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Introduction.

Let M be a Kaehler manifold of complex dimension n+p, ί^O, and M be a
Riemannian manifold of real dimension n. Let / be the almost complex struc-
ture of M. We call M a totally real submanif old of M if M admits an isometric
immersion into Msuch that yTΛ,(M)cTΛ.(M)-L where TX(M) denotes the tangent
space of M at x and TX(M)^ the normal space of M at x. When p=Q, we see
that JTX(M}—T^M}1-, for which case many interesting properties of totally real
submanifolds have been studied by different authors (see [1], [2], [4], [5], [6],
[7], [9] and [12]). For the case p>0, one of the present authors proved in [10]
some theorems for totally real, totally umbilical submanifolds of a Kaehler mani-
fold. On the other hand, Ludden-Okumura-Yano [6] proved a pinching theorem
for a compact minimal totally real submanifold of a complex space form also
for the case p>0.

The purpose of the present paper is to generalize some of theorems proved
in [5], [6], [7], [10] and [12].

In § 1 we derive some fundamental formulas for a totally real submanifold
M of a Kaehler manifold M. In § 2 we study the /-structure in the normal
bundle of a totally real submanifold (see [6], [8], [10]). In § 3 we consider_an
n-dimensional compact totally real submanifold of a complex space form M(c)
of complex dimension n+p and of constant holomorphic sectional curvature c
and give some integral formulas computing the Laplacian of the square of the
second fundamental form. As an application of these integral formulas we prove
a pinching theorem for compact totally real submanifolds which is a generali-
zation of theorems in [2] and [5]. In § 4 and § 5 we study generalizations of
results proved in [12]. The purpose of the last section is to give a characteri-
zation of an tt-dimensional compact flat totally real submanifold S1(r1)xS1(r2)x
- xSα(rJ in some Cn in Cn+p.

% 1. Preliminaries.

Let M be a Kaehler manifold of complex dimension n+p. We denote by /
the almost complex structure of M. An n-dimensional Riemannian manifold
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M isometrically immersed in M is called a totally real submanifold of M if
JTX(M)±.TX(M) for each x^M where TX(M) denotes the tangent space to
M at x^M. Here we have identified TX(M) with its image under the differential
of the immersion because our computation is local. If X<^TX(M), then JX is a
normal vector to M. Thus we see that p^Q. Let g be the metric tensor field

of M and g be the induced metric tensor field on M. We denote by V (resp. F)
the operator of covariant differentiation with respect to g (resp. g). Then the
Gauss- Weingarten formulas are respectively given by

rzγ=rzγ+B(x, y) , FXN=-ANX+DXN
for any tangent vector fields X, Y and any normal vector field TV on M, where
D is the operator of covariant differentiation with respect to the linear con-
nection induced in the normal bundle. Both A and B are called the second
fundamental form of M and satisfy

g(B(X, Y\ N)=g(ANX, Y) .

A normal vector field N in the normal bundle is said to be parallel if DXN=0
for any tangent vector field X on M. The mean curvature vector H is defined
as H=(l/ri)ΎrB, Ύr B being defined by Tr£=Σ#(A, O for an orthonormaL

I

frame {et}. If H=Q, then M is said to be minimal and if the second fundamental
form is of the form B(X, Y)=g(X, Y)H, then M is said to be totally umbilical
If the second fundamental form of M vanishes identically, i. e., £— 0, then M is
said to be totally geodesic.

We choose a local field of orthonormal frames el9 ••• ,en; en+1, ••• , en+p e^—
βi, — , en*=Jen eίn+ίy=Jen+lt ••• , eίn+py=Jen+p in M in such a way that, restricted
to M, 0!, •• ,en are tangent to M. With respect to this frame field of M, let
ω\~ ,ωn] ωn+1, -,ωn+p; ω1*, - , ωn* ωcn+1)*, - , ωcn+^ be the field of dual
frames. Unless otherwise stated, we use the conventions that the ranges of
indices are respectively :

A, B, C, D=l, ~ , n+p, 1*, - , (n+p)* ,

i,j, k, /, ί, s=l, — , n ,

α, ft, c, d=n+l, - , n+A 1*,

α, j8, γ=n+l, —

and that when an index appears twice in any term as a subscript and a super-
script, it is understood that this index is summed over its range. Then the
structure equations of M are given by

(1.1)
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(1.2) ωj+ω&=0, ωj=α>j:, <*>?=($,

cύa+a)t=Q , ω^— ω%* , α>£ =ωf ,

(1.3) dωi=-ωίa>Z+Φi , Φi=-±-

Restricting these forms to M, we have

(1.4) ωα=0 ,

(1.5) dωl=-ωl/\ωk ,

(1.6) Λϋ}= -ω\

Since Q=dωa=—ωf/\ωl, by Cartan's lemma we have

(1.7) ω?=/z?χ , hfj=h% .

We see that g(Aaeτ, ej=hfj. The Gauss-equation is given by

(1.8)

Moreover we have

(1.9) dωl = -ωϊ/

and the Ricci-equation is given by

(1.10) Λ?«=Λ:f«+Σ(AaA{i-AS/*) .
I

From (1.2) and (1.7) we have

(1.11) A£=Afi=λί;.

We define the covariant derivative hfjk of hf} by setting

(1.12)

The Laplacian JΛf^ of hfj is defined as

(1.13) JAf y=ΣA&M,
/c

where we have put

(1.14)

The forms (ωj) define the Riemannian connection of M and the forms (ω£) define
the connection induced in the normal bundle. If hfjk=0 for all α, z, j and &, then
the second fundamental form of M is said to be parallel.

If a Kaehler manifold M is of constant holomorphic sectional curvature c,
then we have

(1.15) KiCD=-c(dACdBD—δADdBC+JACJBD—J
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We call such a manifold a complex space form and denote it by M(c). If a
Riemannian manifold M is of constant curvature fe, then we have

(1.16) Φ«

We call such a manifold a real space form and denote it by M(K).

§2. /-structure in the normal bundle.

Let M be a totally real submanifold of real dimension n of a Kaehler mani-
fold M of complex dimension n+p. We denote by TX(M) the tangent space of
M at x^M and by T^M)-1- the normal space of M at x^M. Then we see that
JTx(M)c:Tx(M)\ Let NX(M) be an orthogonal complement of JTX(M) in
Then we have the decomposition :

If N&NX(M), we obtain JN^NX(M). If A/" is a vector field in the normal bundle
T(M)-1, we put

(2.1) JN=PN+fN,

where PN is the tangential part of JN and fN the normal part of JN. Then
P is a tangent bundle valued 1-form on the normal bundle and / is an endo-
morphism of the normal bundle. Then, putting N=JX in (2.1) and applying /
to (2.1), we find [6], [10] :

PfN=Q , f2N= -N-JPN ,
(2.2)

PJX=-X, fJX=Q,

where X is a tangent vector field to M and N is a vector field in the normal
bundle. Equations (2.2) imply that

Therefore, / being of constant rank, if / does not vanish, then it defines an /-
structure in the normal bundle [8]. From (2.1), using the Gauss-Weingarten
formulas, we have

(2.3) -JANX+fDxN=B(X, PN)+Dx(fN} ,

from which

(2.4) (Dxf}N=-B(X, PN)-JΛNX .

If Dχf=Q for any tangent vector field X, then the /-structure in the normal
bundle is said to be parallel.

LEMMA 2.1. Let M be a totally real submanifold of real dimension n of a
Kaehler manifold M of complex dimension n+p. If the f -structure in the normal



TOTALLY REAL SUBMANIFOLDS 389

bundle is parallel, then we have

(2.5) ΛN=Q for N<=NX(M) .

Proof. If NeNx(M), then we have PN=Q. Thus by the assumption and
(2.4) we have (2.5).

Remark. We can take a frame ev, — ,en. for JTX(M) and a frame en+1, ••• ,
en+P, 2c7H-ι>*, •** »0cn+j»* for NX(M). Therefore if the /-structure in the normal
bundle is parallel, then we have

(2.6) Aλ=0, i.e., A£,=0.

§3. Integral formulas.

Let M(c) be a complex space form of complex dimension n+p and of con-
stant holomorphic sectional curvature c and let M be a totally real submanifold
of real dimension n of M(c).

LEMMA 3.1. Let M be a totally real submanifold of a complex space form
M(c). Then we have

(3.1) ΣA&4A?,= Σ hfjh
a

k
CL,I,J a,ι,J,k α

+Σ-j-c TrΛf—

+ Σ {Tr(/l0Λ-ΛΛ)2-CTr(
α,6

where we have put At=At*.

Proof. First of all, by a straightforward computation, we have (see [3; p.
63]):

- Σ
a,b,ι,j,k,ί

^ , &h}k-h ̂

From this and (1.15) we have (3.1).

Using Lemma 2.1 and (3.1), we obtain the following

LEMMA 3.2. Let M be a totally real submanifold of a complex space form
M(c). If the f-structure in the normal bundle is parallel, then we have
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λ&4λ&= Σ Λ&toy+Σ-rOί
a,ι,j,k £ i- 4t

390

(3.2)

In the sequel, we need the following lemma proved in [3],

LEMMA 3.3 ([3]). Let A and B be symmetric (n, n)-matrices. Then

-Ύr(AB-BA)2^2 ΎrA2 TrB2 ,

and the equality holds for non-zero matrices A and B if and only if A and B
can be transformed by an orthogonal matrix simultaneously into scalar multiples
of A and B respectively, where

A=\

0 1

1 0

0

0

0

B=

1 0

0 -1

0

0

0

Moreover, if Alf A2, A3 are three symmetric (n, n)-matrices such that

-Ύr(AaAb-AbAa)
2=2TrA2

aΎrAlί l^α, 6^3,

then at least one of the matrices Aa must be zero.

We next put

=rΓ'ί: AaAb ,

so that Sαδ is a symmetric (n, n) -matrix and can be assumed to be diagonal for
a suitable frame. S is the square of the length of the second fundamental form.
When the /-structure in the normal bundle is parallel, using these notations, we
can rewrite (3.2) in the following form :

(3.3) = Σ A&Aj*,+--(n
a,ι,j,k *±

+Σ

On the other hand, using Lemma 3.3, we have

(3.4) f— ~(n+l)cS

? — j-(n+ϊ)cS
*
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From (3.3) and (3.4) we find

(3.5) -Σhfjhtj^W- Σ f e λ W .
a,ι,j a,l,j,k

where we have put

(3.6) W

Now assume that M is compact and orientable, then we have the integral for-
mulas (cf . [5]) :

f Σ (*&*)'*!= -f Σ
J M a,ι,j,k J M a,ι,j

f Σ λ&AS»,,*l=f Σ(
J M a,ι,j,k ' J j ϋ f α

Inequality (3.5) and these integral formular imply the following

THEOREM 3.1. Let M be a compact orientable totally real submamfold of a
complex space form M(c). If the f -structure in the normal bundle is parallel,
then

(3.7) f [^-Σ(TrAMTrA*)]*l^f Σ
J M a J M a,ι,ja,ι,j,k

THEOREM 3.2. Let M be a compact orientable totally real minimal sub-
manifold of a complex space form M(c). If the f -structure in the normal bundle
is parallel, then

(3.8) f [(2— j;-)S-4-(n+l)c]s*l^f Σ (Λ&»)'*1^0.
J j f L V n / 4 J J M a,τ,j,k

COROLLARY 3.1. Let M be a compact orientable totally real minimal sub-
manifold of real dimension n of a complex space form M(c) of complex dimension
n+p. If the f -structure in the normal bundle is parallel and if S<n(n+l)c/4(2n— 1),
then M is totally geodesic.

Let CPn+p be a complex projective space of constant holomorphic sectional
curvature 4 and of complex dimension n+p. We would like to study a compact
orientable totally real submamfold M of real dimension n of CPn+p such that
the /-structure in the normal bundle is parallel and satisfies

(3.9) f [̂ -Σ
•Ίr a

In the following we assume that M is not totally geodesic. From (3.7) and (3.9)
the second fundamental form of M is parallel, i. e., Λ?/*= 0. Then (3.3), (3.4) and
(3.5) imply
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(3.10) Σ(St-S.γ=0,
t>8

(3.11) -Tτ(AtA,-A.Atγ=2 TrAί Tr A2

for any tφs. By Lemma 3.3 we may assume that At=Q for f=3, * ,n, which
means that St=Q for t=3, ••• , n. On the other hand, we have St—Ss for any
/, s by (3.10). Therefore, using Lemma 3.3, we can assume that

(3.12) Λ=<J J), Λ=A<J _})•

Consequently M is minimally immersed in CP2+ί>. Since Ay=0, (1.7) implies that

(3.13) ωi=0.

From (1.12) we also have the following

(3.14) dht^h&afj +hΐjω\-hb

ίjω<t.

From (3.14) we have h$ωi = 0, which implies that

(3.15) 6^=0.

Setting α=l*, ί=l and j=2 in (3.14), we see that dλ=dh\l=Q, which means that
Λ is constant. Similarly, setting α— 2* and ι=j=l, we see that μ is also constant
and by (3.10) we get λ2=μ2. Since Mis not totally geodesic, Λ^O. This shows
that

(3.16) ωf^O, ί=l,2.

From (3.13), (3.15) and (3.16) we can consider a distribution L defined by

ω^=0, ω}=0, ω}.=0.

Then it easily follows from the structure equations that

Therefore the distribution L is a 4-dimensional completely integrable distribution.
We consider the maximal integral submanifold M(x) of L through x^M. Then
M(x) is of dimension 4 and by construction it is totally geodesic and is a complex
submanifold in CP2+P. Moreover M is immersed in M(x). Thus we can consider
that M is minimally immersed in CP2. From these considerations, combined
with the theorems of [5], [7], we have the following

THEOREM 3.3. Let M be an n-dimensional compact orientable totally real
submanifold of a complex projective space, CPn+p (n>ΐ) and suppose that M is
not totally geodesic but satisfies the condition (3.9). // the f -structure in the
normal bundle is parallel, then M is SλxSl in some CP2 in CP2+P.

THEOREM 3.4. Let M be an n-dimensional compact orientable totally real
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minimal submanifold of a complex protective space CPn+p (n>l) with S—
n(n+l)/(2n—1). // the f-structure in the normal bundle is parallel, then M is

in some CP2 in CP2+P.

§4. Totally real submanifolds with commutative second fundamental
form.

Let M be a real n-dimensional totally real submanifold of a complex (n-\-p)-
dimensional Kaehler manifold M If the second fundamental form of M satisfies
AaAb=ΛbΛa for all a and b, then the second fundamental form of M is said to
be commutative, which is equivalent to that Σ^&^— Σ/^/A^ for all a, bt i and k.

3 3

LEMMA 4.1 ([10]). Let M be a real n-dimensional totally real submanifold
of a complex (n+p)-dimensιonal Kaehler manifold M. If the f-structure in the
normal bundle is parallel, then M is flat if and only if the normal connection of
M is flat, i. e., R$kl=Q.

Proof. From Lemma 2.1,
(1.2), (1.6) and (1.9) imply

we get h}j=Q, which shows that ω}=0. Then

Λ ω= =Ωj ,

which show that R^kι=R}kl and Rλ

μki=Rλj-ki=zRίμki=^'
tion.

Thus we have our asser-

LEMMA 4.2. Let M be a real n-dimensional totally real submanifold of a
complex (n+p) -dimensional Kaehler manifold M. If the second fundamental form
of M is commutative and if the f-structure in the normal bundle is parallel, then
we can choose an orthonormal frame for which Λa is of the form

At=
0

t=l, ••- ,n,

\ 0

i. e., /z^=0 and hlj=Q unless t=ι=j.

Proof. By the assumption we have h^=0. If AaAύ—AtAa, we can choose
an orthonormal frame elt ••• ,en for TX(M) in such a way that all Λα's are
simultaneously diagonal, i.e., hfj=Q when iφj, that is, Λf}=0 when iφj. From
(1.11) we see that Λ£=0 unless t=ι=j.
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COROLLARY 4.1. Let M be a real n-dimensional totally real minimal sub-
manifold of a complex (n+p}-dimensional Kaehler manifold Mwith commutative
second fundamental form. If the f -structure in the normal bundle is parallel,
then M is totally geodesic.

Proof. From Lemma 4.2 we have ^=0 for all i, by the fact that Tr^L*— 0.
On the other hand, we have already A2=Q. Thus M is totally geodesic.

COROLLARY 4.2. Let M be a real n-dimenswnal (n>l) totally real, totally
umbilical submanifold of a complex (n-\-p) -dimensional Kaehler manifold M. If
the /-structure in the normal bundle is parallel, then M is totally geodesic.

Proof. Since Mis umbilical, we have hίj=δij(1τΛk)/n and ^=0 by Lemma
2.1. Therefore the second fundamental form of M is commutative. Thus Lemma
4.2 implies that A|J=0 unless i=j=k. On the other hand, we have hϊj=λkδij/n.
Setting i—]Φk, we have λk— 0 and hence M is totally geodesic.

LEMMA 4.3. Let M be a real n-dimensional totally real submanifold of a
complex space form Mn+p(c) with parallel f -structure in the normal bundle. Then
M is a real space form of constant curvature (l/4)£ if and only if the second
fundamental form of M is commutative.

Proof. First of all, we have h}j=0 by Lemma 2.1. Then (1.8), (1.11) and
(1.15) imply

which proves our assertion.

LEMMA 4.4. Let M be a real n-dimensional totally real submanifold of a
complex (n-\-p) -dimensional Kaehler manifold M. Then we have

(4.1)
t,s

Proof. Since A|}=Aίj, we have

ΣTrΛMZ= Σ
ι,s t,s,ι,j,ktί

LEMMA 4.5. Let M be a real n-dimensional totally real submanifold with
constant curvature k of a complex space form Mn+p(c). If the f -structure in the
normal bundle is parallel, then we have

(4.2)
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Proof. From (1.8), (1.15) and (1.16) we have

(4.3)

where we have used the fact that h}j=Q as is seen from Lemma 2.1. Multiplying
the both sides of (4.3) by ΣΊ?!Λ$i and summing up with respect to i,j, k and /

we have (4.2) by using (4.1).

LEMMA 4.6. Let M be a real n-dimensional totally real submanif old with
constant curvature k of a complex space from Mn+p(c). If the f -structure in the
normal bundle is parallel, then we have

(4.4) (n
t,s

Proof. From Lemma 2.1 and (4.3) we have

(4.5) (n-

Multiplying the both sides of (4.5) by ΣM&/4*z and summing up with respect to
s

i, k and I we obtain (4.4).

§5. Totally real submanif olds of constant curvature.

PROPOSITION 5.1. Let M be a real n-dimensional totally real submanif old of
a complex space form Mn+p(c) with parallel mean curvature vector. If M is of
constant curvature k and if the f -structure in the normal bundle is parallel, then

(5.1) Σ (/«&*)'=-* ΣC(n+l) TrΛf-2(TrΛ)2] .
a,ι,j,κ t

Proof. By the assumption we see that ΣTrA| is constant. Thus we have
α

ΣA&Λft?/=4-JΣTrΛi- Σ (A&*)'=- Σ (A&*)1.
a,ι,j £ a a,ι,J,k &,i,3,k

Therefore (3.2) becomes

(5.2) Σ (AfyA)8=-Σ[-^(n+l)cTr^ϊ— i-c(TrΛ)2]
a,ι,j,k t L 4 ^ -I

-Έ{Tτ(AtAs-AsAt)
2-lTτ(AtAs)J+ΎrAsΎτ(AtAsAt)} .

t,s

Substituting (4.2) and (4.4) into (5.2) and using (4.1) we have (5.1).

PROPOSITION 5.2. Let_M be a real n-dimensional totally real submanif old of
a complex space form Mn+p(c) (n>l) and M be with parallel mean curvature

vector and of constant curvature k. If --c^k and if the f -structure in the
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normal bundle is parallel, then &^0 or M is totally geodesic \-j-c=k

Proof. From (4.5) we have

Since -j-cΞϊfe, we have

(5.3)

If fe>0, (5.1) implies that

which implies that ΣTr^4?=0 and hence that Mis totally geodesic. Except for
this possibility we have &^0.

PROPOSITION 5.3. Let M be a real n-dimensional totally real submanifold of
a complex space form Mn+p(c) (n>l) and M be with parallel second fundamental

form and of constant curvature k. If -τ-c^k and if the f -structure in the normal

bundle is parallel, then either M is totally geodesic (- r̂̂ — &) or flat (&— 0).

COROLLARY 5.1. Let M be a real n-dimensional totally real minimal sub-
manifold with constant curvature k of a complex space form Mn+p(c). If the f-
structure in the normal bundle is parallel, then either &rgO or Mis totally geodesic.

COROLLARY 5.2. Let M be a real n-dimensional totally real minimal sub-
manifold of a complex space, form Mn+p(c) and M be with constant curvature k
and parallel second fundamental form. If the f -structure in the normal bundle
is parallel, then either M is totally geodesic or flat.

PROPOSITION 5.4. Let M be a real n-dimenswnal totally real submanifold
with parallel mean curvature vector of a complex space form Mn+p(c). If the
second fundamental form of M is commutative and if the f-structure in the
normal bundle is parallel, then we have

(5.4) Σ

Proof. Using Lemma 4.2 and Lemma 4.3, we can transform (5.1) into (5.4).

PROPOSITION 5.5. Let M be a real n-dimensional totally real submanifold of
a complex space form Mn+p(c) (n>ΐ) and M be with parallel mean curvature
vector and with commutative second fundamental form. If the f-structure in the
normal bundle is parallel, then either M is totally geodesic or c^O.

PROPOSITION 5.6. Let M be a real n-dimensional totally real submanifold of
a complex space form Mn+p(c) (n>l) and M be with parallel and commutative



TOTALLY REAL SUBMANIFOLDS 397

second fundamental form. If the f-structure in the normal bundle is parallel,
then M is either totally geodesic or flat.

Proof. By the assumption and Lemma 4.3, M is of constant curvature -τ-c.

On the other hand, by (5.4), M is totally geodesic or c—0 in which case M is
flat.

PROPOSITION 5.7. Let M be a real n-dimensional flat totally real submanifold
with parallel mean curvature vector of a complex (n+fi)-dimensional flat Kaehler
manifold M. If the f-structure in the normal bundle is parallel, then the second
fundamental form of M is parallel.

Proof. From Lemma 4.3 and (5.4) we have our assertion.

§ 6. Flat totally real submanif olds.

A simply connected complete Kaehler manifold of constant holomorphic
sectional curvature c and of complex dimension n can be identified with the
complex projective space CPn, the open unit ball Dn in Cn or Cn according as
c>0, c<0 or c=Q. In [12] we gave an example of a flat totally real submanifold
of Cn, that is, we showed that S1(r1)x51(r2)x ••• xS^rJ is a flat totally real
submanifold in Cn, where we put S1(r l)={z ieC: \z%

 2=rϊ}, i=l, — , n. Moreover
an n-dimensional plane Rn is a totally real, totally geodesic submanifold in Cn

and a pythagorean product S1(r1)x ••• xS1(rp)xRn~p is also a flat totally real
submanifold of Cn where Rn~p denotes an (n— ί)-dimensional (p^ΐ) plane.

THEOREM 6.1. Let M be a real n-dimensional complete totally real sub-
manifold of Cn+p (n>ΐ) and M be with parallel mean curvature vector and com-
mutative second fundamental form. If the f-structure in the normal bundle is
parallel, then Mis an n-dimensional plane Rn in some Cn in Cn+p, a Pythagorean
product of the form

r^X — xS^rJ in some Cn in Cn+p ,

or a Pythagorean product of the form

S\rl)xS\r2}x ••• xSl(rm)xRn~m in some Cn in Cn+p ,

where Rn~m is an (n—m) -dimensional plane and n>m, m^l.

Proof. By the assumption and Lemma 4.3, M is flat. Thus Proposition 5.7
shows that the second fundamental form of M is parallel. Moreover, by using
Lemma 4.1, we see that the normal connection of M is flat. From Lemma 2.9
of Yano-Ishihara [11], M is immersed in some Cn in Cn+p. Then Theorem 3.1
in [11] proves our statement.

THEOREM 6.2. Let M be a real n-dimensional complete totally real sub-
manifold of a simply connected complete complex space form Mn+p(c) (n>l) and
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M be with parallel and commutative second fundamental form. If M is not totally
geodesic and if the f-structure in the normal bundle is parallel, then M is a
Pythagorean product of the form

x - X5j(rn) in some Cn in Cn+p ,

or a Pythagorean product of the form

SVJx S'Wx — xS^rJX/?71-111 in some Cn in Cn+p ,

where n>m and m^l.

Proof. By the assumption and Proposition 5.6, we have c=0. In this case
we may consider that the ambient space M is Cn+p. Then Theorem 6.2 follows
from Theorem 6.1.

COROLLARY 6.1. Under the same assumption as in Theorem 6.1, if M is
compact, then M is a Pythagorean product of the form

S'WxS'Wx - XSVJ in some Cn in Cn+p .

COROLLARY 6.2. Under the same situation as in Theorem 6.2, if M is com-
pact, then M is a Pythagorean product of the form

Jx ••• xS^rJ in some Cn in Cn+p .
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