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ON THE CASTELNUOVO-SEVERI INEQUALITY

FOR RIEMANN SURFACES

Robert D. M. Accola

Abstract

Some consequences of equality in the Castelnuovo-Severi inequality are discussed.

In particular, it is shown that if a Riemann surface of genus ten, W10, admits four

coverings of tori, each in three sheets, then W10 admits an elementary abelian group of

order 27. By previous work this last result is then characterized by the vanishing of

certain thetanulls. An elementary discussion of the direct product of monodromy

groups is an essential part of the proofs.

1. Introduction

The inequality of Castelnuovo-Severi is as follows [2, 4]. Let Wg, a compact
Riemann surface of genus g, cover two Riemann surfaces, Wh, genus h, in m
sheets, and Wk, genus k, in n sheets, so that the two coverings admit no common
non-trivial factorization. (If m and n are primes this will always be the case.)
Then the Castelnuovo-Severi inequality (CSI) states:

gamhþ nk þ ðm� 1Þðn� 1Þ

A natural (and venerable) question is whether there is a Riemann surface Wl,
covered by Wh in n sheets, and covered by Wk in m sheets, so that the resulting
square diagram commutes. In the case of equality in the CSI a theorem of
Castelnuovo gives much more information, so that in this case the question
should be easier to answer. For h ¼ k ¼ 0 the answer is: sometimes yes and
sometimes no (Section 8). So perhaps the question should be that of finding
necessary and su‰cient conditions for the existence of such a Wl, which must
necessarily be the Riemann sphere P1. We shall give a characterization when
h ¼ k ¼ 1, m ¼ 3 and n an odd prime (Theorems 4.5 and 4.6). A more general
situation is covered in Theorem 4.2 where h and k are large compared to m and n.

This investigation had its origin in a W10 covering several tori each in three
sheets, where this situation is characterized by the existence on W10 of certain
half-canonical linear series [3]. The goal was to show that if W10 covered four
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such tori then W10 admitted an automorphism group isomorphic to an elementary
abelian group of order 27 (Section 7). It turns out that a substantial part of the
proof can be carried out when 3 is replaced by any odd prime p, and perhaps this
clarifies the proof. Section 5 carries out that part of the proof with 3 replaced
by p. Section 6 gives examples.

By Riemann’s solution to the Jacobi inversion problem the existence of half-
canonical linear series on W10 is equivalent to the vanishing of the theta function
for the Jacobian of W10 at certain half-periods (vanishing thetanulls) [5]. Thus
the existence on a W10 of such a group of order 27 is characterized by the
vanishing of certain thetanulls.

This paper deals with a subject and methods available to mathematicians in
the early part of the last century, if not earlier. Considering the extensive
literature already existing at that time, the author really has no idea whether
some if not all of the material in this paper is already part of the literature. If a
reader knows of any reference in the literature that pertains to the work here
presented, the author would be very grateful to know of it.

2. Preliminary results

First some notation. Wg will always stand for a compact Riemann surface
with the lower case subscript denoting its genus, in this case g. WF will always
denote a compact Riemann surface with a finite set of points, PtF , deleted with
the upper case subscript denoting its fundamental group (in this case F ) after a
suitable base point has been chosen. W �

F will denote the compact Riemann
surface obtained by adding the points PtF to WF ; that is W �

F � PtF ¼ WF . WF

and W �
F have the same genus. Occasionally we will use both kinds of notation,

Wg and W �
F , for the same compact Riemann surface.

If A is a subgroup of F of finite index m, then after suitable base points have
been chosen the topological mapping pAF : WA ! WF is defined. (We will al-
ways assume, without further comment, such suitable base points chosen so that
coverings of Riemann surfaces with subgroup subscripts F ;A;B;AVB; . . . , will
correspond to the inclusion relations of the subgroups indicated; e.g., WAVB !
WA.) The covering map can be extended to pAF : W �

A ! W �
F where PtA maps

onto PtF . (If W �
A has genus h and W �

F has genus l we may denote pAF by phl.
Let Ax1;Ax2; . . . ;Axm be a coset decomposition of F . These cosets cor-

respond to the points on WA above the base point for F . The monodromy map
m : F ! Sm (the symmetric group on the first m digits) is as follows: mð f ÞðiÞ ¼ j
if Axi f ¼ Axj. (Here we will make no notational distinction between a path f
and its homotopy equivalence class.) Let A0 denote the kernel of m. Then
F=A0 is isomorphic to ImðmÞ, the monodromy group of the covering pAF denoted
MonoðWA=WF Þ. By definition it is the monodromy group of the ramified
covering pAF : W �

A ! W �
F , and may be denoted MonoðW �

A =W �
F Þ or MonoðWh=

WlÞ. If f ðA FÞ ‘‘circles’’ a point t A PtF let a1; a2; . . . ;Sai ¼ m, be the multi-
plicities of the points in PtA above t. By renumbering the x’s we may assume
that x1 f

a1x�1
1 ; x2 f

a2x�1
2 ; . . . are paths in A which circle the points in PtA above
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t. If f A A0 there are m such paths and no ramification occurs above t in
PtA.

Now assume A and B are two di¤erent subgroups of F of indices m and n
respectively. Also assume that F ¼ AB and that AVB has index mn in F . If
m and n are prime this will be the case. Let By1;By2; . . . be another coset
decomposition of F .

Now suppose that f ðA FÞ circles t A PtF . Suppose that xf ax�1 (now
dropping subscripts) circles a point a in PtA above t, and suppose that yf by�1

circles a point b in PtB above t, where a and b are minimum positive integers
with these properties. Since ðAxVByÞ f g ¼ Axf g VByf g we see that if g ¼
l:c:m:½a; b� then ðAxVByÞ f g ¼ ðAxVByÞ where g is the minimum positive integer
with this property. There is at least one point c in PtAVB where c is above a, b,
and t, and the ramification at c for the covering pAVB;A is ½a; b�=a. The number
of such c’s is g:c:d:ða; bÞ.

Lemma 2.1. Assume the above discussion. If f A A0 then the multiplicities of
the points above any such a in the covering pAVB;A are the same as those above t
in the covering pB;F . The covering pAVB;B is unramified over any point in PtB
above t. r

Lemma 2.2. Assume the above discussion. Suppose above a A PtA the
covering pAVB;A is unramified and that xf ax�1 ðA AÞ circles a. Then f a A B0.

Proof (Exponentiation by an element in F denotes conjugation.).

xf ax�1 A 7fðAVBÞg j g A Ag ¼ AV7fBg j g A Ag

But F ¼ AB so 7fBg j g A Ag ¼ 7fBg j g A Fg ¼ B0. Since B0 is normal in F
the result follows. r

In this paper we have assumed (and will continue to assume) many well-
known facts from elementary group theory. However, for future reference we
wish to draw attention to the following.

Lemma 2.3. Let G be a finite group, the direct product of two normal
subgroups, M and N. Let A be a normal subgroup of G so that AVM ¼
AVN ¼ hei. Then A is central in G, and A is isomorphic to a subgroup of M
which is central in M. r

Lemma 2.4. With the same hypotheses as in Lemma 2.3, assume further that
A and M are isomorphic to subgroups of Sp ( p an odd prime) whose orders are
divisible by p. Then A and M are isomorphic to Zp (Cyclic group of order p).

r

(since the centralizer of Zp in Sp is Zp itself.)

301on the castelnuovo-severi inequality for riemann surfaces



Lemma 2.5 [2, p 23–25]. Let pgh : Wg ! Wh be an m-sheeted covering, and
let pgk : Wg ! Wk be an n-sheeted covering where the two coverings admit no
common non-trivial factorization. Then the number of pairs of points, counted
with multiplicity, common to fibers of the two maps is finite. (This is the statement
that the algebraic curve Wg lying on the surface Wh �Wk has a finite number of
singularities.) r

Lemma 2.6 (Castelnuovo [2, p 26]). Suppose for Wg, Wh, and Wk in Lemma
2.5 we have equality in the Castelnuovo-Severi inequality. Then for x1 and x2 in
Wh pgkðp�1

gh ðx1ÞÞ is linearly equivalent to pgkðp�1
gh ðx2ÞÞ. r

Lemma 2.7 (Castelnuovo Riemann Roch theorem) [2, p 27]. Let
p : Wg ! Wh be an m sheeted covering. Let gR

N be a linear series on Wg where
N � R < g�mh. Then any fiber of the map p imposes at most m� 1 linear
conditions on gR

N. r

Lemma 2.8 [1]. Let Wg admit a linear series g1n , without fixed points, and a
half-canonical gr

g�1, where rb ½n=2�. Then g1n imposes at most ½n=2� conditions
on gr

g�1. r

3. A generalization of the Castelnuovo-Severi inequality

Suppose that Wg admits two coverings

pgh : Wg ! Wh in m sheets

pgk : Wg ! Wk in n sheets

where the two coverings admit no non-trivial common factorization. This array
of coverings will be denoted Ivðg; h;m; k; nÞ where Iv stands for the letter ‘‘v’’
inverted to resemble the arrows in the diagram of these two coverings (with Wg

on top).
Suppose further that Wh covers another Riemann surface, Wl in n sheets,

and Wk covers the same Wl in m sheets and the square diagram of covers
commutes. (Wg on top and Wl on the bottom.) We shall denote this array of
coverings by Sqðg; h;m; k; n; lÞ. We will say that Wl completes the Iv. (Wl is
the unique completion since it corresponds to the intersection of two subfields of
the full field of meromorphic functions on Wg.)

Let WF ¼ Wl � PtF where, as before, PtF is the set of points above which
pgl is ramified. Let A be the fundamental group of Wh � p�1

hl ðPtF Þ ð¼ WAÞ,
of index n in F . Let B be the fundamental group of Wk � p�1

kl ðPtF Þ ð¼ WBÞ
of index m in F . Then AVB is the fundamental group of Wg � p�1

gl ðPtF Þ
ð¼ WAVBÞ of index mn in F . Also F ¼ AB.

Now we wish to find an upper bound on g given m, n, h, k, and l. This will
give a weak generalization of the Castelnuovo-Severi inequality since we are
assuming the Iv is completed.
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Since F ¼ AB ¼ BA let

Ab1;Ab2; . . .Abn bi A B

Ba1;Ba2; . . .Bam aj A A

be coset decompositions of F . Let f ðA FÞ circle a point t A PtF . If d1; d2; . . .
are the multiplicities of the points in Wh above t ðSdi ¼ nÞ then the total
ramification in Wh above t is Sðdi � 1Þ. If e1; e2; . . . are the multiplicities of
the points in Wk above t ðSej ¼ mÞ then the total ramification in Wk above
t is Sðej � 1Þ. The total ramification of all points in Wg above t is
SSðdi; ejÞf½di; ej� � 1g.

Remark. If d and e are positive integers then de� d � eþ ðd; eÞb 0.
Equality occurs if and only if ðd � 1Þðe� 1Þ ¼ 0.

Lemma 3.1

SSðdi; ejÞf½di; ej� � 1gamSðdi � 1Þ þ nSðej � 1Þ:ð*Þ

Equality occurs if and only if one of the two terms on the right hand side of (*) is
zero.

Proof

mSðdi � 1Þ ¼ ðSejÞSðdi � 1Þ ¼ SSðejdi � ejÞ
nSðej � 1Þ ¼ ðSdiÞSðej � 1Þ ¼ SSðdiej � diÞ

By the remark

ðejdi � ejÞ þ ðdiej � diÞb ðdi; ejÞf½di; ej� � 1gð*ijÞ

Summing on i and j proves the inequality. If we have equality in (*) we have
equality in all the inequalities ð*ijÞ. If a term ðej � 1Þ0 0 then ðdi � 1Þ ¼ 0 for
all i. r

Definition. Suppose for a point t in Wl for the square Sqðg; h;m; k; n; lÞ at
most only one of the two coverings of Wl is ramified. The ramification at such a
point will be said to be pure. If the ramification at every point of Wl is pure
then the covering pgl will be said to have separated ramification.

Theorem 3.2. Suppose we have a square Sqðg; h;m; k; n; lÞ. Then

2g� 2þmnð2l� 2Þamð2h� 2Þ þ nð2k � 2Þð3:1Þ
ðor gþmnlamhþ nk þ ðm� 1Þðn� 1ÞÞ

Equality in (3.1) implies that the ramification for pgl is separated.

Proof. By the Riemann-Hurwitz formula (with obvious notation)
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2g� 2 ¼ mð2h� 2Þ þ ramðg; hÞ
2g� 2 ¼ nð2k � 2Þ þ ramðg; kÞ
2g� 2 ¼ mnð2l� 2Þ þ ramðg; lÞ

2g� 2þmnð2l� 2Þ þ ramðg; lÞ ¼ mð2h� 2Þ þ nð2k � 2Þð3:2Þ
þ ramðg; hÞ þ ramðg; kÞ

But

ramðg; lÞ ¼ ramðg; hÞ þm ramðh; lÞ ¼ ramðg; kÞ þ n ramðk; lÞ

By Lemma 3.1

ramðg; lÞam ramðh; lÞ þ n ramðk; lÞð3:3Þ

Therefore

ramðg; kÞam ramðh; lÞ
And so: ramðg; lÞb ramðg; hÞ þ ramðg; kÞ. Together with (3.2) this proves the
inequality in the statement of the theorem.

If we have equality in (3.1) then we have equality in all the above
inequalities, especially (3.3). Thus we have equality in (*) of Lemma 2.1 for
each point of PtF ; that is, the ramification at each point of PtF is pure. r

Corollary 3.3. Equality in (3.1) of Theorem 3.2 is equivalent to the fol-
lowing. (The K’s refer to canonical series.)

1) ramðg; lÞ ¼ ramðg; hÞ þ ramðg; kÞ
2) ramðg; hÞ ¼ n ramðk; lÞ
3) ramðg; lÞ ¼ n ramðk; lÞ þm ramðh; lÞ
4) The ramification of pgl is separated.

ð3:4Þ 5) Kg þ p�1
gl ðKlÞ1 p�1

gh ðKhÞ þ p�1
gk ðKkÞ

Proof. That 4) implies 3) together with the proof of Theorem 3.2 shows this
corollary is true for the first four statements in the conclusion. We need only
show that equality in (3.1) implies (3.4) since the converse is immediate. Let Bgh

denote the ramification divisor on Wg for the covering pgh (with similar notation
for other coverings.)

We show first that Bgh ¼ p�1
gk ðBklÞ. pkl is ramified only at points t in PtF

where the f ’s that circle the t’s are in A0, since the ramification of pgl is
separated. These are the only points over which pgh is ramified. Above these

points phl and pgk are unramified. Thus Bgh ¼ p�1
gk ðBklÞ.

Now Kg 1Bgh þ p�1
gh ðKhÞ. Since p�1

gl ðKlÞ ¼ p�1
gk ðp�1

kl ðKlÞÞ and Bgh ¼
p�1
gk ðBklÞ we have

Kg þ p�1
gl ðKlÞ1 p�1

gk ðBkl þ p�1
kl ðKlÞÞ þ p�1

gh ðKhÞ1 p�1
gk ðKkÞ þ p�1

gh ðKhÞ r
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Corollary 3.4. Suppose for Ivðg; h;m; k; nÞ we have

gþmnl0 bmhþ nk þ ðm� 1Þðn� 1Þ
If the Iv is completed by Wl then la l0. r

Corollary 3.5. Assume we have equality in Theorem 3.2 and l ¼ 0. Then

MonoðWg=WlÞGMonoðWh=WlÞ �MonoðWk=WlÞ

Proof. If f circles a point in PtF then f A A0 or f A B0 but not both.
Such f ’s generate F so F ¼ A0B0. Now

MonoðWg=WlÞGF=ðA0 VB0ÞGA0=ðA0 VB0Þ � B0=ðA0 VB0Þ
But MonoðWh=WlÞGF=A0 GB0=ðA0 VB0Þ . . . etc. r

The following corollaries apply to Section 5.

Definition. For a prime p, pakn, will mean that pa divides n but paþ1 does
not. We say that pa strictly divides n.

Corollary 3.6. Suppose we have a Sqðg; h; p; k; p; lÞ where p is an odd
prime. Then F ¼ A0B, p k ½F : A0� and p2 k ½F : A0 VB0�.

Proof. To show F ¼ A0B it su‰ces to show that A0 QB since ½F : B� ¼ p.
If A0 HB then A0 HB0 and so A0 ¼ A0 VB0. But F=A0 is isomorphic to a
subgroup of Sp, and so p k ½F : A0�. But A0 VB0 HAVB and p2 ¼ ½F : AVB�.
This contradiction shows that F ¼ A0B.

Now F=A0 GB=A0 VB. It follows that ½A0 : A0 VB� ¼ p. Also
7fðA0 VBÞg j g A A0g ¼ A0 VB0 since F ¼ A0B. Consequently p k ½A0 : A0 VB0�
and so p2 k ½F : A0 VB0�. r

Corollary 3.7. Suppose we have equality in Theorem 3.2 and m ¼ n ¼ p,
an odd prime. Suppose there exists another subgroup CHF of index p containing
AVB. Then the covering Wg ! W �

C is unramified.

Proof. C V ðAVBÞ ¼ AVB ¼ AVC ¼ C VB. Since A, B, and C have
index p F ¼ AC0 ¼ A0C ¼ BC0 ¼ B0C. We apply Lemma 2.1. Suppose f A F
circles t A PtF . If f A A0 the covering ðWg ¼Þ W �

AVC ! W �
C is unramified over f .

If f A B0 the covering ðWg ¼Þ W �
BVC ! W �

C is unramified over f . All points of
PtF have been accounted for. r

Corollary 3.8. Suppose we have the hypotheses of Corollary 3.7 and
l ¼ 0. Then F=ðA0 VB0ÞGZp � Zp.

Proof. Consider the finite group F=ðA0 VB0Þ; that is, we assume A0 VB0 ¼
A0 VC0 ¼ C0 VB0 ¼ hei. C0 is a normal subgroup of F , the direct product
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of A0 and B0, and A0 VC0 ¼ C0 VB0 ¼ hei. The Corollary now follows from
Lemma 2.4 since A0, B0, and C0, whose orders are divisible by p, are subgroups
of Sp. r

4. Equality in the Castelnuovo-Severi inequality

Definition. For a covering pgh : Wg ! Wh and a divisor D on Wg define

sghðDÞ :¼ p�1
gh ðpghðDÞÞ a divisor of degree ðdeg pghÞðdeg DÞ

Suppose Wl completes Ivðg; h;m; k; nÞ. If x A Wg then sglðxÞ can be
described in two ways: sgkðsghðxÞÞ or sghðsgkðxÞÞ. For almost all x in Wg sglðxÞ
is a divisor of mn distinct points. If x is not in sglðyÞ then sglðxÞV sglðyÞ ¼ j.
If l ¼ 0 then the sglðxÞ’s form a g1mn.

Lemma 4.1. Suppose we have an Ivðg; h;m; k; nÞ, and for all but a
finite number of x on Wg sgkðsghðxÞÞ ¼ sghðsgkðxÞÞ. Then there exists a Wl

ð¼ fsgkðsghðxÞÞ j x A Wgg which completes the Iv and sglðxÞ ¼ sgkðsghðxÞÞ.

Proof. W@
g :¼ fx A Wg j deg sgkðsghðxÞÞ ¼ mn and sgkðsghðxÞÞ ¼ sghðsgkðxÞÞg.

Then W@
g ¼ Wg � fa finite number of pointsg. We first show that if x1, y A W@

g

and y A sgkðsghðx1ÞÞ then sgkðsghðx1ÞÞ ¼ sgkðsghðyÞÞ. Now let sghðx1Þ ¼ x1 þ � � �
þ xm. There is an i such that y A sgkðxiÞ. Thus sgkðsghðyÞÞ ¼ sghðsgkðyÞÞ ¼
sghðsgkðxiÞÞ ¼ sgkðsghðxiÞÞ ¼ sgkðsghðx1ÞÞ.

Define W@
l ¼ fsgkðsghðxÞÞ j x A W@

g g. The maps from Wg to Wh and Wk,
restricted to W@

g define topological maps from the latter to suitably punctured
Riemann surfaces W@

h and W@
k . Then W@

l completes the Iv formed by W@
g ,

W@
h , and W@

k . Giving W@
l an analytic structure in the obvious manner and

adding points to all the punctured Riemann surfaces completes the proof. r

Definition. A Castelnuovo-Severi Iv, denoted CSIvðg; h;m; k; nÞ, will be an
Iv where

g ¼ mhþ nk þ ðn� 1Þðm� 1Þ r

It is di‰cult to believe that the following result is not somewhere in the
literature of the last century.

Theorem 4.2. Let q be a prime in a CSIvðg; h;m; k; qÞ. Assume h >
ðq� 1Þðq� 2Þ=2. Then the CSIv admits a completion.

Proof. For each point x A Wk pghðp�1
gk ðxÞÞ is a divisor of degree q belonging

to a single gr
q on Wh by Lemma 2.6. Since q is prime, r > 1 implies that Wh

admits a plane model of degree q and so ha ðq� 1Þðq� 2Þ=2. Thus r ¼ 1.
Let w1 be a point on Wg so that the mq points sgkðsghðw1ÞÞ are unramified

for pgh and pgk. sghðw1Þ ¼ w1 þ � � � þ wm, and sgkðsghðw1ÞÞ ¼ sgkðw1Þ þ � � � þ

306 robert d. m. accola



sgkðwmÞ. Each of the divisors pghðsgkðw1ÞÞ; . . . ; pghðsgkðwmÞÞ belong to g1q and all

have the same point pghðw1Þ in common. Therefore, they are all the same
divisor on Wh. It follows that p�1

gh ðpghðsgkðw1ÞÞÞ ¼ sgkðsghðw1ÞÞ. The result
follows from Lemma 4.1. r

The following theorems are rather small steps in characterizing those CSIv’s
which have completions where the hypotheses of Theorem 4.2 do not hold. We
shall be considering a CSIvðpqþ 1; 1; p; 1; qÞ where p and q are odd primes. We
believe that a completion for such an Iv is characterized by the existence on
Wpqþ1 of a complete half-canonical linear series gpþq�3

pq which is unique. We shall
prove this only when p or q is 3.

Let g ¼ pqþ 1, let p : Wg ! W1 be the p-sheeted covering, and let y :
Wg ! T1 be the q-sheeted covering. Assume that Wg admits a complete half-
canonical linear series gpþq�3

pq . By the Castelnuovo Riemann-Roch theorem for
x on W1 p�1ðxÞ imposes at most p� 1 conditions on gpþq�3

pq . The problem is

to show that the words ‘‘at most’’ can be replaced by the word ‘‘precisely.’’
We first prove two lemmas from which our results follow.

Lemma 4.3. Suppose for a CSIvðpqþ 1; 1; p; 1; qÞ, Wg admits a half-
canonical gpþq�3þe

pq , eb 0. Suppose there is a gq�1
q on W1 so that jp�1ðgq�1

q Þj ¼
gpþq�3þe
pq . Then if y0 A T1 and y�1ðy0Þ consists of q distinct points no two of

which lie in a fiber of p (there are a finite number of fibers omitted, by Lemma 2.5)
then y�1ðy0Þ imposes precisely q� 1 conditions on gpþq�3þe

pq .

Proof. Let y�1ðy0Þ ¼ z1; . . . ; zq. Suppose z1; . . . ; zt impose t independent
conditions on gpþq�3þe

pq , so that if D A gpþq�3þe
pq and D contains z1; . . . ; zt, then

D contains ztþ1; . . . ; zq. We want to show that tb q� 1. Assume otherwise.
pðz1 þ � � � þ zq�1Þ are q� 1 points on W1 which determine a divisor in gq�1

q . Let
that divisor be pðz1 þ � � � þ zq�1Þ þ x. Then jpðzq�1Þ þ xj ¼ g12 on W1. Choose

a divisor C in g12 so that p�1ðCÞV fzq�1; zqg is empty. Then p�1ðpðz1 þ � � � þ
zq�2Þ þ CÞ is a divisor in gpþq�3þe

pq containing z1 þ � � � þ zq�2 but not zq�1 þ zq.

This contradiction proves the lemma. r

Lemma 4.4. Suppose for a CSIvðpqþ 1; 1; p; 1; qÞ, Wg admits a half-
canonical gpþq�3þe

pq , eb 0. Suppose there exists in W1 an x0 so that p�1ðx0Þ
imposes precisely p� 1 conditions on gpþq�3þe

pq . Then e ¼ 0. If D A gpþq�3
pq and D

contains p�1ðx0Þ then D ¼ p�1ðDqÞ where Dq is a divisor of degree q on W1.

Proof. If x1 A W1, x1 0 x0 then jx1 þ x0j is a g12 on W1. On Wg p�1ðx0Þþ
p�1ðx1Þ, being a g12p, imposes p conditions on gpþq�3þe

pq (Lemma 2.8). Thus

p�1ðx1Þ imposes one condition on gpþq�3þe
pq � p�1ðx0Þ ð¼ gq�2þe

pq�p Þ; that is, gq�2þe
pq�p

is composite being the lift of a g
q�2
q�1 on W1, and so e ¼ 0. gpþq�3

pq is now seen to
be the completion of the lift of a gq�1

q on W1. Thus the divisor in gpþq�3
pq

containing p�1ðx0Þ is the lift of a divisor in gq�1
q . r
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Theorem 4.5. Consider the CSIvðpqþ 1; 1; p; 1; qÞ, where p and q are odd
primes and the Iv admits a completion. Then Wpqþ1 admits a complete, simple
half-canonical gpþq�3

pq .

Proof. Since the completion Wl has genus zero formula 3.4 in Corollary
3.3 insures that the g11 on Wl lifts to be half-canonical on Wg. g11 lifted to W1

completes to be gq�1
q , and lifted to T1 completes to a gp�1

p . Lifted to Wg g11
therefore has dimension at least ðp� 1Þ þ ðq� 1Þ � 1. Lemma 4.3 insures that
there is a y0 on T1 so that y�1ðy0Þ imposes precisely q� 1 conditions on the half-
canonical gpþq�3þe

pq , and Lemma 4.4 implies e ¼ 0. Since p and q are prime it
follows that gpþq�3

pq is simple. r

Theorem 4.6. For the CSIvð3pþ 1; 1; p; 1; 3Þ, suppose that W3pþ1 admits a
half-canonical g

p
3p. Then the Iv admits a completion.

Proof. First we show that g
p
3p is simple. Suppose that it is composite.

Since g
p
3p is not trigonal (by CSI), W3pþ1 must cover a Wq in two sheets. The

non-fixed points of g
p
3p is the lift of a complete g

p

ð3p�f Þ=2 on Wq where f is odd.

Since the Cli¤ord index is negative q ¼ ðp� f Þ=2 and again this violates CSI.
Let g ¼ 3pþ 1, let p : Wg ! W1 be the p-sheeted covering, and let y :

Wg ! T1 be the 3-sheeted covering. Choose y0 A T1 so that y�1ðy0Þ is a divisor

of three distinct points. Then y�1ðy0Þ imposes at most two conditions on g
p
3p by

the Castelnuovo Riemann-Roch theorem. If y�1ðy0Þ imposed one condition

g
p
3p would be composite, a contradiction. Thus y�1ðy0Þ imposes precisely two

conditions. By Lemma 4.4 any divisor in g
p
3p containing y�1ðy0Þ is the lift of a

divisor on T1 of degree p. By Lemma 4.3, for a general choice of x0 on W1,
p�1ðx0Þ imposes precisely p� 1 conditions on g

p
3p. By Lemma 4.4, again, any

divisor in g
p
3p containing such a p�1ðx0Þ is the lift of a divisor of degree 3 on

W1. For a general point z0 on Wg, p
�1ðpðz0ÞÞ imposes p� 1 conditions on g

p
3p.

A divisor in g
p
3p requires an one additional condition to contain y�1ðyðz0ÞÞ.

Thus it requires exactly p conditions for a divisor in g
p
3p to contain p�1ðpðz0ÞÞ

and y�1ðyðz0ÞÞ, and so to be simultaneously lifted from divisors in W1 and
T1. This gives a g13p in g

p
3p which completes the Iv. r

In this case the half-canonical g
p
3p is the unique linear series on W3pþ1 of

dimension p and degree 3p.

5. Several Castelnuovo-Severi coverings

Definition. For p an odd prime, let gðpÞ ¼ p3 � 2p2 þ 1 and let hðpÞ ¼
ðp� 1Þðp� 2Þ=2.

In this section we shall always assume that all the CSIvðgðpÞ; hðpÞ; p; hðpÞ;
pÞ’s which occur have completions. This generalizes the case p ¼ 3, where we
have given conditions which insure that completions occur [3].
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Consider the fundamental group, F , of a punctured Riemann surface WF ,
together with three subgroups A, B, and C, all of index p in F . Then we have
three additional subgroups AVB, AVC, and BVC, which we assume all have
index p2 in F , and we have AVBVC which we assume has index p3 in F .
Then WF is covered by seven Riemann surfaces WH with fundamental group H,
where H is any one of the seven proper subgroups of F mentioned above. In
this array of eight Riemann surfaces WF will be called the 0th or bottom level;
WH , H ¼ A;B, or C will be called the first level; WH , H ¼ AVB;AVC, or
BVC will be called the second level, and WAVBVC will be called the third or top
level. The Riemann surfaces on the same level (ith) will always be assumed to
have the same genus ðhiÞ. This array of eight Riemann surfaces will be denoted
Cuðh3; h2; h1; h0Þ. This array can be visualized as a cube standing on one of
its vertices, the vertices standing for the Riemann surfaces and the edges pointing
downward standing for the covering maps. The cubes of interest will be
CuðgðpÞ; hðpÞ; 0; 0Þ which we will abbreviate by CuðpÞ.

We shall also consider the possibility of four subgroups of F , A, B, C, D all
of index p in F , the corresponding six subgroups, AVB;AVC; . . . ;C VD all of
index p2 in F , the four subgroups AVBVC; . . . ;BVC VD all of index p3 in F
and AVBVC VD of index p4 in F . There are five levels for the corresponding
Riemann surfaces, and if hi is the genus of all Riemann surfaces at the ith level,
this array of 16 Riemann surfaces will be denoted HyCuðh4; h3; h2; h1; h0Þ. This
can perhaps be visualized as a hypercube standing ‘‘vertically’’ on one of its
vertices, with vertices and downward pointing edges standing for Riemann sur-
faces and covering maps as in a cube. Our purpose will be to show that a
HyCuðgðpÞ; hðpÞ; 0; 0; 0Þ, denoted HyCuðpÞ, does not exist.

Then we will show that a WgðpÞ covering four di¤erent WhðpÞ’s, each in p
sheets with all Iv’s admitting completions, must admit a group of automorphisms
isomorphic to the elementary abelian group of order p3, with four subgroups of
order p giving rise to the four coverings WgðpÞ ! WhðpÞ. Except for p ¼ 3, we

will avoid the problem of completing the IvðgðpÞ; hðpÞ; p; hðpÞ; pÞ. If we have
such an Iv completed to a square we will denote it SqðgðpÞ; hðpÞ; 0Þ or more
simply SqðpÞ.

Lemma 5.1. Suppose Wg admits three coverings Wg ! Wh, Wg ! Wk,
Wg ! Wl, in p, q, and r sheets respectively (all primes). Suppose the three Iv’s
(Ivðg; h; p; k; qÞ etc.) all have completions. Then the array of seven Riemann
surfaces with three coverings and three squares can be completed to a cube of eight
Riemann surfaces.

Proof. For almost all w A Wg we want a divisor of degree pqr containing w,
equal to sgtðhÞðsgtðkÞðsgtðlÞðwÞÞÞ for any permutation t of the letters h, k, l. Now

sghðsgkðsglðwÞÞÞ ¼ sghðsglðsgkðwÞÞÞ. But for each point v A sglðwÞ sghðsgkðvÞÞ ¼
sgkðsghðvÞÞ. Therefore sghðsgkðsglðwÞÞÞ ¼ sgkðsghðsglðwÞÞÞ. Therefore, any per-
mutation of the s-symbols is possible. The proof is now completed as in
Lemma 4.1. r
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An entirely analogous proof gives:

Lemma 5.2. Suppose Wg admits 4 coverings Wg ! Wg 0 g 0 ¼ h; k; l;m, all
of prime degree. Suppose all 6 Iv’s have completions. Then the array of 15
Riemann aurfaces (4 coverings, 6 squares, and 4 cubes) can be completed to a
hypercube of 16 Riemann surfaces. r

Let us summarize the results of Theorem 3.2 in the case of a SqðpÞ. Let
F be the fundamental group of the punctured P1, WF . Let A and B be the
subgroups of F which are the fundamental groups for the two punctured WhðpÞ.
Then AVB is the fundamental group of the punctured Wgð pÞ. If t A PtF and
f ðA F Þ circles t then f A A0 UB0 since the ramification of WgðpÞ ! W �

F ð¼ P1Þ is
separated. Therefore, F ¼ A0B0 since A0 and B0 are normal in F . W �

F ¼ P1.
MonoðWgðpÞ=W

�
F ÞGMonoðW �

A =W �
F Þ �MonoðW �

B =W
�
F Þ.

Now we examine the cube CuðpÞ. Assume that the corresponding array of
subgroups of F arise from subgroups A, B, and C (all of index p in F ). In this
case W �

A , W �
B , and W �

C are all of genus zero.
Corollary 3.6 says that F ¼ AB0. We also obtain true statements by re-

placing A and B by any two of the letters A, B, or C. We shall have further
results stated in terms of a set of subgroups of F where the result holds for the
statement modified by permuting the names of the subgroups. We shall use such
statements by referring to the original statement without further comment.

Lemma 5.3. In the cube CuðpÞ, suppose t A PtF and f ðA F Þ circles t. If
f A Ao, then f A B0 UC0.

Proof. Let Ax1; . . . ;Axp be a coset decomposition of F . The points above
t in W �

A are circled by the p curves xi fx
�1
i . Since W �

AVBVC ! W �
A has separated

rami-fication, xi fx
�1
i A 7fðAVBÞa j a A AÞ or xi fx

�1
i A 7fðAVCÞa j a A AÞ. By

Lemma 2.2, f A B0 or f A C0. r

Lemma 5.4. For a CuðpÞ let f ðA F Þ circle a point t in PfF . If f B A0 U
B0 UC0 then f p A A0 VB0 VC0.

Proof. Suppose the multiplicities of the covering maps over t are as follows:

With respect to W �
A ! W �

F they are a1; a2; . . . ;Sai ¼ p
With respect to W �

B ! W �
F they are b1; b2; . . . ;Sbj ¼ p

With respect to W �
C ! W �

F they are g1; g2; . . . ;Sgk ¼ p

We wish to show that a1 ¼ b1 ¼ g1 ¼ p. Suppose otherwise. Assume a 0, one of
the a’s, is the smallest of all the a’s, b’s, and g’s, 1a a 0 < p. We claim that
there is a b, call it b 0 so that b 0 > a 0. If not, all the b’s equal a 0, and so a 0

divides p. Thus a 0 ¼ 1 and so f A B0. Contradiction.

Similarly there is a g 0 so that g 0 > a 0.
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Let Bv1; . . . ;Bvp be a coset decomposition of F . There is a v, call it vj ,
so that Bvj f

b 0 ¼ Bvj and b 0 is the smallest positive integer with this property.
Therefore Bvj f

a 0
0Bvj, so f a 0

B B0. Similarly, f a 0
B C0.

But there is an x so that Axf a 0 ¼ Ax or xf a 0
x�1 A A. Since W �

AVBVC ! W �
A

has separated ramification xf a 0
x�1 A ðAVB0ÞU ðAVC0Þ or f a 0

A B0 UC0. This
contradiction proves the lemma. r

We summarize the discussion so far in a theorem.

Theorem 5.5. Let the cube CuðpÞ correspond to the fundamental group F of
WF . Let F have subgroups A, B, and C as before. For t A PtF let f A F circle
t. Then either f A ðA0 VB0ÞU ðA0 VC0ÞU ðB0 VC0Þ or f p A A0 VB0 VC0. That
is, for the coverings W �

H ! W �
F , H ¼ A;B;C, above t, either two of the three are

unramified or all are ramified with multiplicity p. Above one and only one point
t A PtF does the latter hold.

Proof. Only the last sentence needs verification. Since the ramification is
not separated from level two to level zero, there must be at least one such point.
If there were two such points all the ramification between Riemann surfaces of
level one and level zero would be accounted for since these Riemann surfaces are
all Riemann spheres. This is a contradiction. r

Corollary 5.6. Continue the hypotheses of Theorem 5.5. Then F ¼
A0ðB0 VC0Þ.

MonoðWAVBVC=WF ÞGMonoðWA=WF Þ �MonoðWB=WF Þ �MonoðWC=WF Þ:

Proof. That F ¼ AðB0 VC0Þ is shown by a proof analogous to that of
Corollary 3.6. Theorem 5.5 implies that F is generated by elements in A0 VB0,
A0 VC0, and B0 VC0. For notational convenience assume that A0 VB0 VC0 ¼
hei, that is F is now isomorphic to MonoðWAVBVC=WF Þ and F ¼ ðA0 VB0Þ �
ðA0 VC0Þ � ðB0 VC0Þ. Now it is seen that F ¼ A0ðB0 VC0Þ. MonoðWA=WF ÞG
F=A0 G ðB0 VC0Þ etc. r

Theorem 5.7. A HyCuðpÞ does not exist.

Proof. Suppose such a hypercube does exist. Let the fundamental groups
at the various levels be F , A, B, C, D, AVB; . . . ;AVBVC; . . . ;AVBVC VD.
For t A PtF let f A F circle t. We show

1) If f A A0 then f A ðB0 VC0ÞU ðB0 VD0ÞU ðC0 VD0Þ.
2) If f B A0 UB0 UC0 UD0 then f p A A0 VB0 VC0 VD0.
1) As in Lemma 5.3, suppose f A A0. If Ax1; . . . ;Axp is a coset decom-

position for F then xi fx
�1
i A A0 for all i. The covering W �

AVBVCVD ! W �
A is a

CuðpÞ, so either xi fx
�1
i A ðA0 V ðB0 VC0ÞÞU ðA0 V ðB0 VD0ÞÞU ðA0 V ðC0 VD0ÞÞ or

xi f
px�1

i A A0 VB0 VC0 VD0. But this latter alternative would hold for all paths

xi fx
�1
i circling the in PtA above t. Since there is at most only one point in PtA

above t with this property (Theorem 5.5) the second alternative is ruled out.
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2) If f B A0 UB0 UC0 UD0 then there are four coverings W �
H ! W �

F , H ¼
A;B;C;D, and all are ramified over t. Using the arguments of Lemma 5.4
(multiplicities over t with respect to W �

D ! W �
F are d1; d2; . . . ;Sdl ¼ pÞ let a 0, the

smallest of all the a’s, b’s, g’s, d’s. We can then find b 0, g 0, d 0, so that b 0 > a 0,
g 0 > a 0, d 0 > a 0. As in Lemma 5.4 we conclude that f a 0

B B0 UC0 UD0. There
is a x1 so that Ax1 f

a 0 ¼ Ax1 or x1 f
a 0
x�1
1 A A. Let x1 f

a 0
x�1
1 circle a A PtA.

Since W �
AVBVCVD ! W �

A is a CuðpÞ the ramification of W �
AVH ! W �

A ðH ¼ B;C;

DÞ is not pure above a. We conclude that ðx1 f a 0
x�1
1 Þp A AVB0 VC0 VD0.

Consider the square with W �
AVB at the top and W �

F at the bottom. a is the
point in PtA above t where the multiplicity of pA;F is a 0. Let b be the point in
PtB above t where the multiplicity of pB;F is b 0. If c is a point in PtAVB above t
that maps onto a and b, the last paragraph shows that the multiplicity of pAVB;F
at c is a 0p. But by the discussion preceding Lemma 2.1 this multiplicity is also
½a 0; b 0�. Since a 0 < b 0

a p, it follows that b 0 ¼ p. Similarly g 0 ¼ d 0 ¼ p.
Since a 0 < p, there is another point e A PtA over t. If e is the multiplicity of

pA;F at e then e < p. Since we know that b 0 ¼ g 0 ¼ d 0 ¼ p we have b 0 ¼ g 0 ¼
d 0 ¼ p > e. The same argument as above now shows that there is a x2 so that
x2 f

ex�1
2 A A and ðx2 f ex�1

2 Þp A AVB0 VC0 VD0. W �
A has two points, a and e,

over which each of the three coverings W �
AVH ! W �

A , H ¼ B;C;D has ramifi-
cation p. Since this contradicts Theorem 5.5, we conclude that a 0 ¼ p, and so
f p A A0 VB0 VC0 VD0.

We now conclude the proof. As before there is one and only one point in
PtF where alternative 2) holds. This implies that the ramification for any square
between levels one and three is separated. Since this is not the case, this con-
tradiction shows that a HyCuðpÞ does not exist. r

For Theorem 5.7 a proof similar to the one presented appears necessary for
there exists a HyCuðð3p4 � 5p3 þ 2Þ=2; gðpÞ; hðpÞ; 0; 0Þ where items 1) and 2) in
the proof are satisfied.

Theorem 5.8. Let Wgð pÞ cover four di¤erent WhðpÞ’s, each in p sheets, so that
each of the six Iv’s admit completions. Then WgðpÞ admits an automorphism group,
G, iso-morphic to Zp � Zp � Zp, and the four WhðpÞ’s are WgðpÞ modulo four of the
Zp’s in G.

Proof. Three of the coverings WgðpÞ ! WhðpÞ give rise to a CuðpÞ since
three of these coverings cannot be in a square (Corollary 3.7). The fourth such
covering must occur within this cube (Theorem 5.7); that is, there are four cubes
within one cube. Let A, B, C, D be the four subgroups of F of index p,
as before. Then AVBVC ¼ AVBVD ¼ � � � ¼ AVBVC VD. For notational
convenience let A0 VB0 VC0 VD0 ¼ hei. By Theorem 5.6 F is equal to a
product of three di¤erent groups H0 VL0 where H0 0L0 and fH;Lg is any of
the three pairs in a subset of fA;B;C;Dg of order three. Then ðA0 VB0Þ �
ðA0 VC0Þ � ðB0 VC0Þ ¼ ðA0 VB0Þ � ðA0 VD0Þ � ðB0 VD0Þ, and so ðA0 VD0Þ is a
normal subgroup of ðA0 VC0Þ � ðB0 VC0Þ intersecting each factor in the direct
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product in hei. A0 VD0 is isomorphic to MonoðWB=WF Þ and so is isomorphic
to a subgroup of Sp, a subgroup whose order is divisible by p. By Lemma 2.4
A0 VD0 is isomorphic to Zp. By similar arguments we complete the proof of the
theorem. r

6. Examples

Let WF ¼ P1 � ft1; t2; . . . ; tsg, the s-fold punctured Riemann sphere. Let
f1; f2; . . . ; fs, be paths in WF which circle the t’s so that F ¼ h f1; f2; . . . ; fs j
f1 f2 � � � fs ¼ ei. Let G be a finite group generated by a1; a2; . . . ; as�1. Let m :
F ! G be defined by mð fiÞ ¼ ai for i ¼ 1; 2; . . . ; s� 1, and mð fsÞ ¼ ða1a2 � � �
as�1Þ�1. m extends to a homomorphism from F onto G. Let H be a subgroup
of G of index n such that H0 ¼ hei. Let A ¼ m�1ðHÞ. Then WA is an n-sheeted
covering of WF corresponding to H and F=A0 GG. Suppose G has order m.
W �

A0
is the Galois closure for the covering W �

A ! W �
F .

Notation. Wmð f1; f2; . . . ; fsÞ will denote WA0
, WA will be denoted by

Wnð f1; f2; . . . ; fsÞ.

In the following we will consider only cyclic groups, Zp, and dihedral groups,
Dp, as subgroups of Sp, in order to build our direct products, G. Any other
subgroup of Sp containing Zp, such as Ap or Sp, would do, although the com-
putations would be more complicated. Dihedral groups will be denoted ha; ai,
hb; bi, hc; gi where a2 ¼ b2 ¼ c2 ¼ a p ¼ b p ¼ g p ¼ e, and cyclic groups will be
denoted simply by hai, hbi, hgi. Thus a 2p-sheeted dihedral Galois covering of
P1 is denoted W2pða; aa; a�1Þ, and the p-sheeted covering of P1, W2pða; aa; a�1Þ=
hai, is denoted by Wpða; aa; a�1Þ. There are, of course, many such p-sheeted
coverings corresponding to the conjugates of hai in Dp.

An example of a Sqððp� 1Þ2; 0; p; 0; p; 0Þ is given by Wp2ða; a; aa; aa; b; b; bb;
bbÞ where G ¼ Dp �Dp. Examples of CuðgðpÞ; hðpÞ; 0; 0Þ are:

ðiÞ Wp3ða; aa; b; bb; c; cg; ðabgÞ�1Þ G ¼ Dp �Dp �Dp

ðiiÞ Wp3ða; aa; b; bb; g; ðabgÞ�1Þ G ¼ Dp �Dp � Zp

ðiiiÞ Wp3ða; aa; b; g; ðabgÞ�1Þ G ¼ Dp � Zp � Zp

ðivÞ Wp3ða; b; g; ðabgÞ�1Þ G ¼ Zp � Zp � Zp

As an example we will work out the case (ii). Let l be the genus of
W4p3ða; aa; b; bb; g; ðabgÞ�1Þ. Then

2l� 2 ¼ �8p3 þ 4ð4p3=2Þ þ 2ð4p2ðp� 1ÞÞ
Wl is a 4-sheeted Galois covering of Wp3ða; aa; b; bb; g; ðabgÞ�1Þ of genus g.
Wg ¼ Wl=ha; bi where ha; biGZ2 � Z2. Since an involution in Dp has p
conjugates, an involution in ha; ai will have 2ð4p3=2Þ=p ð¼ 4p2Þ fixed points. ab
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is an involution without fixed points. Thus the total ramification for Wl ! Wg

is 2ð4p2Þ and so

2l� 2 ¼ 4ð2g� 2Þ þ 8p2; and so g ¼ gðpÞ:

To find the genus of the Riemann surface covered by Wg in p sheets, call
it Wh, we could either consider W2p2ðb; bb; g; ðbgÞ�1Þ and proceed as above, or
consider Wl=ha; a; bi. In the latter case ha; a; bi has pþ 1 involutions with
ramification 2p2 for each. All the other subgroups are unramified or contain one
of the ramified involutions. Therefore,

2l� 2 ¼ 4pð2h� 2Þ þ ðpþ 1Þ4p2; or h ¼ hðpÞ:

Wl=ha; b; gi also has genus hðpÞ since the ramification accounted for in ha; b; gi
is 2ð4p2Þ þ 4p2ðp� 1Þ.

In case (iv) we have four coverings WgðpÞ ! WhðpÞ, one for each of the four
punctures in P1. The kernel of m : F ! Zp � Zp � Zp is a characteristic subgroup
of F , so any fractional linear transformation (FLT) of P1 that permutes the four
points lifts to WgðpÞ. There is always a Z2 � Z2 of such FLT’s, but by special
arrangements of the four points we can have a dihedral group D4 (order 8) or an
alternating group A4 (order 12) permuting the four points. Thus WgðpÞ always
admits an automorphism group of order 4p3, but can also admit groups of order
8p3 and 12p3.

7. Genus ten

On a Riemann surface W10 a quartet is a set of four complete half-canonical
linear series: g29 , h29, k2

9, l39 , whose sum is bicanonical, and where l39 is the
unique linear series on W10 of dimension 3 and degree 9. By Riemann’s solution
to the Jacobi inversion problem [5] this is equivalent to the vanishing of the theta
function for W10 at four half periods, whose sum is zero, to orders 3, 3, 3, 4,
where the last half-period is the only point on the Jacobian where the theta
function vanishes to order 4 or more.

In [3] it was shown that the existence of a quartet on a W10 is equivalent to
the existence of a full three-sheeted covering W10 ! W1 (‘‘full’’ means that K10 is
the completion of the lift of a g56 on W1). Unfortunately, the methods do not
appear to distinguish between cyclic and dihedral coverings.

The existence of two quartets, (necessarily with the same l39 ) gives a CSIv
which admits a completion by Theorem 4.6. The existence of three quartets
leads to a Cuð10; 1; 0; 0Þ. The existence of four quartets leads to the existence of
an elementary abelian group of order 27 on W10, four subgroups of order three
giving rise to the four coverings W10 ! W1 (Theorem 5.8).

Conversely, the existence of such a group of automorphisms on W10 implies
the existence of six CSIvð10; 1; 3; 1; 3Þ’s all of which have completions. The
proof of Theorem 4.5 shows that all the coverings W10 ! W1 are full. Thus
W10 admits four quartets.
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Theorem 7. For a Riemann surface of genus 10, W10, the following two
statements are equivalent.

(1) W10 admits an elementary abelian group of order 27. Four cyclic sub-
groups give rise to quotients of genus one, and the remaining 9 cyclic
subgroups are fixed point free.

(2) W10 admits 4 quartets.

Remarks. 1) The W10 in Theorem 7 can be simply described as a W10

admitting an elementary abelian group, G, of order 27 so that the genus of
W10=G is zero.

2) By the remarks at the end of Section 6 we have the following. Any such
W10 admits an automorphism group of order 4�27. There are such W10’s
admitting automorphism groups of order 8�27 and 12�27.

3) The curve x6 þ y6 þ z6 ¼ 0 is not such a Riemann surface since the
3-Sylow subgroup is not abelian.

8. Coverings of the Riemann sphere

In this section we consider CSIvðg; 0; p; 0; qÞ’s where g ¼ ðp� 1Þðq� 1Þ, and
p and q need not be prime.

We first do some naı̈ve dimension counting. A generic Wg on the top of
such an Iv admits a plane model as a plane curve of degree pþ q with two
ordinary singularities of multiplicities p and q. The dimension of such a family
of plane curves is ½ðpþ qþ 3Þðpþ qÞ � pðpþ 1Þ � qðqþ 1Þ�=2� 4 ¼ pqþ pþ
q� 4. The two singularities arise from picking a divisor from each of the two
distinguished linear series on the Riemann surface, so the dimension in moduli
space for genus pqþ 1 is pqþ pþ q� 6.

To find the dimension for Sqðg; 0; p; 0; q; 0Þ’s we want the fundamental
group, F , for the punctured Riemann sphere to have the maximum number of
punctures. Note that Riemann spheres occur at the two middle levels of the
square. Let G, as in the examples in Section 6, be Sp � Sq, and let the square
arise from

Wðp�1Þðq�1Þða1; a2; . . . ; a2p�2; b1; b2; . . . ; b2q�2Þ
where the a’s are transpositions generating Sp, and the b’s are transpositions
generating Sq. So the dimension in moduli space for genus ðp� 1Þðq� 1Þ for
such squares is ð2p� 2Þ þ ð2q� 2Þ � 3 ¼ 2pþ 2q� 7. It’s codimension in the
space of the above Iv’s is ðp� 1Þðq� 1Þ.

We now give a geometric interpretation for a Sqððp� 1Þðq� 1Þ; 0; p; 0; q; 0Þ.
Let Cpþq be a plane curve of degree pþ q with two ordinary singularities

Rp, Rq of multiplicities p and q (genus ¼ ðp� 1Þðq� 1Þ). Let x be a point on
the curve. A line through x and Rp cuts the curve in q points. q lines connect
these q points to Rq. A line through x and Rq cuts the curve in p points. p
lines connect these p points to Rp. This set of pþ q lines intersect (in general) in
pq points. At least pþ q� 1 of these points lie on the curve.
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Definition. x will be called total of all pq points lie on the curve.

Theorem 8.1. If one point of Cpþq is total then all points of Cpþq are total.

We will prove this theorem in several steps.

Lemma 8.2. Let g1p be the fibers of the p-sheeted covering in the Iv. Let
g1q be the fibers in the q-sheeted covering in the Iv. Then ðq� 1Þg1p (and also
ðp� 1Þg1q ) is not special.

Proof. Suppose ðq� 1Þg1p is special. Fix a divisor, E, in Kg � ðq� 1Þg1p .
Let y1 be a general point in Wg. Let y1 þ y2 þ � � � þ yq be the divisor in g1q
containing y1. Let Di, i ¼ 2; 3; . . . ; q, be the divisors in g1p containing yi. Then
SDi is a divisor in ðq� 1Þg1p not containing y1. By Riemann-Roch y1 is in E
since g1q is always special. This contradiction proves the lemma. r

Lemma 8.3. The CSIvðg; 0; p; 0; qÞ admits a completion if and only if pg1q is
equivalent to qg1p .

Proof. For notational convenience denote the above CSIv by CSIvðg; h; p;
k; qÞ so that h ¼ k ¼ 0. If this Iv admits a completion P1, then the g11 on P1 lifts
to a gq

q on Wh, which lifts in turn to qg1p on Wg. Lifting g11 thru Wk gives a pg1q
on Wg, and so pg1q is equivalent to qg1p . For the converse note that jpg1q j ¼
gpþq�1
pq since pg1q is not special. The incomplete qg1p has dimension q and the

incomplete pg1q has dimension p. Thus there is a g1pq in gpþq�1
pq common to both

of these incomplete linear series. This g1pq completes the Iv. r

Note that this shows that completing the CSIv is equivalent to all points on
Cpþq being total.

Proof of Theorem 8.1. If one point is total then pg1q is equivalent to qg1p .
The result follows from the above lemmas. r

For g ¼ 4, the completion of the Iv is equivalent to 3g13 1 3h13 . Since
g13 þ h13 is canonical this is equivalent to 6g13 being tricanonical. By Riemann’s
theorem this in turn is equivalent to the theta function vanishing to order 2 at a
1=6th-period (which is not a half-period).

Alan Landman has shown that Theorem 8.1 is a special case of a theorem
where the hypotheses are quite a bit more general and the conclusion is the same.
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