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A NOTE ON PATTERSON MEASURES

Kurt Falk and Pekka Tukia

Abstract

Conformal measures are measures satisfying a certain transformation rule for

elements of a Kleinian group G and are normally supported by the limit set of G. They

are usually constructed by a method due to S. J. Patterson as weak limits of measures

supported by a fixed orbit of G in the hyperbolic space, often identified with the unit

ball Bn. We call such limit measures Patterson measures. This has been the pre-

dominant way to obtain conformal measures and one may get the impression that all

conformal measures are Patterson measures. We show in this note that this is not the

case and two concrete examples are given in the last section.

1. Introduction

If G is a group of Möbius transformations on the closed unit ball Bn, then
a conformal measure of dimension d for G is a real-valued, non-negative, finite
Borel measure m on Bn such that

mðgAÞ ¼
ð
A

jg 0jd dmð1Þ

for measurable AHBn and g A G. Usually, G is Kleinian and one is interested
in conformal measures supported by the limit set LðGÞ of G with d being the
exponent of convergence dG of G. Patterson [P] constructed such measures if G
is a Fuchsian group and this construction was later generalized by Sullivan [S] to
the situation of Kleinian groups.

Patterson’s method was to construct such measures as weak limits of prob-
ability measures mi supported by an orbit Gz of G in Bn. The measures mi are
constructed so that, given any neighborhood U in Bn of the limit set, the mi-mass
of the complement of U tends to 0 as i ! y. The measures mi are constructed
using the Poincaré series of G defined for y; z A Bn as

Pdðy; zÞ ¼
X
g AG

e�ddðy;gðzÞÞ:ð2Þ

This series converges if d > dG and diverges if d < dG. If d ¼ dG, then the series
may diverge or converge; if it diverges, G is of divergence type (at the exponent
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of convergence). In the divergence case, the construction of mi is very simple:
One lets mi be a weighted sum of atomic measures mgðzÞ with total mass 1 con-
centrated at gðzÞ. One sets

mi ¼ ci
X
g AG

e�didðy;gðzÞÞmgðzÞð3Þ

where di > dG and di ! dG as i ! y. The constant ci is Pdiðy; zÞ
�1, and is

chosen so that the total mass is 1. If the Poincaré series diverges at the exponent
of convergence, a subsequence of mi’s will have a weak limit which is a conformal
measure on the limit set. The reason why the limit measure is conformal is that
the ratio of jg 0ð0Þj to e�dð0;gð0ÞÞ tends to 1 as dð0; gð0ÞÞ ! y which easily implies
the conformality of the limit if z ¼ y ¼ 0. Note that a weak limit of (3) is
conformal, meaning that (1) holds true, only if y ¼ 0. In all other cases one
needs to slightly reformulate the definition of conformality as done in [N].

Unfortunately, this simple strategy does not work if the Poincaré series
is of convergence type. Patterson [P] overcame this di‰culty by modifying the
Poincaré series so that it still diverges if d < dG and converges if d > dG, but if
d ¼ dG it necessarily diverges. The modified Poincaré series is obtained by using
a real function hðtÞ defined for non-negative t. We set

Ph; dðy; zÞ ¼
X
g AG

hðdðy; gðzÞÞÞe�ddðy;gðzÞÞð4Þ

and call Ph; d the h-modified Poincaré series for G. The function h has the
property that hðtÞ ! y as t ! y in such a way that we obtain divergence for
d ¼ dG but that otherwise the convergence is as for Pd. One can choose h so that
if one replaces in (3) e�didðy;gðzÞÞ by hðdðy; gðzÞÞÞe�didðy;gðzÞÞ, then a subsequence
has a weak limit which is a conformal measure if y ¼ 0. The map h needs to
satisfy certain conditions in order for this process to work; these are the con-
ditions 1�–3� to be discussed later.

If the group is of the first kind, then the Lebesgue measure on the boundary

sphere Sn�1 of hyperbolic space is a conformal measure. If the group is of the
second kind, giving a conformal measure on the limit set is a non-trivial problem.
Patterson’s construction seems to have been the only one to give measures on
the limit set at the exponent of convergence. For instance, Nicholls’ book [N]
discusses only Patterson’s method to construct conformal measures and one easily
gets the impression that all conformal measures on the limit set can be obtained
by this construction.

The purpose of this note is to show that there are conformal measures which
cannot be obtained by the Patterson construction even if the dimension of the
measure is the exponent of convergence. Our argument applies if the Poincaré
series of G converges at the exponent of convergence and is based on the analysis
of ends and end limit points of G; these are defined in the next section. If E
is an end of G, then there is an endgroup GE associated to E as well as a subset
of LðGÞ called the end limit set of E and denoted by LeðEÞ. If dGE

< dG, then
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we will show that any Patterson measure vanishes on the end limit point set of
E. On the other hand, we know that if LeðEÞ0j, then the union of gðLeðEÞÞ,
g A G, supports a conformal measure mE for G of dimension dG, cf. [AFT,

Theorem 4.4]. (We say that a subset of Bn supports a measure if its complement
has measure zero.) Thus mE cannot be a Patterson measure for G. More gen-
erally, this result is still valid even when dGE

¼ dG, but the h-modified Poincaré
series for GE converges at the exponent dG. This follows from our Theorem in
Section 5.

The method used in [AFT] to construct measures supported by the end limit
points was to take a sequence of points zi contained in the end and exiting to
the end in the sense that if CHBn is compact, then the zi eventually escape
from GC. If the Poincaré series of G converges at d, then there is a conformal
measure of total mass 1 supported by the GE-orbit of zi where GE is the stabilizer
of the end. These measures have a weak limit which is supported by the end
limit points of E and this limit measure can be extended to a conformal measure
of G. This is the only alternative construction of conformal measures, in ad-
dition to the Patterson construction, of which we know.

In Section 6 we shall give two examples of conformal measures of dimension
equal to the exponent of convergence which cannot be obtained by the Patterson
construction. The first example of an atomic measure on the orbit of a parabolic
fixed point of a convergence group was one of the main motivations for this
work. The second example is more complex in that it combines a geometrically
infinite, topologically tame Kleinian group of the second kind acting in hy-
perbolic 3-space with an infinitely generated group with exponent of convergence
strictly less than 2. The latter gives an end with boundary, as defined below,
for the associated hyperbolic manifold. The corresponding end limit set then
supports a conformal measure which, by our main result, cannot be a Patterson
measure.

2. Definitions and notations

In this paper G is a discrete group of Möbius transformations of the closed
euclidean unit ball Bn. The limit set is denoted LðGÞ. We let MG ¼ Bn=G and
MG ¼ ðBnnLðGÞÞ=G so that MG HMG. We denote by qA the boundary in MG

for subsets of MG, and by qA the boundary in MG for subsets of MG.
An end of MG is an open connected subset E of MG with non-compact

closure in MG and such that qE is compact and non-empty. We will also
consider ends with boundary in MG; an open subset E of MG is called an end
with boundary if E is connected, has non-compact closure in MG but qE is
compact and non-empty.

We will also consider lifts of ends to the n-ball. Let p : BnnLðGÞ ! MG be
the canonical projection. An end [with boundary] of G is a connected com-
ponent of p�1ðEÞ where E is an end of MG [or of MG if E is an end with
boundary]. Thus an end of G refers to subsets of Bn or of BnnLðGÞ whereas an
end of MG or of MG lives in the quotient.
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If E is an end of G, possibly with boundary, then its set of endpoints is the
set of points z A Sn�1 such that if R is a hyperbolic ray towards z, then R has
a subray R 0 contained in the end such that the hyperbolic distance dðu; qEÞ ! y
as u moves towards z on R 0; here q refers to the boundary in Bn. An end-
point z of E is an end limit point of E if z is also a limit point. Note that if
GE is the stabilizer of E in G and z is an endpoint of E, then z A LðGEÞ as
soon as z A LðGÞ. In other words, every end limit point of E is contained in
LðGEÞ. This follows from Lemma 3.1 of [AFT] which is valid also for ends with
boundary.

The set of end limit points of E is denoted by LeðEÞ. Note that there may
be two ends with the same end group. This happens if G is a finitely generated,
doubly degenerate Kleinian surface group acting on B3 (see for instance [MT] for
standard definitions).

The notion of a bounded end is crucial for one of our examples. Let E be
an end of MG and F be a component of the lift of E to Bn. As before, let GF

denote the stabilizer of F in G. Since gF ¼ F for g A GF , and gF VF ¼ j if
g A GnGF , we can identify E ¼ F=G and F=GF . We can say now that the end E
(or its lift F ) is a bounded end if MGF

nE is compact. The definition is similar for
ends with boundary, with Bn replaced by BnnLðGÞ.

3. The Patterson construction

We will now discuss Patterson’s construction to the extent needed in this
paper. We first note that sometimes one replaces hðdðy; gðzÞÞÞ in the formula (4)
by hðedðy;gðzÞÞÞ, for instance this is so in Nicholls’ book [N] which we use as our
reference. The conditions 1� and 2� below correspond to Nicholls’ conditions 1
and 2 in Lemma 3.1.1 with this modification. Thus if hN is as in [N], we need
to set hðtÞ ¼ hNðetÞ in order to get our h. The function h used in (4) needs to be
continuous and non-decreasing and in addition it must satisfy

1�. Ph; d converges for d > dG and diverges for da dG, and
2�. For any e > 0 there exists r0 such that if r > r0, then hðtþ rÞa eethðrÞ.
This is all that is needed for the construction of the the conformal measure

on LðGÞ. However, we also need a third condition, which is automatically
satisfied (see below) if h is constructed as in [N].

3�. hðrþ tÞa hðrÞhðtÞ for all positive t and r.
We call a function h satisfying these conditions Patterson function for G. A

measure m is a Patterson measure if it is a weak limit of measures mi obtained
using a Patterson function, that is a weak limit of measures mi as in (5) below
whose dimensions di decrease to dG.

If h is constructed as in [N], p. 47, then 3� easily follows. Nicholls follows
Patterson [P] when constructing h with the aid of an increasing sequence Xn of
positive numbers and another sequence en of decreasing positive numbers such
that

hNðxÞ ¼ hNðXnÞðx=XnÞen
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if Xn a xaXnþ1. If hðtÞ ¼ hNðetÞ, then the derivative of log hðtÞ is en on
ðXn;Xnþ1Þ. Thus the derivative of log hðtÞ is non-increasing and 3� follows.

We remark that while 3� is a critical condition for us, only 1� and 2� are
needed to show that a weak limit of measures mi in (3) is a conformal measure.
Thus it is still possible that the measures which cannot be limits of Patterson
measures, that is measures defined using h as in 1�–3�, could still be obtained by
the Patterson construction using h satisfying 1� and 2� but not 3�. However, the
construction of h in [P], [S], [N] is very natural and we doubt very much whether
removing 3� allows one to obtain every conformal measure as a weak limit of
measures mi as in (3).

We remark that 3� could be weakened in the sense that there is a constant C
not depending on t and r such that

hðtþ rÞaChðtÞhðrÞ:

Our arguments would still be valid with this weakened condition.

4. Adapting the Shadow Lemma

Let G be a Kleinian group of Bn such that the Poincaré series of G con-
verges at the exponent of convergence dG. Let h be a Patterson function for
G. We use Ph; d as in (4) to define the atomic measures which, in the weak limit,
give a conformal measure on LðGÞ.

Let d > dG and define the probability measure md on Gz as

md ¼
X
g AG

cdhðdðy; gðzÞÞÞe�ddðy;gðzÞÞmgðzÞð5Þ

where mgðzÞ is the atomic measure of mass 1 concentrated at gðzÞ and the nor-
malization constant cd ¼ Ph; dðy; zÞ�1 is so chosen that the total mass is 1. Note
that the measure md depends on the choice of y and z.

We need estimates for md-measures of shadows of hyperbolic balls. If z A Bn

and r > 0, let Syðz; rÞ be the shadow from y A Bn of the hyperbolic disk Dðz; rÞ
of hyperbolic radius r and set Sðz; rÞ ¼ S0ðz; rÞ. Thus w A Bn is in Syðz; rÞ if the
hyperbolic line segment or ray with endpoints y and w intersects Dðz; rÞ. The
following is an adaptation of Sullivan’s Shadow Lemma.

Lemma. There is a constant M depending on r and z (with G fixed) such that
if dG þ 1 > d > dG and z A Gz, then

mdðSyðz; rÞÞaMhðdðy; zÞÞe�dGdðy; zÞ:

Proof. We can assume that y ¼ 0 by conjugating G with a Möbius trans-
formation g such that gðyÞ ¼ 0. We can also assume that z ¼ 0 (changing z to 0
means only that we may need to multiply by a constant). Thus there is g A G
such that gðzÞ ¼ 0. The map g transforms the shadow Sðz; rÞ to the shadow
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Sgð0Þð0; rÞ ¼ gðSðz; rÞÞ, that is w A gðSðz; rÞÞ if the hyperbolic line segment or ray
with endpoints w and gð0Þ intersects Dð0; rÞ. Thus if gð0Þ A G0V gðSðz; rÞÞ, then

dðgð0Þ; gð0ÞÞa dðgð0Þ; 0Þ þ dð0; gð0ÞÞa dðgð0Þ; gð0ÞÞ þ 2r:

Since h is increasing, it therefore follows that

mdðSðz; rÞÞ ¼
X

g AG; gð0Þ ASðz; rÞ
cdhðdð0; gð0ÞÞÞe�ddð0; gð0ÞÞ

¼
X

g AG; gð0Þ A gSðz; rÞ
cdhðdðgð0Þ; gð0ÞÞÞe�ddðgð0Þ; gð0ÞÞ

a
X

g AG; gð0Þ A gSðz; rÞ
cdhðdðgð0Þ; 0Þ þ dð0; gð0ÞÞÞe�dðdðgð0Þ;0Þþdð0; gð0ÞÞ�2rÞ:

If we use 3� and sum over all g A G, we obtain the following upper estimate for
the last sum (recall that cd ¼ Ph; dð0; 0Þ�1):

hðdðgð0Þ; 0ÞÞe�dð�2rþdð0;gð0ÞÞÞcd
X
g AG

hðdð0; gð0ÞÞÞe�ddð0; gð0ÞÞ

¼ hðdð0; gð0ÞÞÞe�ddð0;gð0ÞÞe2dr ¼ e2drhðdð0; zÞÞe�ddð0; zÞ:

Thus the lemma is true with M ¼ eð2dGþ2Þr if z ¼ 0.

5. The main theorem

Using the Shadow Lemma of Section 4, we can now obtain our main
theorem. Recall that the h-modified Poincaré series of G is writtenP

g AG hðdðy; gðzÞÞÞe�ddðy; gðzÞÞ.

Theorem. Let G be a Kleinian group of Bn with exponent of convergence
dG. Suppose that the Poincaré series for G converges at the exponent of conver-
gence and let h be a Patterson function for G. Let E be an end of G, possibly
with boundary, and let GE be the corresponding end group. Suppose that either
dGE

< dG, or that dGE
¼ dG and the h-modified Poincaré series of GE converges at

the exponent dG ¼ dGE
.

Let m be a measure obtained by the Patterson-Sullivan construction using this
Patterson function. Then mðLeðEÞÞ ¼ 0 and if the end is bounded mðLðGEÞÞ ¼ 0.

Proof. The proof is analogous to that of Theorem 4.4 of [AFT], using the
adapted Shadow Lemma. We assume first that E does not have boundary and
indicate in the end the necessary changes for the case of ends with boundary.

Given d > dG and the Patterson function h, let md be a measure defined by
(5). For each 0 < r < 1 we will define a neighbourhood Ur of LeðEÞ in Bn so
that

mdðUrÞaMr
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for a constant Mr > 0 with the property that Mr ! 0 when r ! 1. This in turn
will imply mðLeðEÞÞ ¼ 0. The details of the argument are given below.

We can assume without loss of generality that 0 B E and that y ¼ 0
(changing the basepoint y does not change the measure class of m). Also,
consider a point z0 A qE and assume m is given by the h-modified Poincaré seriesP

g AG hðdð0; gðz0ÞÞÞe�ddð0; gðz0ÞÞ. Define Br ¼ fx A Bn : jxj > rg and let Ur be the

union of all rays Ra ¼ fta : r < ta 1g, a A Sn�1, such that there is r < ta 1 with
ta A E. Thus Ur is an open neighborhood of LeðEÞ in Bn.

Since qE=G is compact and z0 A qE, we can fix a number r > 0 such that

6
g AG

Dðgðz0Þ; rÞI 6
g AG

gðqEÞ:ð6Þ

As before, Dðz; rÞ is the open hyperbolic ball with center z and radius r. Let
Sg be the shadow of Dðgðz0Þ; rÞ from 0. Recall that Sg contains all the points
w A Bn such that the hyperbolic line segment or ray with endpoints 0 and w
intersects Dðgðz0Þ; rÞ. Let now Vr be the union of all shadows Sg, g A GE , such
that Dðgðz0Þ; rÞ intersects the set Br defined above. If a ray Ra is contained in
Ur, then either Ra HE or Ra intersects qE. In the latter case let v be the
point in Bn where Ra meets qE the first time (seen from ra), and let R 0

a be the
subray of Ra which originates at v. Hence R 0

a is contained in some Sg such that
Dðgðz0Þ; rÞ intersects Br. It follows that

Gz0 VUr HVr:

Next, we apply the Shadow Lemma of Section 4 to the measure md. Thus there
exists a constant M > 0 such that

mdðSgÞaMhðdð0; gðz0ÞÞÞe�dGdð0; gðz0ÞÞ

if dG þ 1 > d > dG. Therefore we obtain for these d

X
mdðSgÞa

X
Mhðdð0; gðz0ÞÞÞe�dGdð0; gðz0ÞÞ ¼: Mr;

where both sums are restricted to elements g A GE such that Dðgðz0Þ; rÞ intersects
Br. Since the h-modified Poincaré series for GE converges at the exponent dG,
the numbers Mr are finite and Mr ! 0 as r ! 1. The number Mr is an upper
bound for mdðVrÞ if dG < d < dG þ 1. Since Gz0 VUr HVr, Mr is an upper bound
for mdðUrÞ as well.

Suppose now that m is a Patterson measure obtained using this h, that is,
suppose that m is a weak limit of measures mi so that mi ¼ mdi as in (5), and with
di decreasing to dG. To see that mðLeðEÞÞ ¼ 0, let Lk be the set of points
z A Sn�1 such that the line segment tz, t A ½1� 1=k; 1Þ, is contained in E U qE.
By construction, Ur is a neighbourhood of Lk for every 0 < r < 1. Since all Lk

are closed, the inequalities miðUrÞaMr imply that mðLkÞaMr for all r and
hence mðLkÞ ¼ 0. Finally, since LeðEÞ is contained in the union of the Lk, we
conclude that mðLeðEÞÞ ¼ 0.
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If the end E is bounded, then by [AFT] every x A LðGEÞ is either an end
limit point of E or a conical limit point of GE . Since the conical limit set has
zero measure if the Poincaré series converges at the dimension of the measure, it
follows that mðLðGEÞÞ ¼ 0.

Finally, if the end E is an end with boundary, then the above argument
works if one replaces Bn with the hyperbolic convex hull HG of the limit set
LðGÞ. We assume that 0 A HG and replace qE by qE VHG on the right hand
side of (6). Note that the G-quotient of qE VHG is compact and so there is such
an r0 as claimed in (6).

We say that E ¼ fE1; . . . ;Epg is a complete collection of ends for G if
each Ei is an end of G, the projections pðEiÞ of Ei to MG are disjoint, and if
MGnðpðE1ÞU � � �U pðEpÞÞ is compact.

Corollary. Let E ¼ fE1; . . . ;Epg be a complete collection of ends for G
and assume that the Poincaré series of G converges at the exponent of convergence
dG. Suppose h is a Patterson function for G, and hence that the h-modified
Poincaré series for G diverges at dG. Then there is an end E A E such that the
h-modified Poincaré series for GE diverges at dG.

Proof. Let m be a measure obtained by the Patterson construction. We
know (see [AFT, Theorem 4.6]) that m is supported by the union of endpoints of
gEi where g A G and ia p. Hence mðLeðEiÞÞ > 0 for some i. By the preceding
theorem, the h-modified Poincaré series for GEi

must diverge at dG.

6. Examples

A. The first example was one of the main motivations for this work. Let
G be a Kleinian group acting on the hyperbolic n-space. Let v be a parabolic
fixed point of G. Then Gv contains a free abelian subgroup of rank k where
0 < k < n in which case we say that v has rank k. It is known that the exponent
of convergence of Gv in the rank k case is k=2 and that the Poincaré series of Gv

diverges at exponent k=2.
Assume that v is a parabolic fixpoint of G of rank n� 1. Then there exists

an open horoball B at v which is precisely invariant under Gv in G, i.e. gðBÞ ¼ B
for all g A Gv and gðBÞVB ¼ j for all g A GnGv. Therefore, the stabilizers
GB and Gv of B and v, respectively, coincide. Let S0 be the boundary of B in
Bn. Then S ¼ S0=G ¼ S0=Gv is compact since Gv has full rank. Thus B is an
end of G with end group Gv, and B=G is an end of MG. As observed above,
dGv

¼ ðn� 1Þ=2 and the Poincaré series for Gv diverges. Hence, if the Poincaré
series for G converges at the exponent of convergence, then dG > dGv

and so our
Theorem implies that a Patterson measure for G gives zero measure to endpoints
of B, that is to the point v.

Let n be an atomic measure with mass concentrated at v. Then n is a
conformal measure for Gv for any dimension d, in particular, for d ¼ dG. Since
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the Poincaré series for G converges at the exponent d, the measure n can be
extended to a conformal measure for G of dimension dG supported by the orbit
Gv, cf. [AFT, Proposition 4.5], and our Theorem shows that n is not a Patterson
measure.

Note that this also applies to bounded parabolic fixed points of rank
k < n� 1, since corresponding to such a fixed point v there is a so-called cusp
neighborhood of V in BnnLðGÞ. This means that there is a Möbius trans-
formation h mapping the closed n-ball to the closed upper half-space of Rn,
so that hðvÞ ¼ y, the subspace Rk is invariant and has compact quotient with
respect to the group hGvh

�1, and hðVÞ is the complement (in the closed upper
half-space of Rn) of a set of the form Rk � Bn�k. If we project to the quotient,
p being the projection, then the boundary of pðVÞ in MG is compact and hence
pðVÞ is an end with boundary. We could see as above, applying the afore-
mentioned results of [AFT] to ends with boundary, that Gv supports an atomic
conformal measure which is not a Patterson measure.

Note that our Theorem can be regarded as a generalization and di¤erent
proof of the fact that the Patterson construction gives a conformal measure which
does not have atoms at bounded parabolic fixed points (see [N], Theorem 3.5.9).
In order to obtain this property of Patterson measures, we only need to comple-
ment the above argument by the observation that if the Poincaré series of G
diverges at dG, then a Patterson measure for G does not have atoms (see [N],
Theorem 3.5.8).

B. The second example is more complex. Let G be a geometrically infinite,
topologically tame Kleinian group of the second kind acting on B3, for instance a
simply degenerate surface group (for the definition see for instance [MT]). Then
it is known that the Poincaré series converges at the exponent of convergence
which is equal to 2 (cf. [C]). Let F be a fundamental domain for G acting on
the boundary sphere. Let D;D1; . . . ;D4 be five closed disks contained in the
interior of F such that D1; . . . ;D4 are disjoint and contained in the interior of D.
Let h and g be two loxodromic elements so that hðqD1Þ ¼ qD2 and gðqD3Þ ¼ qD4,
and so that h and g generate a Schottky group H whose fundamental domain
F 0 is the closure of the complement of D1 UD2 UD3 UD4. (Here, q denotes the
topological boundary in the boundary sphere of B3.) Thus H is geometrically
finite and hence dH < 2. Let N be the normalizer of h in H, making N an
infinitely generated Kleinian group such that dN a dH < 2. (In fact, by a result
of M. Rees [R] we even have that dN ¼ dH .) The group N is infinitely generated
and hi ¼ gihg�i are free generators. It has a fundamental domain DN contained
in the closure of the complement of the union of all giðD1ÞU giðD2Þ.

Let now G0 be the group generated by H and G. The group G0 is Kleinian,
its fundamental domain is F VF 0 and G0 is the free product H � G. Therefore,
the subgroup G ¼ N � G of G0 is also Kleinian. The group G is the example we
are seeking.

Let S be a hyperbolic subplane of B3 bounded by qD. Then gS, g A N, are
distinct and it is easy to see that they bound an end with boundary of G, denoted
by E, whose end group GE is just N. We note that this end is bounded. To
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see this, let F be the component of B3nS not intersecting E. Then the in-
tersection of F with the boundary sphere of B3 is contained in the interior of
the fundamental domain DN of the action of N on the boundary sphere. Hence
gF , g A N ¼ GE , is a family of disjoint sets. This fact implies that F projects

homeomorphically onto a subset of ðB3nLðGEÞÞ=GE which is the complement of
E=GE . Thus the complement of E=GE in MGE

is compact and it follows that E
is a bounded end. Hence LðGEÞ is the union of conical limit points of GE and
of the end limit points of E, cf. [AFT, Lemma 3.1].

If LðGEÞ would consist of conical limit points only, then GE would be a
convex cocompact group and hence finitely generated. Since GE is not finitely
generated we can conclude that the set of end limit points LeðEÞ is not empty.
We have that 2b dG b dG ¼ 2 and hence dG ¼ 2. Since G is of the second kind,
the Poincaré series of G converges at dG ¼ 2. Hence there is a conformal
measure n of N supported by LeðEÞ, cf. Theorem 4.4 of [AFT]; this theorem,
like the next one to which we refer, is formulated for ends without boundary
but is valid also for ends with boundary (see the discussion in the end of Section
5 of [AFT]). We can extend n to a conformal measure of G supported by
6

g AG gðLeðEÞÞ, cf. [AFT, Theorem 4.7]. Since dN ¼ dGE
< 2 ¼ dG, our Theorem

implies that n is not a Patterson measure.
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