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NON-UNIQUENESS OF OBSTACLE PROBLEM

ON FINITE RIEMANN SURFACE

Rie Sasai

Abstract

In [1], R. Fehlmann and F. P. Gardiner studied an extremal problem for a finite

Riemann surface to establish a slit mapping theorem. In this article, we give a condition

for non-uniqueness of such slit mappings, by using a deformation of a Riemann surface.

1. Introduction

Let S be an analytically finite Riemann surface, namely, a compact Riemann
surface minus finitely many points. Though all the results in the present note are
generalized for topologically finite Riemann surfaces in an appropriate way (see
[5]), for simplicity, we restrict ourselves to this case.

Let AðSÞ be the set of integrable holomorphic quadratic di¤erentials j on S.
For j A AðSÞ set kjk ¼

Ð Ð
S
jjj dxdy, z ¼ xþ iy. Let SðSÞ be the family of simple

closed curves on S, which are homotopic neither to a point of S nor to a puncture
of S. Let S½S � be the set of free homotopy classes of elements of SðSÞ. For
j A AðSÞ and g A SðSÞ, we denote the height of g with respect to j by

heightjðgÞ ¼
ð
g

jImð
ffiffiffiffiffiffiffiffiffi
jðzÞ

p
dzÞj

and the height of the homotopy class ½g� by

heightj½g� ¼ inf
b

heightjðbÞ;

where the infimum is taken over all closed curves b A SðSÞ freely homotopic to g
in S.

Definition 1.1. We say that E is an obstacle in S if E is a compact subset
of S, if SnE is connected and if E is contained in a topological disk in S.
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Remark 1.2. In [1] Fehlmann and Gardiner called E an obstacle if E is
a compact subset in S consisting of finitely many components, each of which
is simply connected, and if the natural embedding SnE ! S induces a surjective
homomorphism p1ðSnEÞ ! p1ðSÞ. An obstacle in the sense of Definition 1.1
satisfies these conditions (see Lemma 2.3 in [5]). A compact set consisting of finitely
many simply connected components may not be an obstacle in the sense of
Fehlmann and Gardiner. The next example was learned from Professor
Masahiko Taniguchi. Let E 0

0 ¼ fxþ i sinðp=xÞ j x A ð�1; 0ÞU ð0; 1�gU fiy j �1a
ya 1g and set E0 ¼ fepiz j z A E 0

0g. Then we can see that the compact set E0 is
connected and simply connected and E0 separates 0 from y in C� ¼ Cnf0g. Let
g be a non-trivial simple closed curve on an analytically finite Riemann surface
S. Then there is a topological embedding g : C� ! S such that the image of
the unite circle S1 under g is freely homotopic to g in S. The set E ¼ gðE0Þ
is connected and simply connected. Since SnE is homeomorphic to Sng the
homomorphism p1ðSnEÞ ! p1ðSÞ is not surjective.

For an obstacle E of S, let FðS;EÞ be the family of pairs ð f ;Sf Þ, where f is
a conformal map of SnE into another Riemann surface Sf of the same analytic
type as S such that f maps each puncture of S to a puncture of Sf . Then
ð f ;Sf Þ A FðS;EÞ induces an isomorphism if of the fundamental group p1ðSÞ of S
onto p1ðSf Þ (cf. [5, Lemma 2.5]). We denote by ½Sf ; if � the Teichmüller (equiv-
alence) class of ðSf ; if Þ in TðSÞ. Here, pairs ðRj; ijÞ, j ¼ 1; 2, of Riemann sur-
faces Rj and orientation-preserving isomorphisms ij : p1ðSÞ ! p1ðRjÞ are said to
be Teichmüller equivalent if there exists a conformal map h : R1 ! R2 such that
i2 ¼ h� � i1. We refer to [4] for basic facts about Teichmüller spaces. We remark
that, for every ð f ;Sf Þ A FðS;EÞ the set f ðEÞ :¼ Sf n f ðSnEÞ is an obstacle of Sf :

The heights mapping theorem (cf. [3]) states that, for every ð f ;Sf Þ A FðS;EÞ
and j A AðSÞnf0g, there exists the unique holomorphic quadratic di¤erential jf A
AðSf Þnf0g such that

heightj½g� ¼ heightjf ðif ½g�Þ for every ½g� A S½S �:

Definition 1.3. A compact subset E of S is said to be a horizontal slit for
j A AðSÞnf0g if each connected component of E is either a horizontal arc of j or
a finite union of horizontal arcs and critical points of j:

Let E be an obstacle of S and j A AðSÞnf0g. Fehlmann and Gardiner [1]
posed an obstacle problem for ðS;E; jÞ which asks the existence of ð f ;Sf Þ A FðS;EÞ
maximizing the quantity

Mf ¼ kjf kL1ðSf Þ ¼
ð ð

Sf

jjf j

in FðS;EÞ, and showed the following result.

Theorem 1.4 (Fehlmann-Gardiner). Suppose that S is an analytically finite
Riemann surface, and that j A AðSÞnf0g. Let E be an obstacle of S with finitely
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many components. Then there exists an element ðg;SgÞ A FðS;EÞ such that Mg

attains the supremum:

Mg ¼ sup
ð f ;Sf Þ AFðS;EÞ

Mf :

Moreover, gðEÞ is a horizontal slit for jg. Furthermore if ð f ;Sf Þ A FðS;EÞ is also
extremal for ðS;E; jÞ, then f �jf ¼ g�jg on SnE.

The point ðg;SgÞ A FðS;EÞ in Theorem 1.4 is called extremal for ðS;E; jÞ,
and the associated di¤erential jg is called the extremal di¤erential.

Fehlmann and Gardiner asserted in [1] moreover that if ð f ;Sf Þ A FðS;EÞ is
also extremal for ðS;E; jÞ, then g � f �1 extends to a conformal map of Sf onto
Sg. This is not necessarily valid. We show it in the following theorem. To
state the result, we introduce a technical concept.

Definition 1.5. Let S be an analytically finite Riemann surface and m be
an integer with mb 2. Suppose that an obstacle E of S is a horizontal slit for
j A AðSÞnf0g. We will call p0 A E a refolding point of order m for ðS;E; jÞ if p0
is a zero of j of order m and if E contains two horizontal arcs l1 and l2 with
common end point p0 such that the angle formed by them at p0 is greater than
2p=ðmþ 2Þ.

Theorem 1.6. Let E be an obstacle of an analytically finite Riemann surface
S and j A AðSÞnf0g. Suppose that ðg;SgÞ A FðS;EÞ is extremal for ðS;E; jÞ and
that gðEÞ has a refolding point p0 of order mb 3 for ðSg; gðEÞ; jgÞ. Then, there
exists another extremal element ð f ;Sf Þ A FðS;EÞ for ðS;E; jÞ such that Sf is not
conformally equivalent to Sg.

Remark 1.7. In the proof, by parametrizing the arcs kj, j ¼ 1; 2, by t A ½0; 1� so
that the jg-length of kjð½0; t�Þ is t times that of kjð½0; 1�Þ, we can actually construct
a family of extremal elements ð ft;SftÞ A FðS;EÞ, 0a ta 1, for the same obstacle
problem for ðS;E; jÞ satisfying

(i) ð f0;Sf0Þ ¼ ðg;SgÞ,
(ii) the marked Riemann surface tt ¼ ½Sft ; ift � varies continuously in TðSÞ,

and
(iii) tt 0 t0 for t0 0:

Acknowledgement. The author would like to thank the referee for valuable
suggestions.

2. Example

In this section we give an example of triple ðS;E; jÞ which satisfies the
assumptions of Theorem 1.6.
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First take three copies M1, M2, M3 of the rectangle

M ¼ fz ¼ xþ iy A C j jxja 2; jyja 1g;

and let zj be the coordinate corresponding to z on each Mj. Next on each Mj,
identify the two pairs of parallel sides under the translations

zj ! zj þ 4; zj ! zj þ 2i:

Then we obtain three copies T1, T2, T3 of a torus T . The quadratic di¤erential
dz2 on M induces a holomorphic quadratic di¤erential j0 on T .

Cut Tj along the segment

Ij ¼ fzj ¼ xj þ iyj j �1a xj a 0; yj ¼ 0g;

and glue them cyclically. More precisely, we paste the upper edge Iþ1 of the slit
I1 to the lower edge I�2 of the slit I2, the upper edge Iþ2 of the slit I2 to the lower
edge I�3 of the slit I3, and the upper edge Iþ3 of the slit I3 to the lower edge I�1
of the slit I1. Then we obtain a compact Riemann surface S of genus three (see
Figures 1 and 2).

Let P be the natural projection of S onto the torus T , and j be the pull-
back of j0 by P. Finally, let E be the subset of S consisting of l1 and l2, where
li is the arc on Ti corresponding to fz j 0a xa 1; y ¼ 0g:

We now consider the obstacle problem for ðS;E; jÞ. Then the obstacle E is
a horizontal slit for j. Hence we know that the identity mapping of S gives an
extremal slit map associated with the extremal problem for this triple. More-
over, we can easily see that the point p0 ¼ P�1ð0Þ in S is a refolding point of
order 4 for ðS;E; jÞ.

Thus the assumptions in Theorem 1.6 are satisfied and, as a consequence, the
points in TðSÞ which are induced by the extremals for ðS;E; jÞ are not uniquely
determined.

Figure 1.
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3. Proof of Theorem 1.6

Assume that a component J of gðEÞ contains a refolding point p0 of order
mb 3 for ðSg; gðEÞ; jgÞ and horizontal arcs l1 and l2 with common end point p0
and that an angle formed by l1 and l2 at p0 is

2kp

mþ 2
2a ka

mþ 2

2

� �
:

Note that the arcs l1, l2 are segments on the real axis with endpoint at the
origin with respect to the natural parameter

z ¼
ð z

z0

ffiffiffiffiffiffiffiffiffiffiffi
jgðzÞ

q
dz;

where z is a local chart near p0 and z0 ¼ zðp0Þ.
We take closed subarcs kj H lj, j ¼ 1; 2, with the same jg-length such that p0

is an endpoint of each kj and that jg has no zeros on kjnfp0g. Let pj be the

other endpoint of kj for each j. Also set K ¼ k1 U k2.
Now, cut Sg along k1 and k2. For each j, let kþj and k�j be the right-side

and the left-side edges of the slit kj, respectively, with respect to the orientation
which corresponds to the move along the slit from p0 to pj. Assume that k�1
and kþ2 , kþ1 and k�2 form the angles

2kp

mþ 2
and

2pðmþ 2� kÞ
mþ 2

:

at p0, respectively.

Figure 2.
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Paste k�1 and kþ2 so that points having the same absolute value with respect
to z are identified. In the same way, paste kþ1 and k�2 . Let ~KK be the union of
the pasted segments. Then we obtain a new analytically finite Riemann surface R
and the natural conformal embedding u : SgnK ! R. Set f ¼ u � g and Sf ¼ R.
Then the pair ð f ;Sf Þ is an element of the family FðS;EÞ. (Figures 2 exhibits the
case when m ¼ 4 and k ¼ 2:)

Moreover, from the construction we can extend ðu�1Þ�jg naturally to a
holomorphic quadratic di¤erential c A AðSf Þ satisfying kckL1ðSf Þ ¼ kjgkL1ðSgÞ.
The obstacle f ðEÞ is a horizontal slit for c:

The following proposition is crucial in the proof of Lemma 3.2 and Lemma
3.3.

Proposition 3.1 (Second Minimal Norm Property [2, p. 54]). Assume S is an
analytically finite Riemann surface. Let j A AðSÞ and let c be a quadratic dif-
ferential, continuous except possibly at the punctures of S. Suppose heightj½g�a
heightc½g� for every ½g� A S½S �. Then

kjka
ð ð

S

j ffiffiffi
j

p ffiffiffiffi
c

p
j dxdya kjk1=2kck1=2

and kjk ¼ kck if only if j ¼ c.

Lemma 3.2. c ¼ jf :

Proof. If heightc½g�a heightjf ½g� for every ½g� A S½Sf �, then by Proposition
3.1 we can see kckL1ðSf Þ a kjf kL1ðSf Þ. On the other hand, since ðg;SgÞ is extremal

for ðS;E; jÞ and kckL1ðSf Þ ¼ kjgkL1ðSgÞ, we obtain kjf kL1ðSf Þ a kckL1ðSf Þ. Hence,

kckL1ðSf Þ ¼ kjf kL1ðSf Þ. Proposition 3.1 implies c ¼ jf on Sf . So we have only

to show that heightc½g�a heightjf ½g� for every ½g� A S½Sf �.
We say that a curve b on Sg is a jg-polygonal curve, if b is the union of

finitely many horizontal arcs and vertical arcs of jg. Note that for every
½g� A S½Sg�

heightjg ½g� ¼ inf
b

heightjgðbÞ;

where the infimum is taken over all jg-polygonal curves b freely homotopic to g
in Sg.

Let ½g� A S½S � and b be a jg-polygonal curve in Sg with ½b� ¼ ig½g� in S½Sg�.
We can add horizontal segments contained in ~KK to the (possibly broken) curve
uðbnKÞ so that the resulting set ~bb is a c-polygonal (closed) curve and satisfies

½ ~bb� ¼ if ½g� in S½Sf �. Then,

heightcðif ½g�Þa heightcð ~bbÞ ¼ heightjgðbÞ:
Hence we obtain

heightcðif ½g�Þa heightjgðig½g�Þ ¼ heightjf ðif ½g�Þ:
Thus we have proved the assertion. r
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By Lemma 3.2, we see that ð f ;Sf Þ is extremal for ðS;E; jÞ and the obstacle
f ðEÞ of Sf is a horizontal slit for jf :

Lemma 3.3. ½Sg; ig�0 ½Sf ; if � in TðSÞ:

Proof. Suppose that ½Sg; ig� ¼ ½Sf ; if � in TðSÞ. Then there exists a conformal
map h : Sg ! Sf with if ¼ h� � ig. Since heighth�jf

½g� ¼ heightjf ½hðgÞ�, we obtain

heighth �jf
½g� ¼ heightjg ½g�

for every ½g� A S½Sg�. Hence Proposition 3.1 implies that

h�jf ¼ jg on Sg:

In particular, the map h sends the zeros of jg to those of jf while keeping
multiplicities. From the argument together with the relation u�jf ¼ jg on SgnK ,

the number of zeros of a given order of jg on K is equal to that of jf on ~KK .
This is impossible, because from the construction the zero p0 of jg of order
mb 3 breaks into two zeros of jf of orders k � 2 and m� k, respectively, where
2a ka ðmþ 2Þ=2. Hence the number of zeros of jg of order m on K is less
than that of jf on ~KK, which is a contradiction. r

Thus we have proved the assertion in Remark 1.7, and hence Theorem 1.6.
In [5], the author gave the uniqueness result under the condition that the

obstacle possibly consists of infinitely many components. It is expantion of
Theorem 1.4.
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