call # a refinement
of /.
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(P5) If a refinement of .« does not have UPM, then neither does .o7.
We also prove

Lemma 2.1, Let o/ = {Si,...,S4} be a collection of pairwise disjoint finite
sets in C. Let g a nonconstant meromorphic function on C and T a Mdbius
transformation not the identity. Put f=T(g). If f*(S;)=¢"(S)), 1 <j<gq,
then T has at most two wandering points for .<f.

Proof. Take any wy € C. 1If there exists a point zy such that g(zy) = wo,
then f(zo) = T'(wo). Since g(zo) and f(zo) belong to the same S; (0 < j < g) by
assumption, where Sy = CA'\(U;I:1 S;), wo is not a wandering point of T for .«7.
Hence by the little Picard theorem, 7 has at most two wandering point for .o7.

O

3. Preliminaries from the value distribution theory

In this section we denote the results from the value distribution theory which
are used in the next section.

Lemma 3.1 (for the proof, see [S]). Let f be a nonconstant meromorphic
Sunction on C and a; (1 < j < q) distinct points in C. If all the zeros of [ — a;
have the multiplicities at least m; for each j, where m; are arbitrarily fixed positive

integers, then
q 1
(1 - _) <2
= 4

For a nonconstant meromorphic function 7 and a point a € C we call ¢ a
completely ramified value of f if all zeros of f —a have multiplicities greater
than one.

CoRrROLLARY 3.2. (i) Each nonconstant entire function has at most two finite
completely ramified values.

(i) Each nonconstant entire function without zero has no completely ramified
values except zero and oo.

LemMma 3.3 ([LY, Lemma 7]). Let fi and f> be two nonconstant meromorphic
Sfunctions on C satisfying

N(r, ;) + N(r,1/f;) = S(r), j=1,2.
If fI"f" # 1 for all nonzero integers m and n, then for any & >0, we have
N(r, L fi, f2) < eT(r) + S(r).

Here N(r,1; 11, /f>) denotes the counting function of common zeros fi —1 and
f» =1 counted once and T(r)=T(r, i)+ T(r,f2), Sr)=0(T(r)) as r— o
outside some set of r with finite linear measure.
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The following is a degeneracy theorem of holomorphic mapping of C into
P?(C).

THEOREM 3.4. Let f = (fo: fi: fo) be a linearly nondegenerate holomorphic
mapping of C into PZ(C). Assume that all f; are entire functions without zeros
and that

No(r, 1/F) = (1= &)Ty(r) + Sy(r)
for any ¢ >0, where F := fo+ fi + f> and N(,(r,1/F) is the counting function of
zero of F with multiplicity greater than or equal to p for positive integer p. Then
f/lflz/];gz is constant for some jO; j17 j2 IVilh {j07j17j2} = {07 172}

Proof. By replacing f; by f;/fo and the conclusion by that one of fifs,
f22/f 1, S iz/fi is constant, we may assume that fy = 1.
Define meromorphic functions g; and g, by

(f5/) = (' /H) b= fr- (f5/12) = (1 /)
NEROE 7 Hh
which are nonconstant since f is linearly nondegenerate. If F(z¢) = F'(z) = 0,
then ¢1(z0) = g2(z0) = 1. Hence we get
(3.1) No(r, 1/F) < N(r, 1591, 92),

where N(,(r,1/F) is the counting function of zero of F with multiplicity greater
than or equal to p counted once for positive integer p. Since all f; have no
zeros, we have, by H. Cartan’s second main theorem and the first main theorem,

Ty(r) = N*(r,1/F) + S (r),

where N2(r, 1/F) is the counting function of zero of F with multiplicity truncated
by 2. On the other hand Né(r, 1/F) = S¢(r) since it counts twice some of zeros
of the function

g1 =~/

HWif fh
fll//fl fzﬁ/fz

and f; and f, are entire functions without zeros. Hence, by assumption, we
have for any ¢ >0

l—¢
2

where T(r) = T(r, fi) + T(r, f). By this inequality and (3.1) we have

2]V(2(r, 1/F) = Nu(r,1/F) + Sp(r) = (1 = &)T(r, ) = T(r)+ Sy(r),
N 1591,92) = -3 T0) + S50,

Since f; and f, are nonconstant entire functions without zeros, we have

N(r.g;) + N(r,1/g;) = o(T(r)) (j=1,2).
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Note T'(r,g1) + T(r,g2) = (1 + 0(1))T(r) and apply Lemma 3.3, then there exist
two nonzero integers m and n such that g{"g} = 1.

Nih
fif
(32) =5

Now put @ = then

(=D"
m(l _ l/q))m+n

Since the lefthand side is an entire function without zero, so is the righthand side.
If m+n=0, then fi/f» = —w/®, where ® is an m-th root of one. We
get f1 = —wf, + C for some constant C, which contradicts to the linear non-
degeneracy of f.
Now m #0, n# 0, m+n # 0, and ® omits three values 0, 1 and oo by (3.2).
Hence ® is constant. So

(3-3) Nh =G,

where C is a nonzero constant and we may assume that m and »n are relatively
prime and that m+n > 0. Take integers s and ¢ such that ms —nt =1 and put
¥ = ff)’, which is an entire function without zeros. Then by (3.3)

1
\an:_ y \I;m:ct'
Cs fla f2
which shows that W is not constant, and

1 1
—7 " — 1 m+
F=1+4CY ’+—Ct‘1“_‘{' ’(CS+\P"+—C,‘P’ ”>7

F/ _ \P/ . \P—n—l (_ncs + ﬂ\{/m+n>.

Ct

. ) 1
The multiple zeros of F except those of ¥’ are those of C* 4 P” +E‘{””+"

3 m m+n 1 m m
and of —nC*®+ E‘P and hence those of 1+ YA +1)¥Y" and
1+C* (1 + %) W". Therefore if F(zo) =F'(z0) =0 and Y'(z) #0, then

m+n _, n'm!
Y(zp)'=-C* , P(z)" = =C! and hence ¥(zy) = (-1)""———.
(z0) (20) e (z0) = (=1) )

For any solution wy of C*+ X" +EX Mt — () there exists a point zg such that

W(z9) =wo, F'(z0) =0 and W'(z) #0 by assumption. Hence the equation
1 . .

Ci 4+ X" +6X "M =0 has only one solution. We can induce that (m,n) =

(1,1),(2,-1),(—=1,2). This implies the conclusion of the theorem. O

The following collorary precises a part of Theorem 7.2 of [NWY].
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COROLLARY 3.5. Let fy, fi1, f» be entire functions without zeros. Assume
that fy, f1, fo are linearly independent over C and that F := fy+ fi + f> has no

simple zero. Then fjlsz/];oz is comstant for some jo, ji, j» with {jo, 1,2} =
{0,1,2}.

4. Proof of Theorem 1.1

It suffices to treat the case of ¢ =6 by (P4) in §2. Assume that f*(S;) =
g*(S;) for two nonconstant meromorphic functions f and g. We may write
f = fi/fo by entire functions fy, fi without common zeros, and g = g1/¢o in a
similar manner. Also, we put S; = {&;,7,}, 1 <j<6.

By Theorem B, it is enough to consider the case where there exists a Mobius
transformation exchanging three pairs of /. By renumbering of S; and by
considering a suitable Mobius transformation, we may assume that 7, = —&;,
Jj=1,2,3, where ¢; # 0, co.

Then, by the assumption f*(S;) = g*(S;), there are entire functions o; without
zeros such that

(4.1) fE+bifE =0i(gl +bigd), Jj=1,2,3,

where b; = —sz. Note that by, by, by are distinct nonzero values.
It follows that

g*{(by — b))y + (b1 — b3)oa + (by — by)a3}
= —{(b3 — ba)bios + (b1 — b3)broz + (b2 — b1) b33},
F2{(b3y — by)oaos + (by — b3)azay + (by — by)ogoa}
= —{(b3 — ba)broaoz + (b1 — b3)brazoy + (by — by)b3ajon ).
If among four functions of the lefthand sides and the righthand sides above there
is one which is identically zero, then we have o; = ap = a3. In this case f? = g?
is induced from (4.1), and we get f =g by using Lemma 2.1.

Now we may assume that any of these are not identically zero. Hence, we
have

(bs — ba)broy + (b1 — b3)baos + (b — by)b3os

(b3 — bz)OCl + (b] — b3)0€2 + (bz - bl)oc3
(by — ba)biogoz + (b1 — b3)brozoy + (by — by)bzogon
(by — by)oaos + (by — b3)azouy + (by — by)oon

(4.2) 9> =-—

O

For oy, ay, a3, we consider three cases: (I) they are linearly dependent over
C; (II) they are linearly independent over C and (o3/01)" (0r2/2t1)" = 1 for some
nonzero constants m and n; (III) they are linearly independent over C and
(03/01)" (0ot /2t1)" # 1 for any nonzero constants m and n.

The case (I).
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If a3 = cjo + cp0p with constants ¢; and ¢, either nonzero, then by sub-
stituting it into (4.2) we have
2 A(bs = ba)b1 + (b2 — by)bscr oy + {(b1 — b3)by + (b2 — by)b3ca}on
44) g =- .
{(b3 — bz) + (bz — bl)cl}ocl + {(b1 - bg) + (bz - bl)CQ}O(z

If ap/oy is constant, so is g. Hence it is nonconstant and by Corollary 3.2 it has
no more completely ramified finite values except zero. It follows from (4.4) that

(4.5) (b3 — bz)b] + (bz — bl)b3cl = (b1 — b3) + (bz — bl)CZ =0
or
(4.6) (b1 = b3)by + (by — b1)bsca = (b3 — b2) + (b2 — b1)c1 =0,
and
2 _p A
(4.7) g-=-b; n
or
2__p 22
(4.8) g =—bs o

if (4.5) or (4.6) holds, respectively. By the same way from (4.3), we have

(b1 — b3)bac1od + {(bs — ba)bicy + (b1 — b3)baca + (by — by)bs}oyon + (b3 — ba)bicaol
(b1 — b3)c1od + {(bs — ba)er + (b1 — b3)ca + (b — by) Yo oa + (b3 — ba)ca02 '

and hence, by noting that none of four coefficients of o and o is zero,

{(b3 — bg)b]Cl + (bl — b3)b2C2 + (b2 — b])b3}2 = 4(1)1 — b3)b2€1 . (b3 — bz)b]Cg,
{(bs — ba)er + (b1 — b3)ea + (by — b1)}> = 4(by — b3)ey - (bs — ba)ea.

fi=-

and

1 2(b1 = b3)baci (o1 /o2) + {(b3 — ba)bicr + (b1 — b3)baca + (b — b1)b3}
fz 2(b1 — b3)61(061/062) + {(b3 — b2)61 + (bl — b3)62 + (bz — bl)}

Therefore f is a Mdbius tranformation of g> by (4.7) or (4.8) and we have
(4.9) T(r,f)=2T(r,g)+ O(1).
On the other hand, since f and g share S;, 1 < j <6,

f=t

M-

07(r, f) < ) (N 1/(f =&) + N1/ (S =) +S(r, /)

Jj=1

I
.Mm

(N(r, 1/(g = &) + N(r, 1/(g —m;))) + S(r,.f)
1

2T(r,g) + S(r, f).

IA
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This contradicts to (4.9) since S(r, f) and S(r,g) are not distinguished in this
case.

The case (II).

Note that none of m, n and m+n is zero since oy, op, o3 are linearly
independent over C.  We may assume m > 0. For suitable m-th roots ; of v,
j=1,2, we have from (4.2)

2 (b3 =by)biB" + (br — b3)bafy" + (b2 — b1)bsS "By
(b3 — bo)BT" + (b1 — b3)B5" + (ba — by) BT By"

Let d > 0 be the greatest common divisor of m and n, and take integers p and ¢
such that m=dp and n=dqg. Put y = (B;/B,)", then

(b3 — b2)b1y? + (b1 — b3)by + (by — by)b3yP™e
(b3 = b2)y? + (b1 — b3) + (by — by)yrte

Recall p > 0 and first assume that p + ¢ > 0. Consider the denominator and the
numerator as polynomials of y. Obviously they have not the factor y, and by
Corollary 3.2 they must have only factors with even exponents except y after
reduction. Also, they have the common factor y — 1 but it is not simultaneously
multiple factor of both. Finally, each of them has at most one multiple factor
and the exponents of multiple factors are two if they exist. After all, the right-
hand side of (4.10) is written as

c=D=4)’
=Dy — )
before reduction, where 11, 4, and C are nonzero constants and Ay # 1, A, # 1,
A1 # 2. However, it is expanded as

Cy3 — Q4+ D)2+ (A +2)y — if
P — 2L+ 12+ (A +2)y— /157

which induces a contradiction A; = 1, since the coefficients of y> or y are zero by
comparing this with the righthand side of (4.10). In the case of p+ ¢ <0, we
can also induce a contradiction by the same way as above.

The case (III).

In this case by Lemma 3.3, for any ¢ > 0, we have

(4.11) N(r,1; f1, 5) <eT(r) + S(r),

where f; = ap/oy, fo = a3/o and T(r) and S(r) are as in Lemma 3.3. If zp is a
zero of F := (b3 — by) + (b1 — b3) fi + (b2 — b1) f> and not common zero of f; — 1
and f, — 1, then it is a zero of the denominator of the righthand side of (4.2)
and not a zero of the numerator. Hence z, is a multiple zero of F. So we
have

(4.12) No(r,1/F) > N(r,1/F) = N(r,1; fi, f2).

(4.10) 9> =—

By H. Cartan’s second main theorem and the first main theorem
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N(r71/F) = T¢(7)+S¢(V)7
and T'(r)=T(r,fi)+T(r, o) <2T,(r) <2T(r) holds, where ¢:= ((b3—bs):
(by — b3)f1: (b —b1)f2). These and (4.11), (4.12) induce
No(r,1/F) = Ty(r) + Sy (r) — (eT(r) + S(r)) = (1 = 2&) T, (r) + S, (r).

Hence ¢ satisfies the assumption of Theorem 3.4. Therefore one of the fol-
lowings holds: (i) o3 = cod/oy; (ii) oo = co? /os; (iii) o = cal/on, where ¢ is a
nonzero constant.

The case (i).

The case of a3 = ca3 /oy, where ¢ # 0 is a constant. By substituing this into
(4.2) and (4.3),

1 (bs — b2)by + (by — b3)ba (a2 /o) + (by — b1)b3c(aa /o)
(b3 — b2) + (b1 — b3) (o /o) + (by — by)c(o2/eu1)?
(b3 — bz)b]C(OCz/OCl)z + (b] — b3)b2€(0!2/0€1) —+ (bz — bl)b3
(bs — ba)c(aa/o3)* + (by — ba)e(a/om) + (b2 — br)

Since op/0q is not constant and by, by, b3 are distinct nonzero constants, by
Corollary 3.2 all denominators and numerators above have double roozts as
(b1 — b3)

i

f=-

quadratic polynomials of o,/0;. So we have b% =bib3, c =

(by + by)? 4y — br)(bs —by)  4bibs 4(by — by)(bs — b)
=-~——72 and ¢ = 5 = 5 - Hence ¢ = +1, but ¢ =1
4b1by (by — b3) (b2 + by)
implies b = b, which is a contradiction. So ¢ = —1, and we have
by +by\* by +by\*
by (bz(ocz/ocl)—i- ! 2 2) b% <b1(otz/oc1) - 3 2)
gz = ) fz = -

<b1(ocz/oc1)—|-bl 42_})2)2 by (bz(ocz/ou) b 42-b2)2'

Therefore f is a Mdbius transformation of g, and the conclusion f = g follows
from Lemma 2.1 and the assumption.

We can induce f =g by the same way in the cases (ii) and (iii), and the
proof is completed.

PrROBLEM. In Theorem 1.1 can we remove the condition ¢ > 6? However ¢
must be greater than or equal to 3.
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