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HYPERPLANE ARRANGEMENTS AND LEFSCHETZ’S HYPERPLANE

SECTION THEOREM
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Abstract

The Lefschetz hyperplane section theorem asserts that a complex a‰ne variety

is homotopy equivalent to a space obtained from its generic hyperplane section by

attaching some cells. The purpose of this paper is to give an explicit description of

attaching maps of these cells for the complement of a complex hyperplane arrangement

defined over real numbers. The cells and attaching maps are described in combinatorial

terms of chambers. We also discuss the cellular chain complex with coe‰cients in a

local system and a presentation for the fundamental group associated to the minimal

CW-decomposition for the complement.

1. Introduction

The Lefschetz hyperplane section theorem is a result concerning a topolog-
ical relationship between an algebraic variety and its generic hyperplane sec-
tion. The following is a version of the Lefschetz theorem for a‰ne varieties.
Let g A C½x1; . . . ; xl� be a polynomial and MðgÞ :¼ fx A Cl j gðxÞ0 0g be the hy-
persurface complement defined by g.

Theorem 1.0.1 (A‰ne Lefschetz Theorem [Ha, HL]). Let F be a generic
a‰ne hyperplane in Cl. Then the space MðgÞ has the homotopy type of a space
obtained from MðgÞVF by attaching a certain number of l-dimensional cells.

The important part of the above Lefschetz theorem for a‰ne varieties is that the
cells attached to MðgÞVF all have equal dimension l. This makes the situation
relatively simple. An immediate corollary, obtained by induction on the dimen-
sion l, is that MðgÞ is homotopy equivalent to an l-dimensional CW-complex
whose ðl� 1Þ-skeleton is homotopy equivalent to MðgÞVF , and we also conclude
that the number of l-cells is equal to dim HlðMðgÞ;MðgÞVF Þ. The number of
l-cells is obviously greater than or equal to the Betti number blðMðgÞÞ. More
precisely, we have the following exact sequence:
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0 �! HlðMðgÞÞ �! HlðMðgÞ;MðgÞVF Þ �! Hl�1ðMðgÞVF Þ �!il�1
Hl�1ðMðgÞÞ:

Another corollary is

Corollary 1.0.2. Let ip : HpðMðgÞVF ;CÞ ! HpðMðgÞ;CÞ denote the ho-
momorphism induced from the natural inclusion i : MðgÞVF ,! MðgÞ, then

ip is
isomorphic for p ¼ 0; 1; . . . ; l� 2

surjective for p ¼ l� 1:

�

As noted by A. Dimca, S. Papadima and R. Randell ([DP1], [Ra2]), suppose
il�1 is isomorphic, then the number of l-dimensional cells attached would be
equal to the Betti number blðMðgÞÞ. While in case of a hyperplane arrangement,
that is, when g is a product of linear equations, il�1 is indeed isomorphic (see
Prop. 2.3.1), and hence the number of l-cells is exactly equal to blðMðgÞÞ.

Repeating the same procedure inductively, we finally obtain a minimal CW
decomposition.

Theorem 1.0.3 ([DP1] [Ra2]). Let A be an a‰ne arrangement in Cl. Then
the complement MðAÞ is homotopy equivalent to a minimal CW-complex, i.e. a
CW-complex whose number of k-cells is equal to bkðMðAÞÞ for each k.

Let L be a rank one local system on MðAÞ. Then the minimal CW-
decomposition yields a cellular chain complex ðC�ðMðAÞ;LÞ; qÞ satisfying
dim CkðMðAÞ;LÞ ¼ bkðMðAÞÞ and HkðMðAÞ;LÞGHkðC�ðMðAÞ;LÞ; qÞ. We
call this the twisted minimal chain complex. This kind of minimal complexes
were first constructed by D. Cohen by using stratified Morse theory [Co1].
Properties of twisted minimal chain complexes have been studied in many papers
including [Co2, CO, DP2, PS]. To describe boundary maps q : C� ! C��1, some
information about the attaching maps of minimal CW-complexes are required.
Attaching maps for minimal CW-decompositions for l ¼ 2 were studied by M.
Falk [Fa] based on [Ra1, Sa] (see also [Li]).

However, little is known about both the attaching maps and the boundary
maps q : C� ! C��1 for higher dimensional cases. The purpose of this paper is
to describe how l-cells are attached to a generic hyperplane section MðAÞVF for
the complement MðAÞ of a real hyperplane arrangement A (§5.2). Here, ‘‘real
hyperplane arrangement’’ means that the defining polynomial g A R½x1; . . . ; xl�
is a product of linear equations with real coe‰cients. Although we have not
yet obtained a complete understanding of the minimal CW-decomposition for
hyperplane complements, we obtain a description of the twisted minimal chain
complex ðC�ðMðAÞ;LÞ; qÞ (in §6). Our formula of the twisted boundary map
contains the integers ‘‘degðC;C 0Þ’’. It is defined by using the topological re-
lationship between two chambers, and its computation will be quite di‰cult
in general. But it is computable in a certain cases. Our presentation has some
applications on the structure of local system homologies, which will be discussed
in a subsequent paper [Y].
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The advantage of focusing our attention on real arrangements is that we can
use structures of chambers, namely, the connected components of MðAÞVRl.
The study of relationships between topology of MðAÞ and combinatorics of
chambers is a classical topic in the theory of hyperplane arrangements. We
summarize some classical results related to chamber-counting problems in §2.
The number of chambers are related to Betti numbers of MðAÞ. Later, in §5.1,
we give a more geometric interpretation to these numerical relations between
chambers and Betti numbers: chambers can be thought of as stable manifolds
for a certain Morse function. This interpretation will play a crucial role in this
paper. By a well-known duality between stable and unstable manifolds, the set
of chambers are indexing unstable cells which appear in the minimal CW-
decomposition. Thus the basis of the associated cellular chain complex is also
indexed by chambers.

In §3 we review the Salvetti complex and the Deligne groupoid. They relate
combinatorial structures of chambers to topological structures of the complexified
complements. In particular, for the purposes of this paper, we have to describe
local systems in terms of chambers. The Deligne groupoid o¤ers an appropriate
language to deal with local systems in a combinatorial context. A local system
can be interpreted as a representation of the Deligne groupoid.

In §4.1 we give a proof of the Theorem 1.0.1 for hyperplane complements.
It is proved by applying Morse theory to a Morse function of the form j f =gj2,
where f is a defining equation of the generic hyperplane F . Although the proof
does not involve anything new, Morse theoretic consideration in the proof will be
needed later. In particular, Morse theory tells us that, under Morse-Smale con-
dition on the gradient vector field, the unstable manifolds can be viewed as the
l-cells attached to the generic section, and we have a homotopy equivalence

MðAÞAðMðAÞVFÞU 6
p ACritðjÞ

Wu
p ;

where Wu
p is the unstable manifold corresponding to a critical point p A CritðjÞ

of the Morse function j. From the Morse-Smale condition, unstable and stable
manifolds define ‘‘set-theoretic’’ dual bases of HlðMðAÞÞ and H

lf
l ðMðAÞÞ, re-

spectively, that is,

Wu
p VW s

q ¼ Wu
p Vj W s

q ¼ fpg if p ¼ q;

j if p0 q:

(
ð1Þ

The main result in §4 is that the set-theoretical duality between stable and un-
stable manifolds characterizes the homotopy type of unstable manifolds.

As noted above, in the case of real arrangements, a stable manifold is known
to be equal to a chamber. The goal of §5 is to construct cells attached to the
hyperplane section MðAÞVF which satisfy the set-theoretical duality condition
(1) with respect to the chambers. Thanks to the result in the previous section,
the cells constructed in this section are homotopy equivalent to unstable man-
ifolds. The special case when l ¼ 2 o¤ers a new presentation for the funda-
mental group p1ðMðAÞÞ, which is given in the appendix §7.
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In §6, using the construction of the cells in the previous section, we determine
the boundary map of twisted cellular complex of the minimal CW-decomposition.
The essential ingredient is calculating twisted intersection numbers of the bound-
ary of a cell and chambers. In §6.3, we introduce the concept of the degree
map which associates to a pair of chambers ðC;C 0Þ an integer degðC;C 0Þ. The
degree map is required for both the boundary maps of twisted cellular chain
complexes and the presentations for fundamental groups.

2. Combinatorics of arrangements

In this section we establish some relationships among generic subspaces,
numbers of chambers and Betti numbers for complements of hyperplane arrange-
ments.

2.1. Basic constructions
Let V be an l-dimensional vector space. A finite set of a‰ne hyperplanes

A ¼ fH1; . . . ;Hng is called a hyperplane arrangement. Let LðAÞ be the set of
nonempty intersections of elements of A. Define a partial order on LðAÞ by
X aY , Y JX for X ;Y A LðAÞ. Note that this is reverse inclusion.

Define a rank function on LðAÞ by rðX Þ ¼ codim X . Write LpðAÞ ¼
fX A LðAÞ j rðXÞ ¼ pg. We call A essential if LlðAÞ0j.

Let m : LðAÞ ! Z be the Möbius function of LðAÞ defined by

mðXÞ ¼
1 for X ¼ V

�
P

Y<X mðYÞ; for X > V :

�
The Poincaré polynomial of A is pðA; tÞ ¼

P
X ALðAÞ mðXÞð�tÞrðX Þ and we also

define numbers biðAÞ by the formula

pðA; tÞ ¼
Xl
i¼0

biðAÞti:

We also define the b-invariant bðAÞ by

bðAÞ ¼ jpðA;�1Þj;
if A is an essential arrangement, the sign can be precisely enumerated as bðAÞ ¼
ð�1ÞlpðA;�1Þ.

Given a hyperplane H A A, we define other arrangements: the deletion of A
with respect to H is A 0 ¼ AnfHg and the restriction is A 00 ¼ fH VK jK A A 0g.
Note that the restriction A 00 is an arrangement in H. The Poincaré polynomials
satisfy the following recursion:

pðA; tÞ ¼ pðA 0; tÞ þ t � pðA 00; tÞ:ð2Þ

2.2. Classical results
Let A be an arrangement in a real vector space VR. Then the complement

VRn6n

i¼1
Hi is a union of open, connected components called chambers. Let us
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denote the set of all chambers by chðAÞ, and the set of relatively compact (or
bounded) chambers by bchðAÞ. If A is an arrangement in a complex vector
space VC, the complement is a connected a‰ne algebraic variety and denoted by
MðAÞ.

The Poincaré polynomial defined above and the geometric structure of the
complement are related by the following theorem.

Theorem 2.2.1 [OS, Za].
(i) Let A be an essential real l-arrangement. The number jchðAÞj of

chambers and the number jbchðAÞj of bounded chambers jbchðAÞj are
given by

jchðAÞj ¼ pðA; 1Þ

jbchðAÞj ¼ ð�1ÞlpðA;�1Þ ¼ bðAÞ:

(ii) Let A be a complex arrangement. Then biðAÞ is equal to the topo-
logical Betti number biðMðAÞÞ. In other words, the topological Poincaré
polynomial PoinðMðAÞ; tÞ ¼

P
i biðMðAÞÞti is given by

PoinðMðAÞ; tÞ ¼ pðA; tÞ:

In particular, the absolute value of the topological Euler characteristic
jwðMðAÞÞj of the complement is equal to bðAÞ.

2.3. Generic flags
Let A be an l-arrangement. A q-dimensional a‰ne subspace Fq HV is

called generic or transversal to A if dim Fq VX ¼ q� rðXÞ for X A LðAÞ. A
generic flag F is defined to be a complete flag (of a‰ne subspaces) in V ,

F : j ¼ F�1 HF0 HF1 H � � �HFl ¼ V ;

where each Fq is a generic q-dimensional a‰ne subspace.
For a generic subspace Fq we have an arrangement in Fq

AVFq :¼ fH VFq jH A Ag:

The genericity provides an isomorphism of posets

LðAVFqÞGLaqðAÞ :¼ 6
iaq

LiðAÞ:ð3Þ

In [OS] Orlik and Solomon gave a presentation of the cohomology ring
H �ðMðAÞ;ZÞ in terms of the poset LðAÞ for a complex arrangement A. The
next proposition follows from (3).

Proposition 2.3.1. Let A be a complex arrangement and Fq a q-
dimensional generic subspace. Then the natural inclusion i : MðAÞVFq ,!
MðAÞ induces isomorphisms
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ik : HkðMðAÞVFq;ZÞ !G HkðMðAÞ;ZÞ;

for k ¼ 0; 1; . . . ; q.

In particular, the Poincaré polynomial of AVFq is given by

pðAVFq; tÞ ¼ pðA; tÞaq;ð4Þ

where ð
P

ib0 ait
iÞaq ¼

Pq
i¼0 ait

i is the truncated polynomial. These formulas
and Theorem 2.2.1 prove the following result.

Proposition 2.3.2. Let A be a real l-arrangement and F a generic flag.
Define

chF
q ðAÞ ¼ fC A chðAÞ jC VFq 0j and C VFq�1 ¼ jg;

for each q ¼ 0; 1; . . . ; l. Then
(i) jchF

q ðAÞj ¼ bqðMðAÞÞ.
(ii) If A is essential, then blðMðAÞÞ ¼ bðAU fFl�1gÞ,

where MðAÞ is the complement of the complexified arrangement of A and
AU fFl�1g is the arrangement obtained by adding Fl�1 to A.

Proof. For any chamber C A chðAÞ, the intersection C VFq is either an
empty set or a chamber in AVFq. Hence we have a bijection

6
iaq

chF
i ðAÞ ! chðAVFqÞ

C 7! C VFq:

Counting the number of chambers by using Theorem 2.2.1 (i) and (4), we obtainX
iaq

jchF
q ðAÞj ¼ jchðAVFqÞj

¼ pðAVFq; tÞjt¼1

¼
X
iaq

biðAÞ:

Thus we have (i).
The recursion formula (2) allows us to calculate the Poincaré polynomial of

AUFl�1:

pðAU fFl�1g; tÞ ¼ pðA; tÞ þ t � pðAVFl�1; tÞ

¼ pðA; tÞ þ t � pðA; tÞal�1

¼ pðA; tÞ þ t � ðpðA; tÞ � blðAÞtlÞ:

By putting t ¼ �1 we obtain (ii). r
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Example 2.3.3. Figure 1 shows an example of arrangement A of three lines
in R2 with a generic flag F : F0 HF1. Note that pðA; tÞ ¼ 1þ 3tþ 3t2.

Let A be a real arrangement with a generic flag F. Consider the l-th
homology, cohomology and homology with locally finite chains for the com-
plement. Both H

lf
l ðMðAÞ;CÞ and HlðMðAÞ;CÞ are dual to HlðMðAÞ;CÞ. So

there exists a canonical isomorphism

H
lf
l ðMðAÞ;CÞ !G HlðMðAÞ;CÞ:ð5Þ

Let C be a chamber. Using the inclusion VR ,! VC ¼ VR l
ffiffiffiffiffiffiffi
�1

p
VR, C can be

considered as a locally finite l-dimensional cycle in MðAÞ and determines an
element ½C � A H

lf
l ðMðAÞÞ.

Recall that C A chF
l ðAÞ is a chamber satisfying C VFl�1 ¼ j, and that

the number of such chambers is equal to the l-th Betti number blðAÞ ¼
dim H

lf
l ðMðAÞÞ. Later we will prove that f½C � jC A chF

l ðAÞg forms a basis of
H

lf
l ðMðAÞÞ (Cor. 5.1.4).

3. The Salvetti complex and the Deligne groupoid

In [Sa] Salvetti has given a finite regular CW-complex which carries the
homotopy type of the complement MðAÞ in the case where A is a complexified
real arrangement. In this section we review some results on the complexified
complement MðAÞ of a real arrangement A.

3.1. Complexified real arrangements
Let AR be an arrangement in a real vector space VR. By definition each

hyperplane H A AR is defined by a real equation aH ¼ 0 of degree one. The
complexification AC is a set of hyperplanes in VC ¼ VR nC defined by real
equations aH ¼ 0 for H A AR.

Figure 1. A 2-arrangement and a generic flag
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Since VC GVR l
ffiffiffiffiffiffiffi
�1

p
VR, VC can be identified with the total space of the

tangent bundle TVR. More precisely we identify as follows:

TVR !G VC

ðx; vÞ 7! ðx; vÞC ¼ xþ
ffiffiffiffiffiffiffi
�1

p
v;

ð6Þ

where TVR ¼ fðx; vÞ j x A VR; v A TxVR GVRg. This identification (6) enables us
to express a point in VC as a tangent vector on VR, and a path in VC can be
expressed as a continuous family of tangent vectors along a path in VR, for
simplicity we say a vector field along a path in VR.

Example 3.1.1. The left side of Figure 2 expresses a vector field along the
segment ½�1; 1� in VR GR. The right side expresses the corresponding path in
VC GC.

Let x A VR. Then aHðxÞ can be expressed as aHðxÞ ¼ a � xþ b, where
a A V �

R and b A R. Hence

aHðxþ
ffiffiffiffiffiffiffi
�1

p
vÞ ¼ aHðxÞ þ

ffiffiffiffiffiffiffi
�1

p
a � v;

for xþ
ffiffiffiffiffiffiffi
�1

p
v A VC. We have

aHðxþ
ffiffiffiffiffiffiffi
�1

p
vÞ ¼ 0 , aHðxÞ ¼ 0 and a � v ¼ 0:

This proves the following.

Lemma 3.1.2. Let A be a real arrangement. For x A VR we define Ax to
be the set fH A A jH C xg of all hyperplanes containing x. Then the complexified
complement is

MðAÞG fðx; vÞC j x A VR; v A TxVRnAxg:

3.2. The Salvetti complex
We recall some notions about the Salvetti complex, for details see [BLSWZ].

Definition 3.2.1. Let X A LðAÞ be an intersection of a real arrangement
A. A connected component X � of Xn6

HVX
H is called a face of A. The set

of all faces is denoted by L. Define a partial order by

Figure 2. Vector field along the segment ½�1; 1� and corresponding path
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X aY , X HY ; for X ;Y A L;

where Y is the closure of Y in VR. The ordered set ðL;aÞ is called the face
poset of A.

In this notation chðAÞ is the set of maximal elements in ðL;aÞ.
Given a face X A L and a chamber C A ch, the chamber X � C satisfying the

following conditions is uniquely determined (see [BHR] for more on X � C).
(1) X aX � C, and
(2) If X is contained in a hyperplane H A A, then C and X � C are on the

same side with respect to H.

Definition 3.2.2. The poset ðPðAÞ;�Þ is defined as follows:

PðAÞ ¼ fðX ;CÞ A L� chðAÞ jX aCg
ðX1;C1Þ � ðX2;C2Þ , X1 bX2 and X1 � C2 ¼ C1:

Theorem 3.2.3. There exists a regular CW-complex X , called the Salvetti
complex, such that the face poset FðX Þ of the complex X is isomorphic to PðAÞ,
and X is homotopy equivalent to MðAÞ.

Example 3.2.4. We show some examples of low dimensional cells.
(0-cell) In PðAÞ, the 0-cells of X are corresponding to the ðC;CÞ A PðAÞ,

C A chðAÞ.
(1-cell) Two chambers C and C 0 are adjacent if C VC 0 is contained in

a hyperplane and has nonempty interior in the hyperplane. The
relative interior of C VC 0 is called the wall separating C and C 0.
Let C and C 0 be adjacent chambers separated by a wall X . Then
we have two 1-cells, ðX ;CÞ and ðX ;C 0Þ, which connect ðC;CÞ and
ðC 0;C 0Þ. (Figure 3)

(2-cell) Let X A L be a face of codimension two with a chamber C1 bX .
We have a 2-cell ðX ;C1Þ. (Figure 4)

Figure 3. 1-cells corresponding to ðX ;CÞ and ðX ;C 0Þ
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3.3. The Deligne groupoid and its representation
In §6 we will discuss the chain complex with coe‰cients in a local system.

For the purposes, the structure of the fundamental group p1ðMðAÞÞ is partic-
ularly important. The concept of ‘‘the Deligne groupoid’’ GalðAÞ for a real
arrangement A, introduced by P. Deligne [De] see also [Pa2], and its repre-
sentations are good tools for extracting information about the fundamental
groups and local systems.

A sequence C0;C1; . . . ;Cn of chambers is a gallery G of length n ( from C0

to Cn) if Ci and Ciþ1 are adjacent for i ¼ 0; 1; . . . ; n� 1. Any continuous path
in U ¼ VRn6X AL; codimXb2

X which is transverse to any codimension one faces
determines a gallery and every gallery arises in this way. Any two chambers can
be connected by galleries. The distance between two chambers C and C 0 is the
length of a shortest gallery connecting them; equivalently, it is the number of
hyperplanes separating C and C 0. A gallery is said to be geodesic, or minimal,
if its length is equal to the distance between the initial and terminal chambers.

Definition 3.3.1 [De].
(1) Let G ¼ ðC0;C1; . . . ;CmÞ and G 0 ¼ ðC 0

0;C
0
1; . . . ;C

0
nÞ be two galleries. If

Cm ¼ C 0
0, define the composition of G and G 0 by GG 0 :¼ ðC0; . . . ;Cm ¼

C 0
0;C

0
1; . . . ;C

0
nÞ.

(2) Two galleries G and G 0 which have the same initial and terminal
chambers are called equivalent, denoted by G@G 0, if there exists a
sequence of galleries G ¼ G0;G1; . . . ;GN ¼ G 0 such that for each i ¼
0; . . . ;N � 1, Gi and Giþ1 have expressions

Gi ¼ E1FE2

Giþ1 ¼ E1F
0E2;

Figure 4. The 2-cell corresponding to ðX ;C1Þ
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where F and F 0 are geodesic galleries connecting the same initial and
terminal chambers.

(3) GalþðAÞ is defined to be the category whose objects are chambers
chðAÞ and morphisms are

HomGalþðC;C 0Þ ¼ fGalleries from C to C 0g=@:

Since a composition of galleries is compatible with @, compositions of
HomGalþ is well-defined.

(4) The Deligne groupoid is a category GalðAÞ with a functor Q :
GalþðAÞ ! GalðAÞ such that
– QðsÞ A HomGal is an isomorphism for every s A HomGalþ .
– Any functor C : Galþ ! C such that CðsÞ is an isomorphism for all

s A HomGalþ factors uniquely through Q.

See [Pa1] and [Pa2] more on the construction of GalðAÞ. The Deligne groupoid
GalðAÞ is, roughly, obtained from GalþðAÞ by inverting all morphisms. If A
is a simplicial arrangement, then the functor Q : GalþðAÞ ! GalðAÞ is faithful
[De]. However, it is worth noting that Q is not necessarily faithful; moreover
Galþ is not cancellative. For example, consider the following two galleries

G :¼ C2C1C2C3C2 and G 0 :¼ C2C3C2C1C2

in the arrangement illustrated in Figure 1. Obviously G and G 0 are not equiva-
lent in HomGalþðC2;C2Þ. But concatenations ðC5C2ÞG and ðC5C2ÞG 0 are equiv-
alent, indeed,

ðC5C2ÞG ¼ C5C2C1C2C3C2

¼ C5C4C1C2C3C2 ¼ ðC5C4ÞðC4C1C2C3ÞðC3C2Þ
¼ ðC5C4ÞðC4C7C6C3ÞðC3C2Þ ¼ ðC5C4C7ÞðC7C6C3C2Þ
¼ ðC5C6C7ÞðC7C4C1C2Þ ¼ ðC5C6ÞðC6C7C4C1ÞðC1C2Þ
¼ ðC5C6ÞðC6C3C2C1ÞðC1C2Þ ¼ ðC5C6C3ÞðC3C2C1C2Þ
¼ ðC5C2C3ÞðC3C2C1C2Þ ¼ ðC5C2ÞG 0:

Since ðC5C2Þ is invertible in GalðAÞ, G and G 0 determine the same element in
HomGalðC2;C2Þ.

Let C;C 0 A chðAÞ. It follows from the definition that any geodesic con-
necting C to C 0 are equivalent to each other. So geodesics from C to C 0 deter-
mine an equivalence class. We denote this equivalence class by PþðC;C 0Þ A
HomGalðC;C 0Þ, and its inverse by P�ðC 0;CÞ :¼ PþðC;C 0Þ�1 A HomGalðC 0;CÞ.

Example 3.3.2. In Figure 4 galleries ðC4;C3;C2;C1Þ and ðC4;C5;C6;C1Þ are
geodesics. Hence they determine the same element PþðC4;C1Þ A HomGalðC4;C1Þ.

Let G be a groupoid and x be an object. Then HomGðx; xÞ is a group and
called the vertex group at x. The vertex group of the Deligne groupoid GalðAÞ
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at a chamber is actually isomorphic to the fundamental group of the complexified
complement MðAÞ [Pa1, Pa2]:

HomGalðC;CÞG p1ðMðAÞÞ:

Moreover we have,

Theorem 3.3.3. Let X ¼ XðAÞ be the Salvetti complex as in Theorem
3.2.3. Let GðX Þ be the groupoid whose objects are 0-cells X0 and homomorphisms
are the set of homotopy equivalence classes of paths between two 0-cells. Then
GðXðAÞÞ is equivalent to the Deligne groupoid GalðAÞ.

Recall that a representation F of a category C is a functor F : C ! VectK
from C to the category of K-vector spaces. F is given by a vector space Fx for
each object x A C and a linear map Fr : Fx ! Fy for each r A HomCðx; yÞ such
that Fr1r2 ¼ Fr1 �Fr2 .

Let G be a groupoid with a vertex group Gx ¼ Homðx; xÞ. Then the cate-
gory of representations RepðGÞ of G is equivalent to the category of group
representations RepðGxÞ. Since the category of representations of the funda-
mental group of a topological space is equivalent to that of local systems over the
space, we have the following result.

Proposition 3.3.4. Let A be a real arrangement. Then the following cate-
gories are equivalent.

� RepðGalðAÞÞ: the category of representations of the Deligne groupoid.
� Repðp1ðMðAÞÞÞ: the category of representations of the fundamental group.
� LocðMðAÞÞ: the category of local systems.

In §6, we will use representations of the Deligne groupoid instead of local systems
to compute the boundary maps for cellular chain complexes. The following
operator will be needed for the purpose of describing the cellular boundary map.

Let F : GalðAÞ ! VectK be a representation of the Deligne groupoid.
Given two chambers C and C 0, we have two extreme morphisms PGðC;C 0Þ :
C ! C 0. Hence we have linear maps

FPGðC;C 0Þ : FðCÞ ! FðC 0Þ:

Figure 5. PþðC;C 0Þ and P�ðC;C 0Þ
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Definition 3.3.5 (The skein operator).

DFðC;C 0Þ :¼ FPþðC;C 0Þ �FP�ðC;C 0Þ:

4. Morse theory on the complement

Throughout this section, we investigate complex hyperplane arrangements
which do not necessarily arise from real arrangements.

4.1. The Lefschetz Theorem for hyperplane complements
In this section we give a proof of the Lefschetz theorem for MðAÞ following

Hamm and Lê [HL]. Although this is just a version of The Lefschetz Theorem
for a‰ne varieties, Morse theoretic arguments and constructions in this section
will be needed in §4.3.

Let A ¼ fH1; . . . ;Hng be an arrangement of hyperplanes in Pl
C. Let ai be a

linear form in C½z0; z1; . . . ; zl� defining Hi and Q denote the product a1a2 � � � an of
these linear forms. Let VðQÞ be the union 6n

i¼1
Hi of hyperplanes and MðQÞ ¼

Pl � VðQÞ denote the complement. There exists an obvious stratification SðAÞ
of the union as follows. Given an intersection X A LðAÞ of some hyperplanes in
A, define

SX :¼ X � 6
HVX

H:

We have a partition fSXgX ALðAÞ of Pl.

Lemma 4.1.1. For an arrangement A, the above stratification SðAÞ ¼
fSXgX ALðAÞ is a good stratification at each point p A V ¼ VðQÞ, i.e. there exist
a neighborhood U C p and a holomorphic function h on U with VðhÞ ¼ UVVðQÞ
satisfying the following Thom’s condition ðahÞ:

ðahÞ If pi is a sequence of points in U� VðhÞ such that pi ! p A SX and
TpiVðh� hðpiÞÞ converges to some hyperplane T, then TpSX HT.

The rest of this section is devoted to proving the following theorem ([Ha,
HL, DP1, Ra2]).

Theorem 4.1.2. (i) Let F ¼ Vð f ÞHPl
C be a hyperplane defined by a linear

form f which is transverse to each stratum. Then MðQÞ has the
homotopy type of a space obtained from MðQÞVF by attaching a certain
number of l-dimensional cells.

(ii) Moreover the number of l-cells is the l-th Betti number blðMðQÞÞ.

(ii) is proved in §1. The plan of the proof of (i) is to apply Morse theory to a
function of the form
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jðxÞ ¼ f ðxÞl0

al1
1 � � � aln

n

�����
�����
2

; for x A MðgÞ;ð7Þ

where l1; . . . ; ln A Z>0 are appropriately chosen positive integers and l0 ¼
l1 þ � � � þ ln. Note that j is a well-defined di¤erentiable map from MðQÞ to
Rb0 which has the bottom F VMðQÞ ¼ j�1ð0Þ. The reason for considering this
function is that the critical points are well studied, in particular, critical points
are known to be nondegenerate for generic l1; . . . ; ln. It was conjectured by
Varchenko [Va], and proved by Orlik-Terao [OT2] and Silvotti [Si].

Theorem 4.1.3. Let A be a complex essential a‰ne arrangement in Cl with
defining linear equations f1; . . . ; fN , and put

Fl ¼ f l1
1 f l2

2 � � � f lN
N

for l ¼ ðl1; . . . ; lNÞ A CN. Then there exists a Zariski-closed algebraic proper
subset Y of CN , such that for l A CN � Y , Fl has only finitely many critical
points, all of which are nondegenerate and the number of critical points of Fl is
jwðMðAÞÞj.

In our situation, since

Fl ¼
f l0

al1
1 � � � aln

n

¼ ða1=f Þ�l1 � � � ðan=f Þ�ln ;

there exist l1; . . . ; ln A Z>0 such that Fl has only nondegenerate critical points.
Combining the above theorem with Proposition 2.3.2, the number of critical
points is shown to be equal to the l-th Betti number blðMðQÞÞ of the comple-
ment. From the next lemma, j ¼ jFlj also has only finitely many critical points
all of which are nondegenerate critical points of Morse index l.

Lemma 4.1.4. Let f and g : U ! C be holomorphic functions defined on a
neighborhood U of 0 A Cn. We assume fð0Þ; gð0Þ0 0.

(i) 0 A U is a critical point of jfj2 if and only if 0 A U is a critical point of f.
(ii) In (i), 0 A U is a nondegenerate critical point of jfj2 if and only if 0 A U is

a nondegenerate critical point of f.
(iii) If 0 A U is a nondegenerate critical point of jfj2, then the Morse index is n.
(iv) If df and dg are linearly independent over C at each point in U , then so

are djfj and djgj.

Proof. Since jfj2 ¼ f � f, q

qzi
jfj2 ¼ qf

qzi
f and

q

qzi
jfj2 ¼ qf

qzi
f. Thus we have (i).

Moreover the determinant of the Hessian matrix at 0 A U is
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det

q2jfj2

qziqzj

q2jfj2

qziqzj

q2jfj2

qziqzj

q2jfj2

qziqzj

0
BBB@

1
CCCA¼ det

q2f

qziqzj
f

qf

qzi

qf

qzj

qf

qzi

qf

qzj

q2f

qziqzj
f

0
BBB@

1
CCCA

¼ jfj2 det
q2f

qziqzj

 !�����
�����
2

:

(Here we use
qf

qzi
¼ qf

qzi
¼ 0.) This proves (ii).

After a linear change of coordinates, we may assume f is expressed as

fðz1; . . . ; znÞ ¼ c 1þ
Xn
i¼1

z2i þOð3Þ
 !

with c0 0. Writing zi ¼ xi þ
ffiffiffiffiffiffiffi
�1

p
yi, we have

ff ¼ jcj2 1þ
Xn
i¼1

ðz2i þ zi
2Þ þOð3Þ

 !

¼ jcj2 1þ 2
Xn
i¼1

ðx2
i � y2i Þ þOð3Þ

 !
:

Consequently the Morse index of jfj2 at 0 is equal to n.
(iv) is clear from dðjfj2Þ ¼ ðdfÞfþ fðdfÞ. r

Unfortunately, our Morse function j ¼ jFlj is not a proper function.
Hence it is necessary to study the Morse theory for a nonproper Morse function.
This di‰culty is directly related to the fact that j has points of indeterminacy:
Vð f ;QÞ ¼ f f ¼ Q ¼ 0g ¼ VðQÞVF . To deal with the di‰culty, we have to re-
move a neighborhood of VðQÞVF for separating the zero loci and the poles
of j. The idea is to measure the distance from V1 :¼ Vð f ;QÞ. Suppose p ¼
½z0 : . . . : zl� A Pl � V1, and define hV1

ðpÞ as follows

hV1
ðpÞ ¼ jz0jl0 þ jz1jl0 þ � � � þ jzljl0

j f jl0 þ jal1
1 � � � aln

n j
:

Then hV1
: ðPl � V1Þ ! Rb0 is a well-defined map.

Lemma 4.1.5. Let Mat :¼ fp A Pl � V1; hV1
ðpÞa tg. For su‰ciently

large tg 0, h�1
V1
ðtÞ ¼ qMat is transverse to each stratum S A S and to F.

Moreover ðPl � V1; ðPl � V1ÞVSÞ is di¤eomorphic to ðM<t;M<t VSÞ as stratified
manifolds.
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Proof. We first observe that hV1
is defined on Pl � V1 with values in R>0.

It is clear that for a sequence fpigHPl � V1 converging to a point p A V1, we
have hV1

ðpiÞ ! y as i ! y. Recall that any real polynomial function on a
semi-algebraic set can have at most a finite number of critical values (see Milnor
[Mi2, Cor. 2.8]). Since any restriction hV1

jS to a stratum S A S has only finitely
many critical values, we may choose t to be larger than any critical value.
Suppose t1 and t2 ðt1 < t2Þ are su‰ciently large. Then there exists an open
neighborhood U of the compact set M ½t1; t2� :¼ fp; t1 a hV1

ðpÞa t2g such that the
restriction of hV1

to U VS has no critical points for any stratum S A S.
The gradient vector field �grad hV1

does not preserve the stratification in
general. We modify �grad hV1

so that it preserves the stratification. Let p A U
and S denote the stratum which contains p. Since p is not a critical point of
hV1

jS, there exists a tangent vector v A TpS such that v � j < 0. On a small
neighborhood Up of p in U , not meeting any smaller stratum than S, we have a
vector field ~vv such that

(i) ~vv is tangent to each stratum SVUp,
(ii) ~vv � j < 0.

Note that since our strata are linear, we can take ~vv as a constant vector field in a
certain open set.

Using a partition of unity, we have a vector field ~vv on U satisfying the
conditions (i) and (ii) above. Then ~vv=k~vvk defines a deformation retract of M<t2

onto M<t1 , which preserves the structure of stratification. r

Now we consider the function j on Mat and the restriction to its boundary
qMat ¼ h�1

V1
ðtÞ. The following lemma plays a key role in the arguments below.

The assumption that F is generic is used in the proof.

Lemma 4.1.6. For su‰ciently large tg 0, jjqMatnðVðQÞUFÞ has no critical
points.

Proof. Let p A V1 ¼ V VF and SX A S be the stratum containing p. Note
that X A LðAÞ is the smallest intersection containing p, and it is, by definition,

Figure 6.
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transverse to F . We have coordinates ðz1; . . . ; zlÞ in a neighborhood U of p
with the origin at p. The transversality of F to S allows us to assume that

(1) F VU is defined by a linear form zl ¼ 0.
(2) X VU is defined by fz1 ¼ z2 ¼ � � � ¼ zm ¼ 0g with 1am < l.
(3) Let H1; . . . ;Hk be the set of all hyperplanes in A which contains p.

Each Hi VU is defined by a linear form of the form a1z1 þ � � � þ amzm.
For simplicity, set g1 ¼ al1

1 � � � alk
k and g2 ¼ zl0

l . The assumptions imply that
djg1j and djg2j are linearly independent at each point of U � ðVðQÞUFÞ. Now
hV1

and j are expressed as

hV1
¼ 1þ jz1jl0 þ � � � þ jzljl0

jg1j þ jg2j

j ¼ jg2j
jg1j

:

Now we prove that there exists a neighborhood U 0 of p such that dhV1
and dj

are linearly independent at each point of U 0 � ðVðQÞUF Þ.

d log hV1
¼ � djg1j þ djg2j

jg1j þ jg2j
þ d logð1þ jz1jl0 � � � þ jzljl0Þð8Þ

d log j ¼ � djg2j
jg2j

þ djg1j
jg1j

:ð9Þ

If U 0 is su‰ciently small, then the last term of (8) is su‰ciently small. Compare
the sign of coe‰cients of djg1j and djg2j, we conclude that dhV1

and dj are
linearly independent. Thus for any point p A F VVðQÞ, there exists a neigh-
borhood Up in Pl

C such that dj and dhV1
are linearly independent at each point

of Up � ðVðQÞUFÞ. We choose finitely many points p1; . . . ; pN A VðQÞVF with

VðQÞVF H6N

i¼1
Upi and set t0 :¼ supfhV1

ðpÞ; p A Pl
C �6N

i¼1
Upig. Then for

t > t0, jjqMatnðVðQÞUFÞ has no critical points. r

The transversality F Vj qMat is also shown by observing (8). Hence a small
tubular neighborhood of F V qMat in qMat is di¤eomorphic to a disk bundle
over F V qMat. Recall that the normal bundle of F in Pl

C is NF=Pl
C
GOF ð1Þ and

is trivial on an a‰ne open set F � VðQÞ. Thus we have:

Lemma 4.1.7. There exists a small neighborhood T of F in Pl
C such that

TVMat G ðF VMatÞ �D2 ðDi¤eomorphicÞ;ð10Þ
where D2 ¼ fðx; yÞ A R2; x2 þ y2 < 1g is the unit disk.

Now we return to the proof of Lefschetz’s Theorem 4.1.2. Fix a su‰ciently
large tg 0 and set N ¼ Mat VMðQÞ. Consider the gradient vector field X ¼
�grad j. X is not tangent to the boundary qN in general, so we comb the
vector field in order to make it neat as in the proof of Lemma 4.1.5. Lemma
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4.1.6 means that df is not orthogonal to qN. Thus by an argument similar to
that in the proof of Lemma 4.1.5, modifying X around qN, we have a vector
field X on N which is tangent to qN. Moreover, there exists a vector field X
which satisfies the following conditions (Fig. 7):

(a) There exists a neighborhood U of qN U ðN VFÞ such that X ¼ X ¼
�grad j outside U and CritðjÞVU ¼ j, where CritðjÞ is the set of
critical points of j in MðQÞ � F .

(b) X is tangent to qN.
(c) Xj < 0 on N � ðF UCritðjÞÞ.
(d) Under the di¤eomorphism (10), the vector field X coincides with the

negative vertical Euler vector field �x
q

qx
� y

q

qy
.

We now complete the proof of Theorem 4.1.2. We consider X as the
negative gradient vector field of a Morse function on N and define

Nas :¼ fp A N; jðpÞa sg;

for s > 0. If there is no critical value in the interval ½s1; s2�, then the vector field
X induces a retraction Nas2 !G Nas1 . If there is only one critical point within
the interval ½s1; s2�, then the homotopy type of Nas2 is obtained from that of
Nas1 by attaching an l-cell. This completes the proof of Lefschetz’s hyperplane
section theorem. r

4.2. Stable and unstable manifolds
Consider the flow of X:

ft : N ! N; t A R

q

qt
ftðxÞ ¼ XftðxÞ; f0 ¼ idN :

If p A N � F is a critical point of j, we define the stable manifold W s
p and

unstable manifold Wu
p as

Figure 7. Modified vector field
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W s
p ¼ x A N; lim

t!y
ftðxÞ ¼ p

n o
Wu

p ¼ x A N; lim
t!�y

ftðxÞ ¼ p
n o

:

These are l-dimensional (over R) submanifolds in N. Recall that the vector field
X is said to satisfy the Morse-Smale condition if the stable and unstable manifolds
intersect transversely. But in our case, since any critical point in N � F has the
middle index l, it seems reasonable to define as follows.

Definition 4.2.1. Let X be a vector field on N as in the previous section,
it is said to satisfy the Morse-Smale condition if there does not exist a flow line
connecting distinct points in CritðjÞ. In other words, there does not exist x A
N � ðF UCritðjÞÞ such that both limt!y ftðxÞ and limt!�y ftðxÞ are contained
in CritðjÞ.

Recall that for a critical point p A CritðjÞ, NajðpÞþ� is homotopy equivalent
to NajðpÞ�� UWu

p (see [Mi1, Thm. 3.2]) and that unstable manifolds are preserved

by the action of ft. Hence under the Morse-Smale condition, the boundary of
an unstable manifold Wu

p should be attached to N 0 HF VMðQÞ. Thus we have:

Theorem 4.2.2. If X satisfies the Morse-Smale condition, then MðQÞ is
homotopy equivalent to

ðFC VMðQÞÞU 6
p ACritðjÞ

Wu
p :

Theorem 4.2.3. MðQÞ �6
p ACritðjÞ W

s
p is di¤eomorphic to ðMðQÞVFCÞ �D2.

Proof. Let T be a tubular neighborhood of FC VMðQÞ in MðQÞ as in
Lemma 4.1.7. Since X is a complete vector field,

Figure 8. Unstable manifolds
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ðqTVNÞ � R ! N � FC U 6
p ACritðfÞ

W s
p

 !

ðq; tÞ 7! ftðqÞ

defines a di¤eomorphism. It is also di¤eomorphic to ðFC VNÞ � ðD2 � fð0; 0ÞgÞ.
The condition (d) on X allows us to complete the proof. r

4.3. Homotopy types of the unstable cells
Next we characterize the homotopy types of unstable manifolds fWu

p ;

p A CritðjÞg. The unstable manifold Wu
p corresponding to p A CritðjÞ can be

considered as an attached cell. There exists a continuous map sp : ðDl; qDlÞ !
ðMðQÞ;F VMðQÞÞ such that spð0Þ ¼ p and sp induces a di¤eomorphism of
intðDlÞ to Wu

p . We now assume that our manifolds are oriented. Observe that
sp satisfies the following properties:

(i) spð0Þ ¼ p and spðDlÞVW s
p ¼ fpg.

(ii) spðDlÞ intersects W s
p at p transversally and positively.

(iii) spðqDlÞHF VMðQÞ.
(iv) If q A CritðjÞnfpg is another critical point, then spðDlÞ does not in-

tersect W s
q .

Note that (iv) is equivalent to the Morse-Smale condition (Wu
p VW s

q ¼ j). Let
us call these properties ‘‘set-theoretical duality’’ between cells fspgp ACritðjÞ and
stable manifolds fW s

p gp ACritðjÞ. The main result of this section is to characterize

the homotopy type of the map sp : ðDl; qDlÞ ! ðN;N VFÞ by set-theoretical
duality for stable manifolds.

Theorem 4.3.1. Suppose that a continuous map s 0
p : ðDl; qDlÞ ! ðN;N VF Þ

is di¤erentiable in a neighborhood of 0 A Dl and satisfies conditions (i) through (iv)
above. Then qsp and qs 0

p : qD
l ! N VF are homotopic. In particular,

MðAÞ and ðMðAÞVFCÞUðqs 0
pÞ

a
p ACritðfÞ

Dl

0
@

1
A

are homotopy equivalent.

Proof. The idea of the proof is simple: flowing s 0
p via the gradient flow ft,

then ft � s 0
p converges to sp as t ! y.

From (i), we have s 0
pð0Þ ¼ spð0Þ ¼ p and the image s 0

pðDlÞ is transverse to

W s
p . Note that TpP

l
C ¼ TpW

u
p lTpW

s
p . And the projection TpP

l ! TpW
u
p in-

duces an orientation preserving isomorphism Tps
0
pðDlÞGTpW

u
p . By modifying

s 0
p up to homotopy, we have s 00

p satisfying (i) � � � (iv) and the following properties:

s 00
p ðxÞ ¼

spðxÞ if kxk < �

s 0
pðxÞ if 2�a kxka 1;

�
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where kxk2 ¼ x2
1 þ � � � þ x2

l and � is a su‰ciently small positive number. Take
a tubular neighborhood T of F VN such that T ¼ ðF VNÞ �D2 as in Lemma
4.1.7. Denote by p : T ¼ ðF VNÞ �D2 ! F VN the projection. Consider
ft � s 00

p . If tg 0 is su‰ciently large then we may assume that ft � s 00
p ðxÞ A T

for �a kxka 1. By definition, ðp � ft � s 00
p Þjkxk¼� is equal to qsp ¼ spjqDl as

maps S l ! F VN, more precisely, for x A qDl, ðp � ft � s 00
p Þð�xÞ ¼ qspðxÞ. Since

ðp � ft � s 00
p Þjkxk¼1 ¼ qs 0

p, hrðxÞ :¼ p � ft � s 00
p ðr � xÞ for �a ra 1 defines a homo-

topy between qsp and qs 0
p. r

5. Construction of the cells

5.1. Stable manifolds for real arrangements
The Lefschetz Theorem (4.1.2) asserts that MðQÞ has the homotopy type of a

space obtained from MðQÞVFC by attaching some l-cells. The homotopy types
of the attached cells are characterized by Theorem 4.3.1 under the Morse-Smale
condition. In the remainder of this paper, we investigate the complexified real
case, i.e., where each hyperplane H A A is defined by a linear equation with real
coe‰cients. Let us briefly recall the set-up.

Let A ¼ fH1; . . . ;Hn;Hyg be an essential hyperplane arrangement in Pl
C,

and ai be the defining linear form of Hi which is assumed to have real coef-
ficients. Let F ¼ f f ¼ 0g be a generic hyperplane defined by a real linear form
f . From Theorem 4.1.3, there exist positive even integers l0; l1; . . . ; ln; ly A
2Z>0 such that l0 ¼ l1 þ l2 þ � � � þ ln þ ly and

j ¼ f l0

al1
1 � � � aln

n aly
y

has only nondegenerate isolated critical points.
The space Pl

C �Hy is isomorphic to the a‰ne space Cl. We also denote
by A the induced a‰ne arrangement fH1; . . . ;Hng in Cl and by ai the defining
equation (deg ¼ 1, with real coe‰cients) of Hi. Let chðAÞ be the set of all
chambers of AVRl and chF

l ðAÞ be the set of all chambers which do not meet
FR. Denote by MðAÞ the complexified complement Cl �6n

i¼1
Hi.

Let C A chF
l ðAÞ. Then jjC is a positive real valued function and it

has poles along the boundary qC. Hence, for each C, jjC has at least one
critical point pC A intðCÞ in the relative interior of C. Then it follows from
the Cauchy-Riemann equation that pC A MðAÞ is indeed a critical point of the

function j : MðAÞ ! C. Thus we obtain jchF
l ðAÞj many critical points. From

the assumption, j has only nondegenerate isolated critical points, the number of
which is the Euler characteristic jwðMðAÞ � FCÞj ¼ blðMðAÞÞ (see Proposition
2.3.2).

Proposition 5.1.1. For each chamber C A chF
l ðAÞ which does not meet FR,

there exists only one critical point pC A C of j in C. Conversely, any critical
point is obtained in this way.

177hyperplane arrangements



In other words, the set of critical points CritðjÞ is parametrized by chF
l ðAÞ.

Moreover, since jjðz1; . . . ; zlÞj ¼ jjðz1; . . . ; zlÞj, the gradient vector field �gradjjj
is invariant under complex conjugation. Thus we have the following:

Theorem 5.1.2. The stable manifold of the critical point pC corresponding to
a chamber C A chF

l ðAÞ is W s
pC

¼ CHMðAÞ.

In particular, the closure of a chamber C A chF
l ðAÞ contains only one critical

point pC . Thus we have the following result.

Corollary 5.1.3. The function j satisfies the Morse-Smale condition.

Let C A chF
l ðAÞ and pC A C the corresponding critical point. We denote

the attaching map of the unstable manifold Wu
pC

by sC : ðDl; qDlÞ ! ðMðAÞ;
MðAÞVFCÞ. Since HlðMðAÞ;CÞ !@ HlðMðAÞ;MðAÞVFC;CÞ is an isomor-
phism, ½sC � can be considered as an element of HlðMðAÞ;CÞ. Moreover
f½sC �gC A chlðAÞ forms a basis of HlðMðAÞ;CÞ. By Poincaré duality we have the
following result.

Corollary 5.1.4. f½C �gC A chlðAÞ HH
lf
l ðMðAÞ;CÞ forms a basis, and under

suitable orientations, it is the dual basis of f½sC �gC A chlðAÞ.

Combining Theorem 5.1.2 with Theorem 4.2.3, we easily prove the following
result which is well known for l ¼ 1 (Example 5.1.6).

Corollary 5.1.5. MðAÞn6
C A chlðAÞ C is di¤eomorphic to ðFC �AÞ �D2.

Example 5.1.6. Assume l ¼ 1. Let fa1; a2; . . . ; angHR be an arrangement
in R (we assume a1 < � � � < an). Take a generic hyperplane (in this case, just a
point) F A R such that ai < F < aiþ1. Then the set of chambers which do not
meet F is

chlðAÞ ¼ fð�y; a1Þ; . . . ; ðai�1; aiÞ; ðaiþ1; aiþ2Þ; . . . ; ðan;yÞg:
Hence

MðAÞ
�

6
C A chlðAÞ

C ¼ C� ð½�y; aiÞU ½aiþ1;yÞÞ;

which is di¤eomorphic to D2.

5.2. Construction of the cells
Our next task is to construct the cells in MðAÞ explicitly. More precisely,

for a chamber C A chF
l ðAÞ with C VFR ¼ j and fixed p A C, we construct a

continuous map sC : ðDl; qDlÞ ! ðMðAÞ;MðAÞVFCÞ which is di¤erentiable in
a neighborhood of 0 A Dl, such that (recall the conditions in §4.3)
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(i) sCð0Þ ¼ p, sCðDlÞVC ¼ fpg and sCðDlÞ intersects C transversally.
(ii) sCðqDlÞHMðAÞVFC.
(iii) If C 0 A chF

l ðAÞ is another chamber, then sCðDlÞVC 0 ¼ j.
Let us choose coordinates ðx1; x2; . . . ; xlÞ such that F is defined by fxl ¼ 0g and
p is ð0; 0; . . . ; 0; 1Þ. Recall that Ll�1ðAÞ is the set of all one-dimensional inter-
sections of A. We can find a wide cylinder of height 1 which ties up a‰ne lines
Ll�1ðAÞ. More precisely, since F is generic, each line X A Ll�1ðAÞ intersects FR

transversely. Hence

R ¼ 2 supf
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2
1 þ � � � þ x2

l�1

q
j ðx1; . . . ; xl�1; xlÞ A X A Ll�1ðAÞ; 0a xl a 1g

is finite. Consider the cylinder

CylðRÞ ¼ fðx1; . . . ; xlÞ A Rl j x2
1 þ � � � þ x2

l�1 ¼ R2; 0a xl a 1g

of radius R and height 1. The cylinder CylðRÞ is di¤eomorphic to S l�2ð1Þ�
½0; 1� under the map

S l�2ð1Þ � ½0; 1� ! CylðRÞ
ðx 0; tÞ 7! ðRx 0; tÞ;

where x 0 ¼ ðx1; . . . ; xl�1Þ A S l�2ð1Þ ¼ fðx1; . . . ; xl�1Þ; x2
1 þ � � � þ x2

l�1 ¼ 1g. The
boundary q CylðRÞ of CylðRÞ is the disjoint union of two spheres S0 and S1,
where St is a horizontal ðl� 1Þ-dimensional sphere of radius R

St ¼ fðx1; . . . ; xlÞ j x2
1 þ � � � þ x2

l�1 ¼ R2; xl ¼ tg

Dt ¼ fðx1; . . . ; xlÞ j x2
1 þ � � � þ x2

l�1 aR2; xl ¼ tg:
ð11Þ

St VA determines a hypersphere arrangement on St for 0a ta 1. Note
that the combinatorial type of this arrangement is independent of t.

Since every H A A contains at least one a‰ne line X A Ll�1ðAÞ and X
intersects both D0 and D1, there exists a non-horizontal tangent vector Vq A

Figure 9. The cylinder
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TqðCylðRÞVHÞ at each q A CylðRÞVH. Using a partition of unity, we have a
vector field ~VV on CylðRÞ of the form

~VV ¼ q

qxl
þ
Xl�1

i¼1

fi
q

qxi

which is tangent to each hypercylinder CylðRÞVH. Now consider the one-

parameter flow generated by ~VV . The flow determines a di¤eomorphism
ht : S

l�2ð1Þ ! S l�2ð1Þ such that h0ðx 0Þ ¼ x 0 and

d

dt
ðR � htðx 0Þ; tÞ ¼ ~VVðR�htðx 0Þ; tÞ;

for 0a ta 1 and x 0 A S l�2ð1Þ. This determines a di¤eomorphism
ht : ðS0;S0 VAÞ !G ðSt;St VAÞ.

Let i : S1 ! S1 be the involution i : ðx1; . . . ; xl�1; 1Þ 7! ð�x1; . . . ;�xl�1; 1Þ
and define I ¼ h�1

1 � i � h1 : S0 ! S0. The next lemma follows immediately from
the construction.

Lemma 5.2.1. Suppose q A S0 VH with H A A, then the vectors qIðqÞ
���!

; qp! A
TqVR are on the same side with respect to the hyperplane HHTqVR. The same

holds for IðqÞq
���!

; IðqÞp
���!

A TIðqÞVR when IðqÞ A S0 VH.

Before defining sC : ðDl; qDlÞ ! ðMðAÞ;MðAÞVFRÞ, we decompose the
disk Dl into four pieces. Denote the latitude of v A Dl by y, i.e., v ¼ ðx 0 cos y;
kx 0k sin yÞ, where x 0 ¼ ðx1; . . . ; xl�1Þ with x2

1 þ � � � þ x2
l�1 a 1. Fix 0 < y0 < p=2

so that tan y0 ¼
1

R
.

(1) (The core): A1 ¼ v A Dl j kvka 1
2

� �
.

(2) (The northern hemisphere): A2 ¼ v A Dl j 1
2 a kvka 1; yb y0

� �
.

(3) (The southern hemisphere): A3 ¼ v A Dl j 1
2 a kvka 1; ya�y0

� �
.

(4) (The low latitudes): A4 ¼ v A Dl j 1
2 a kvka 1;�y0 a ya y0

� �
.

Given v ¼ ðx 0 cos y; kx 0k sin yÞ A Dl with 1=2a kx 0ka 1 and y0 0, let us
define xðvÞ A VR by

Figure 10. Decomposition of Dl
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xðvÞ :¼ ð2kx 0k � 1Þ cos y
sin y

� �x 0

kx 0k ; 2� 2kx 0k
� 	

:ð12Þ

We also give an alternative description of xðvÞ. Straightforward computation
shows that the line pþ t � v ðt A RÞ intersects the hyperplane FR at q ¼
ð�x 0=ðkx 0k tan yÞ; 0Þ. The point xðvÞ above divide the segment pq internally by
the ratio pxðvÞ : xðvÞq ¼ kx 0k � 1

2


 �
: ð1� kx 0kÞ.

We will define si : Ai ! MðAÞ, i ¼ 1; . . . ; 4, separately. We use the nota-
tion in §3.1 (6) to express points in the complexified space VC.

(1) s1ðvÞ ¼ ðp; vÞC ¼ pþ
ffiffiffiffiffiffiffi
�1

p
v A VC.

(2) s2ðvÞ ¼ ðxðvÞ; vÞC for v A A2. The point s2ðvÞ is indeed contained in
MðAÞ because every straight line passing through p intersects each
hyperplane H A A transversely.

(3) s3ðvÞ ¼ ðxðvÞ; vÞC for v A A3.
The definition of s4 on the low latitudes A4 is somewhat complicated. Let

us define an annulus T by

T ¼ fx 0 ¼ ðx1; . . . ; xl�1Þ; 1=2a kx 0ka 1g:

Then the low latitudes A4 can be expressed as

A4 ¼ fðx 0 cos y; kx 0k sin yÞ A Dl j x 0 A T ;�y0 a ya y0g:

We extend ht and I : S l�2ð1Þ ! S l�2ð1Þ to T by

htðx 0Þ :¼ kx 0k � ht
x 0

kx 0k

� 	
;

Iðx 0Þ :¼ h�1
1 ð�h1ðx 0ÞÞ

for x 0 A T . Now define

g : T � ½0; 1� !G A4

ðx 0; tÞ 7! ð�h�1
t ð�htðx 0ÞÞ cosð2t� 1Þy0; kx 0k sinð2t� 1Þy0Þ:

Since ht : T ! T is a di¤eomorphism, so is g. Define s4ðgðx 0; tÞÞ A VC GTVR by

s4ðgðx 0; tÞÞ ¼ ðð1� tÞxðgðx 0; 0ÞÞ þ txðgðx 0; 1ÞÞ; x 0 � Iðx 0ÞÞC:ð13Þ

Lemma 5.2.2. We have s4ðgðx 0; tÞÞ A MðAÞ. When kx 0k ¼ 1, s4ðgðx 0; tÞÞ is
contained in FC, but is not contained in FR.

Proof. The second part is obvious. Indeed, since x 0 � Iðx 0Þ is a nonzero
horizontal vector, it is contained in TFR when kx 0k ¼ 1.

Next we prove s4ðgðx 0; tÞÞ A MðAÞ for ðx 0; tÞ A T � ½0; 1�. By definition, we
have
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xðgðx 0; 0ÞÞ ¼ ð2kx 0k � 1Þ x 0

kx 0k tan y0
; 2� 2kx 0k

� 	
A VR;

xðgðx 0; 1ÞÞ ¼ ð2kx 0k � 1Þ h
�1
1 ð�h1ðx 0ÞÞ
kx 0k tan y0

; 2� 2kx 0k
� 	

A VR;

for x 0 A T . Hence the tangent vector x 0 � Iðx 0Þ A TqVR with q ¼
ð1� tÞxðgðx 0; 0ÞÞ þ txðgðx 0; 1ÞÞ, is parallel to xðgðx 0; 0ÞÞ � xðgðx 0; 1ÞÞ. In order to
prove this lemma, it su‰ces to prove that the line segment connecting xðgðx 0; 0ÞÞ
and xðgðx 0; 1ÞÞ is not contained in any hyperplane H A A. So it su‰ces to prove
the next lemma.

Lemma 5.2.3. If xðgðx 0; 0ÞÞ (resp. xðgðx 0; 1ÞÞ) is contained in a hyperplane
H A A, then xðgðx 0; 1ÞÞ (resp. xðgðx 0; 0ÞÞ) and p lie on the same side with respect
to H.

Proof. Suppose xðgðx 0; 0ÞÞ is contained in a hyperplane H A A. Choose a
defining equation aH of H such that aHðpÞ > 0. We prove

aHðxðgðx 0; 1ÞÞÞ > 0:ð14Þ

Let us put q ¼ ðx 0=ðkx 0k tan y0Þ; 0Þ ¼ ðRx 0=kx 0k; 0Þ A FR. Since xðgðx 0; 0ÞÞ di-
vides the segment pq internally, we have aHðqÞ < 0. By the definition of ht,
ðRhtðx 0=kx 0kÞ; tÞ A VR ð0a ta 1Þ is a flow which is tangent to H VCylR.
Hence aHðRhtðx 0=kx 0kÞ; tÞ < 0 for all 0a ta 1. In particular, we have
aHðRh1ðx 0=kx 0kÞ; 1Þ < 0. Since p is the midpoint of ðRh1ðx 0=kx 0kÞ; 1Þ and
ð�Rh1ðx 0=kx 0kÞ; 1Þ, we have aHð�Rh1ðx 0=kx 0kÞ; 1Þ > 0. Similarly, using the flow
ht, we verify aHðRh�1

1 ð�h1ðx 0=kx 0kÞ; 0ÞÞ > 0. xðgðx 0; 1ÞÞ divides the segment
connecting p and ðRh�1

1 ð�h1ðx 0=kx 0kÞÞ; 0Þ internally, thus we have (14).
Similarly, if aHðxðgðx 0; 1ÞÞÞ ¼ 0, then we have aHðsðgðx 0; 0ÞÞÞ > 0. r

Now we are ready to construct the cell sC : ðDl; qDlÞ ! ðMðAÞ;
FC VMðAÞÞ. By definition, we have s1jA1VA2

¼ s2jA1VA2
and s1jA1VA3

¼ s3jA1VA3
.

Hence we have a continuous map

s123 : A1 UA2 UA3 ! MðAÞ:

Unfortunately, s123 and s4 do not coincide on their boundaries. However, we
can paste the pieces together. Indeed, given a point v ¼ ðx 0 cos y0; kx 0k sin y0Þ A
A2 VA4, both s2ðvÞ and s4ðvÞ can be considered as elements in TxðvÞVR. Under
the natural identification TxðvÞVR GVR, we have

s2ðvÞ ¼ v

s4ðvÞ ¼ x 0 � Iðx 0Þ:

Recall that v and x 0 � Iðx 0Þ are positive multiples of p� xðvÞ ¼ xðvÞp
���!

and
xðgðx 0; 0ÞÞ � xðgðx 0; 1ÞÞ respectively. Even if xðvÞ is contained in some H A A,
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s2ðvÞ and s4ðvÞ A TxðvÞVR GVR are on the same side with respect to a hyperplane
HHVR from Lemma 5.2.3. We can continuously connect them by

s2ðvÞ cos rþ s4ðvÞ sin r; 0a ra
p

2
;

thus we have a continuous map s1234 : D
l ! MðAÞ which satisfies (i) and (iii).

To glue the boundary qDl to FC, we apply the following lemma. Let us set

CylR; e :¼ fðx1; . . . ; xlÞ j x2
1 þ � � � þ x2

l�1 aR2;�ea xl a eg

and

CylR;0 :¼ fðx1; . . . ; xlÞ j x2
1 þ � � � þ x2

l�1 aR2; xl ¼ 0g:

Lemma 5.2.4. For su‰ciently small e > 0, ðCylR; e;CylR; e VAÞ is di¤eo-
morphic to ðCylR;0;CylR;0 VAÞ � ½�e; e�.

Denote the composite map CylR; e ! CylR;0 � ½�e; e� ! CylR;0 by Pr1. Then, for
v A qDl,

sðvÞ cos rþ Pr1ðsðvÞÞ sin r; 0a ra
p

2
ð15Þ

connects sðvÞ to Pr1ðsðvÞÞ A TsðvÞFR. Thus we have a map sC : ðDl; qDlÞ !
ðMðAÞ;MðAÞVFCÞ which satisfies (i), (ii) and (iii). This completes the con-
struction of the cell.

Example 5.2.5. We illustrate the above construction for l ¼ 2. Let us
consider an arrangement A ¼ fL1;L2g of two lines and a generic line F ,

L1 : y ¼ xþ 1

2

L2 : y ¼ �xþ 1

2

F : y ¼ 0:

In this case, D2 is decomposed by the Ai as in Figure 10. The map si : Ai !
MðAÞ ði ¼ 1; 2; 3; 4Þ is illustrated in Figure 11.

6. Twisted minimal chain complexes

The explicit construction in the previous section enables us to find an pre-
sentation of the cellular chain complex associated with the minimal CW decom-
position with coe‰cients in a local system. We demonstrate this point in this
section.
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6.1. Flags and orientations
In order to compute the boundary map of a cellular chain complex, we have

to choose an orientation for each cell. First we recall some basic notation and
terminology.

Let X be a di¤erentiable manifold of dimR ¼ n with boundary qX . Each
orientation for X determines an orientation for qX as follows: Given x A qX
choose a positively oriented basis ðv1; v2; . . . ; vnÞ for TxX in such a way that
v2; . . . ; vn A TxðqXÞ and that v1 is an outward vector. Then ðv2; . . . ; vnÞ deter-
mines an orientation on qX .

Figure 11. si : Ai ! MðAÞ
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Let X , Y and Z be oriented di¤erentiable manifolds without boundary.
Further assume X is compact, Z is a closed submanifold of Y , and dim X þ
dim Z ¼ dim Y . Let f : X ! Y be di¤erentiable map transversal to Z, i.e.,

ðdfxÞðTxXÞ þ TyZ ¼ TyY

holds at each point x such that y ¼ f ðxÞ A Z. Then f �1ðZÞ is a closed zero-
dimensional submanifold of X , hence a finite set. Let x A f �1ðZÞ and choose
positively oriented bases u ¼ ðu1; . . . ; umÞ and v ¼ ðv1; . . . ; vnÞ for TxX and Tf ðxÞZ,
respectively. Under this assumption, we can define a local intersection number
Ixð f ;ZÞ for each x A f �1ðZÞ as follows:

Ixð f ;ZÞ ¼
1 if ð f�u; vÞ is positive for Tf ðxÞY

�1 if ð f�u; vÞ is negative for Tf ðxÞY :

�
ð16Þ

And we also define Ið f ;ZÞ :¼
P

x A f �1ðZÞ Ixð f ;ZÞ.
Let V ¼ Rl be a real l-dimensional vector space and

F : j ¼ F�1 HF0 HF1 H � � �HFl ¼ V

be a complete flag of a‰ne subspaces.

Definition 6.1.1. An oriented flag is a flag F in V equipped with an
orientation for each F i, i ¼ 1; . . . ; l.

A given point F0 A V and a basis v1; . . . ; vl of V determine an oriented flag.
Indeed, by defining

Fk :¼ F0 þ
Xk
i¼1

Rvi;

ðv1; . . . ; vkÞ determines an orientation of Fk. Conversely, any oriented flag can

be obtained in this way. Define positive and negative half subspaces, Fk
þ and

Fk
� , by

Fk
þ ¼ Fk�1 þ R>0vk

Fk
� ¼ Fk�1 þ R<0vk;

respectively. Next we define signature of a chamber; a map sign : chkðAÞ !
fG1g.

Definition 6.1.2. For C A chkðAÞ,

signðCÞ ¼ 1 if Fk VCHFk
þ

�1 if Fk VCHFk
� :

(
ð17Þ

Definition 6.1.3. Let v1; . . . ; vl be a basis of VR. We fix an orientation of
VC by
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ðv1; . . . ; vl;
ffiffiffiffiffiffiffi
�1

p
v1; . . . ;

ffiffiffiffiffiffiffi
�1

p
vlÞ:ð18Þ

Note that this orientation di¤ers by a multiplication of ð�1Þlðl�1Þ=2 from the
canonical orientation defined by the complex structure VC GCl.

6.2. Local systems and chambers
Recall that sC : ðDl; Sl�1Þ ! ðMðAÞ;MðAÞVFCÞ is the cell corresponding

to the chamber C A chF
l ðAÞ. We can choose an orientation of sC so that the

intersection number satisfies

½C � � ½sC � ¼ 1:ð19Þ

Let F : GalðAÞ ! VectC be a representation of the Deligne groupoid and LF be
the associated local system. Since C is a connected and simply connected subset
of MðAÞ, the space of flat sections LFðCÞ is a finite dimensional vector space,
and we have a natural isomorphism

FðCÞGLFðCÞ:

From the fact that MðAÞ is homotopy equivalent to a space obtained from
MðAÞVFC by attaching l-cells fsC ;C A chlðAÞg, we have also a natural iso-
morphism

HlðMðAÞ;MðAÞVFC;LFÞG 0
C A chlðAÞ

FðCÞnC½sC �;ð20Þ

where C½sC � is a one-dimensional vector space spanned by ½sC �.

Definition 6.2.1. Let A, F� and F as above. Define

Ck :¼ CkðA;F;FÞ ¼ 0
C A chF

k ðAÞ
FðCÞnC½sC �:ð21Þ

From the general theory of cellular chain complexes, there exists a chain
boundary map qF : Ck ! Ck�1 such that

HkðC�; qFÞGHkðMðAÞ;LFÞ:

We will give an formula for qF : C� ! C��1.
Let L be a local system on MðAÞ. Let X be an oriented compact l-

dimensional Cy-manifold with boundary qX , possibly qX ¼ j, and

f : ðX ; qX Þ ! ðMðAÞ;MðAÞVFCÞ

be a smooth map. We denote by f �L the pull back of L by f . Fix x A X
and suppose SHMðAÞ is a connected and simply connected subset containing
f ðxÞ. Then there exists a natural isomorphism

fx;S : ð f �LÞðxÞ !@ LðSÞ:
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Given a section a A ð f �LÞðX Þ we have a morphism from the constant sheaf CX

to f �L defined by t 7! t � a, and it induces a homomorphism

an � : HlðX ; qX ;CÞ ! HlðX ; qX ; f �LÞ:

Denote the image of the fundamental class ½X � A HlðX ; qX ;CÞ by an ½X � A
HlðX ; qX ; f �LÞ. Hence we have f�ðan ½X �Þ A HlðMðAÞ;MðAÞVFC;LÞ.

Next we express f�ðan ½X �Þ by using the decomposition (20). Recall

(5.1.4) that f½C �gC A chlðAÞ HH
lf
l ðMðAÞ;CÞ is the dual basis to f½sC �gC A chlðAÞ H

HlðMðAÞ;CÞ, i.e., for C1;C2 A chF
l ðAÞ

½C1� � ½sC2
� ¼ 1 if C1 ¼ C2

0 if C1 0C2:

�

Thus we have the following lemma.

Lemma 6.2.2. Assume that f �1ðCÞ is a finite set for each C A chlðAÞ.
Given a section a A ð f �LÞðXÞ, f�ðan ½X �Þ A HlðMðAÞ;MðAÞVFC;LÞ is ex-
pressed as

f�ðan ½X �Þ ¼ ð�1Þl
X

C A chF
l ðAÞ

X
x A f �1ðCÞ

Ixð f ;CÞ fx;CðaÞn ½sC �:

6.3. The degree map
For the purpose of describing the boundary map of the chain complex (21),

we employ here an additional map, the degree map

deg : chF
k ðAÞ � chF

k�1ðAÞ ! Z

defined below. For simplicity, we shall consider only the case k ¼ l and write
Fl�1 ¼ F .

Let C A chF
l ðAÞ and C 0 A chF

l�1ðAÞ. Recall (§5.2 (11)) that D0 is an
ðl� 1Þ-dimensional large disk in FR such that C 0 VFR A chðAVFRÞ is a bounded
chamber if and only if C 0 VFR HD0.

Definition 6.3.1.

PðC 0Þ :¼ C 0 VD0:

In particular, PðC 0Þ is equal to C 0 VFR if C 0 VFR is a bounded chamber. The
set PðC 0Þ is, in any case, a convex closed subset of FR with piecewise smooth
boundary qPðC 0Þ. Next we consider vector fields on qPðC 0Þ tangent to FR.

Definition 6.3.2. Let U A GðqPðC 0Þ;TFRjqPðC 0ÞÞ be a vector field on
qPðC 0Þ tangent to FR. Then U is said to be directing to C A chF

l ðAÞ if for any
point x A qPðC 0Þ and hyperplane H A A with x A H, UðxÞ B TxH (in particular,
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UðxÞ0 0) and UðxÞ and C are in the same half-space with respect to H.
Moreover if x A S0 ¼ qD0, then UðxÞ is assumed to be an inward vector.

Now we define the degree map as the degree of a certain Gauss map.

Definition 6.3.3. Let C A chF
l ðAÞ and C 0 A chF

l�1ðAÞ. Let U be a vector
field on qPðC 0Þ directing to C. Then

degðC;C 0Þ :¼ deg
U

jU j : qPðC 0Þ ! S l�2

� 	
:

We need to prove the existence of a vector field U A GðqPðC 0Þ;TFRjqPðC 0ÞÞ
directing to C and that degðC;C 0Þ does not depend on the choice of U . From
the genericity of F , there exists a tubular neighborhood THVR of FR in VR with
a di¤eomorphism (see also Lemma 5.2.4)

t : ðT;AVT;CylR; e VTÞ !@ ðFR;AVFR;S0Þ � ð�1; 1Þ:
Fix a point p A C. Then for x A qPðC 0Þ, the vector xp! A TxVR is obviously in
the same half-space as C is for any H A A which contains x. The projection of
this tangent vectors to FR satisfies the condition, more precisely,

UtðxÞ :¼ ðPr1 � tÞ�ðxp!Þ A TxFRð22Þ
determines a vector field on qPðC 0Þ tangent to FR directing to C, where Pr1 is the
first projection.

Suppose U and U 0 are vector fields directing to C. Let x A qPðC 0Þ.
Consider the set Ax of all hyperplanes in A containing x. Then both UðxÞ and
U 0ðxÞ A TxFR are contained in the same chamber of Ax which is also contains
C. Hence ð1� tÞU þ tU 0 ð0a ta 1Þ is a continuous family of vector fields
directing to C, and the maps U=jU j and U 0=jU 0j : qPðC 0Þ ! S l�2 are homo-
topic. Thus the degree degðC;C 0Þ is well-defined.

6.4. The boundary map
Recall that an arrangement A with an oriented generic flag F ¼ F� and a

representation F : GalðAÞ ! VectC of the Deligne groupoid determine a chain
complex ðC�; qFÞ defined by

Ck :¼ CkðA;F;FÞ ¼ 0
C A chF

k ðAÞ
FðCÞnC½sC �

such that HkðC�; qFÞGHkðMðAÞ;LFÞ. In this section we describe the bound-
ary map qF by using the degree map.

Theorem 6.4.1. qF : Ck ! Ck�1 is expressed as follows:

qFðan ½sC �Þ ¼ �signðCÞ �
X

C 0 A chF
k�1ðAÞ

degðC;C 0ÞDFðC;C 0ÞðaÞn ½sC 0 �:

(For DFðC;C 0Þ, see Definition 3.3.5.)
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Proof. We consider only the case where k ¼ l. Recall that Dl ¼ fv A Rl;
kvka 1g and that the cell attaching map sC : ðDl; qDlÞ ! ðMðAÞ;MðAÞV
Fl�1Þ was constructed in §5.2. The pull back s�

CLF is canonically isomorphic
to the trivial local system FðCÞ. Since s�

CLFjqDl G ðqsCÞ�LF, we have

an ½qDl� A Hl�1ðqDl; ðqsCÞ�LFÞ:
So we have to investigate the element

sC�ðan ½qDl�Þ A Hl�1ðMðAÞVFl�1;MðAÞVFl�2;LFÞ
ko

Ck�1 ¼ 0
C 0 A chF

k�1ðAÞ
FðC 0ÞnC½sC 0 �:

Here we recall some properties of the attaching map qsC : qDl ! MðAÞVFl�1.
First qDl is divided into three parts A 0

i :¼ Ai V qDl, i ¼ 2; 3; 4 (see §5.2 for the
definitions of A1; . . . ;A4) more precisely,

(2) A 0
2 :¼ fv A Dl; kvk ¼ 1; yb y0g,

(3) A 0
3 :¼ fv A Dl; kvk ¼ 1; ya�y0g,

(4) A 0
4 :¼ fv A Dl; kvk ¼ 1;�y0 a ya y0g,

where y is the latitude of v, namely, v ¼ ðx1; . . . ; xlÞ ¼ ðx 0 cos y; kx 0k sin yÞ, and
y0 is a small fixed latitude. Write ðqsCÞi :¼ ðqsCÞjA 0

i
: A 0

i ! FC.
In view of Lemma 6.2.2, we have to count intersections of the map

ðqsCÞ : A 0
2 UA 0

3 UA 0
4 ! Fl�1

Cð23Þ
with C 0 VFl�1

R for C 0 A chF
l�1ðAÞ.

It follows from Lemma 5.2.2 that ðqsCÞ4 : A 0
4 ! MðAÞVFl�1

R does not

intersect C 0 VFl�1
R for any chamber C 0 A chF

l�1ðAÞ.
Suppose v A A 0

2. Recall that by the definition (12) of x, xðvÞ A Fl�1
R is the

point such that the vector xðvÞp
���!

is proportional to v. And it is obvious that
the map xA 0

2
: A 0

2 ! D0 : v 7! xðvÞ is a di¤eomorphism. The orientation on A 0
2 is

determined by (19). xA 0
2
is orientation preserving (resp. reversing) if signðCÞ ¼ 1

(resp. signðCÞ ¼ �1). ðqsCÞ2ðvÞ can be expressed as

ðqsCÞ2ðvÞ ¼ UtðxðvÞÞ A TxðvÞFR:

The vector field Ut is not zero on ðAVD0ÞUS0. Up to small perturbation, we
may assume that the zero locus of Ut consists of a finite number of points.
Intersections of ðqsCÞ2 with PðC 0ÞHMðAÞVFl�1

C can be thought of as the set
of singular points of the vector field Ut. Hence the sum of local intersection
numbers is equal to the degree of the map from the boundary qPðC 0Þ to the
sphere S l�2. Thus we have

IððqsCÞ2;PðC 0ÞÞ ¼ ð�1Þl�1 signðCÞ degðC;C 0Þ:
Similarly,

ðqsCÞ3ðvÞ ¼ �UtðxðvÞÞ A TxðvÞFR;
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and we have

IððqsCÞ3;PðC 0ÞÞ ¼ ð�1Þl signðCÞ degðC;C 0Þ:
By the definition of ðsCÞ2 : A2 ! MðAÞ, ðqsCÞ2� : FðCÞ ! ðqsCÞ�2FðC 0Þ !@ FðC 0Þ
is equal to

FP�ðC;C 0Þ : FðCÞ ! FðC 0Þ:
Similarly, ðqsCÞ3� : FðCÞ ! FðC 0Þ is equal to

FPþðC;C 0Þ : FðCÞ ! FðC 0Þ:
The proof is then completed by employing Lemma 6.2.2. r

6.5. Examples
Let A ¼ fH1; . . . ;Hng be a hyperplane arrangement in Rl. Fix a nonzero

complex number qi A C� for each i ¼ 1; . . . ; n. Then we can define a represen-
tation F of GalðAÞ as follows. First we put

FðCÞ ¼ C½sC �
for each C A chðAÞ. Given two chambers C;C 0 A chðAÞ, suppose that
fHi1 ; . . . ;Hikg is the set of all hyperplanes separating C and C 0. Then define

FPþðC;C 0Þ : FðCÞ ! FðC 0Þ; ½sC � 7! qi1qi2 � � � qik ½sC 0 �:
By the definition of GalðAÞ (3.3.1 (4)) F determines a representation
F : GalðAÞ ! VectC, hence a rank one local system LF, such that the local
monodromy around Hi is q2i . Conversely any rank one local system can be
obtained in this way.

Let us consider an arrangement of three lines A (Fig. 12) with a generic flag
F0 HF1 HF2 ¼ VR oriented by ðv1; v2Þ and

chF
0 ðAÞ ¼ fC0g

chF
1 ðAÞ ¼ fC1;C2;C3g

chF
2 ðAÞ ¼ fC4;C5;C6g:

A vector field directing to C6 is also drawn in Figure 12.
Define the chain complex Ck as in §6. The boundary map qF : C2 ! C1 is,

for example,

q½s6� ¼ �
X3
i¼1

degðC6;CiÞDFðC6;CiÞ½si�

¼ �ð�ðq3 � q�1
3 Þ½s1� þ ðq1q2q3 � q�1

1 q�1
2 q�1

3 Þ½s2� � ðq1q2 � q�1
1 q�1

2 Þ½s3�Þ:
Similarly,

q½s5� ¼ ðq2q3 � q�1
2 q�1

3 Þ½s1� þ ðq1 � q�1
1 Þ½s3�;

q½s4� ¼ ðq2 � q�1
2 Þ½s1� þ ðq1 � q�1

1 Þ½s2�:
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q : C1 ! C0 is calculated as

q½s1�
q½s2�
q½s3�

0
B@

1
CA¼

�ðq1 � q�1
1 Þ

q2 � q�1
2

q2q3 � q�1
2 q�1

3

0
B@

1
CA½s0�:

Then direct computations show that the local system is resonant, i.e. H1ðC�; qÞ0
0, if and only if q21 ¼ q22 ¼ q23 ¼ 1.

If we move the hyperplane H2 so that the chamber C4 collapses, we obtain
another arrangement A. In this case C2ðA Þ is generated by ½s5� and ½s6�.
Hence the local system is resonant exactly when q½s5� and q½s6� are linearly
dependent, or equivalently, ðq1q2q3Þ2 ¼ 1.

7. Appendix

From attaching maps for l ¼ 2, we obtain a presentation for the funda-
mental group p1ðMðAÞÞ.

Let A ¼ fH1; . . . ;Hng be a line arrangement in V ¼ R2. Let F0 HF1 ¼
F HV be an oriented generic flag. Note that FR is an oriented line. We may
assume that the chambers are ordered as

chF
0 ðAÞ ¼ fC0g

chF
1 ðAÞ ¼ fC1; . . . ;Cng

chF
2 ðAÞ ¼ fCnþ1; . . . ;Cnþb2g;

and that the ordering C1; . . . ;Cn goes along with the orientation, that is, the
intervals C1 VFR; . . . ;Cn VFR are ordered from a negative place to a positive
place with respect to the orientation for FR. The corresponding 1-cells
fgi ¼ sCi

gi¼1;...;n are illustrated in Figure 13.

Figure 12. Three lines with flags and a vector field directing to C6
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Each chamber C A chF
2 ðAÞ is corresponding to a 2-cell sC . Thus the

boundary qsC , which is a word of generators fgig, gives a relation in the
fundamental group. The relation is

RðCÞ :¼ ge11 ge22 � � � genn g�e1
1 g�e2

2 � � � g�en
n ¼ 1;

where

ei ¼ degðC;CiÞ:

Theorem 7.0.1. The fundamental group p1ðMðAÞÞ is presented as:

p1ðMðAÞÞG hg1; . . . ; gn jRðCÞ;C A chF
2 ðAÞi:

We apply this theorem to the arrangement in Figure 12 (§6.5). Then

RðC4Þ ¼ g�1
1 g�1

2 g1g2

RðC5Þ ¼ g�1
1 g�1

3 g1g3

RðC4Þ ¼ g�1
1 g2g

�1
3 g1g

�1
2 g3:

Hence the fundamental group is isomorphic to the abelian group

p1ðMðAÞÞ ¼ Zg1 lZg2 lZg3:
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