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METRIC POLYNOMIAL STRUCTURES

By JAROLIM BURES AND JIRI VANZURA

0. The paper is devoted to the study of metric polynomial structures, i. e.
polynomial structures / for which there exists a positive definite Riemannian
metric g such that there is g ( f ( X ) , f ( Y y ) = g ( X , Y). In the first paragraph we
divide the metric polynomial structures into four groups, restricting then our-
selves to the first group only. In the second paragraph we are concerned with
the integrability conditions of the distributions naturally arising in the study of
these structures. In the last third paragraph we establish the existence of
special connections associated with the metric polynomial structures.

1. Let M be a differentiate manifold of class C°°. By a polynomial struc-
ture on M we mean a C°°-tensor field of type (1, 1) on M satisfying a polynomial
equation

where alt ••• ,an are r^al numbers, at every point of M. Moreover we shall
suppose that the polynomial P is the minimal polynomial of fx at every point

Example: If / satisfies a polynomial equation P(/)=0 then P need not be
necessarily the minimal polynomial of fx at every point x^M, even if we suppose
that / has a constant rank on M. Let us take for example M=R4 with cartesian
coordinates (Xlt X2, XS) X^ and let us define / by

/ 0 x1 0 1 \

0 0 1 1

0 0 0 0

0 0 0 0 /

It is easy to see that / satisfies on R4 the equation P(ξ)=ξ3=Q. Its minimal
polynomial at a point with x^O is f3 whereas it is ξ2 at a point with xl=0.
Clearly rank / '=2 on M.
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By this time the most intensively studied polynomial structures have been
the almost complex structures and the polynomial structures satisfying /3+/— 0.
(see [l]-[5]). The latter ones are closely connected with the almost contact
structures. Two other types of polynomial structures can be found in [6] and
[7].

We consider now a polynomial structure / on M satisfying P(f)=0. Let
us write a decomposition of P into the prime factors, i. e.

where #(f)=(£-O**, /*K£)=(£'+2α,£+6A ι=l,-,r .7=1, -,s. Of course
here ξ2+2ajξ

j

rbj are irreducible polynomials (over real numbers), Ί.Q. aj<by.
We define r+s distributions D't and D'J on M by setting

Dί=Keτ Pl(f) , £?=Ker P'j(f)

DI and D'J are obviously invariant under /. Further Pl(P'J) is the minimal
polynomial of the restriction of / to Dr

t CD").

PROPOSITION 1. There exist uniquely determined polynomials P't, P" such
that

(i) Λ'(/) (P'j(fi) is the projector onto Df

t (D'J).
(ii) deg PJ<deg P, deg P" <deg P, where deg denotes degree of a polynomial.

Proof. For the sake of simplicity we shall prove the existence and jini-
queness of P(. The greatest common divisor of the polynomials P( and Pί
/V Λ/ /V

P'r P" " PS is equal to 1 and thus there exist polynomials Qί, Pi such that

QίPί+RlPί P»=l.

Here the polynomial R[P( ~ Py has already the property (i). Writing R{=
S[P[+T[ we find easily that the polynomial T[P% — Py has both the properties
(i) and (ii). The uniqueness follows immediately from the fact that P is the
minimal polynomial of / at every point.

From this proposition we get easily

COROLLARY 1. dim A (dimD'J) is constant on M and thus (D'l9—, D'r, £'/,•••, D's')
is a (r+s)-ττ- structure on M. We shall call it (r+s)-ττ- structure associated with
the polynomial structure /.,

In what follows V denotes a finite dimensional vector space over the field
of real numbers. We shall need the following two lemmas.

LEMMA 1. Let f:V-^V be an endomorphism with the minimal polynomial
P(ί)— (?— c}k Then there exists a positive definite metric g on V such that
g(f(v\ f(u>y)~g(v, w} f°r any vectors v, w<= V if and only if there is c=±l, k=l.

Proof. The suίficienty of the conditions is obvious. Thus let us suppose
that there exists on V an invariant metric g. (ξ—c)k is the minimal polynomial
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and therefore Ker(f-cl) is a non-trivial subspace of V which is obviously
invariant under /, and this implies c=±l. Let us take the case c— 1. The
other one can be treated in the exactly same way. Let us suppose now that
kl>2. Obviously Ker (/— 7)2Z)Ker (/— /) and again because (ξ—c)k is minimal
there is Ker (f-I)*Φ Ker (/-/). We choose v^Ker (/-/)2, v<ί Ker (/-/). For
any w^Ker(f— /) we get

)=g(fv, w)-g(v, w)

=g(fv,fw)-g(v,w)

=g(v, w}—g(v, w)

But because (/— /)veKer(/— /) this implies (f—I)v=Q which is a contradiction.
So there must be k=l.

LEMMA 2. Let f\V-*V be an endomorphism with the minimal polynomial
P(ξ}=(ξ2jr2aξ-}-b)1 such that α2— &<0. Then there exists a positive definite metric
g on V such that g(fv , fw)= g(v, w} for any two vectors v,w^V if and only if
there is b=l, 1=1.

Proof. If b=l, 1=1 let us take on V any positive definite metric h and
define g by

g(v, w}=h(v, M;)+-I^ΓA((/+fl/)t;f (f+al)w) .

An easy calculation shows that g is an invariant metric.
The converse part proceeds similarly as in Lemma 1. (ξ2jr(laξjrb)1 is the

minimal polynomial and therefore Ker (/2+2α/+b/) is a non-trivial subspace of
V which is invariant under /. For any v, weKer (/2+2α/+£/) we get

=g(f2v, f2w)+2ag(fv,

=g(v, w)+2ag(v, fw)+bg(v,

which implies 6/2+2α/+/=0 on Ker (f2+2af+bl). But ξ 2+2aξ + b is the minimal
polynomial of / restricted to Ker (/2+2α/+6/) and thus there is bξ2+2aξ+l
=b(ξ2+2aξ+ϊ) on Ker (/2+2α/+6/) from which we get immediately b=l. So
let us suppose now / to have the minimal polynomial (ξz+2aξ+ΐ)1 with α2<l
and /^2. Again Ker (/2+2α/+/)2Z)Ker (/2+2α/+/) and because (f2+2α/+l)1

is minimal there is Ker (/2+2α/+/)2^Ker (/2+2α/+7). We choose v^Ker (/2-f
2α/+/)2, τ;φKer(/2+2α/+/). For any w eKer (/2-f 2α/+7) we get
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g((f2+2af+I)v, f2w)=g(f2v, f*w)+2ag(fv,

=g(v, w)+2ag(v, fw)+g(v, f2w)

-0

which implies veKer (/2+2α/+7) because (/2+2α/+/>eKer (/2+2α/+/) and
f2 is an automorphism of Ker (/2+2α/+/). This contradiction shows that there
must be 1=1.

Let us notice here the obvious fact that there exists on M a positive definite
Riemannian metric g such that there is g ( f ( X ) , f ( Y ) ) = g ( X , 7) if and only if
such a metric exists on every distribution 3)'t and 3)". A polynomial structure
for which there exists a metric with the above properties will be called metric
polynomial structure. The metric in question (which is not uniquely determined)
we shall call invariant metric. The following proposition is a consequence of
Lemma 1 and Lemma 2.

PROPOSITION 2. There, are exactly four types of metric polynomial structures.
the minimal polynomials of which are given by

(ii)
(iii) P(ξ)=(ξ +l)(£8+2α1£ +1) - (ξ2+2asξ +1)
(iv) P(β=(f-l)(£+ I)(f8+2fl1f +1) - (ξ2+2asξ +1)

where αf<l, a^a3 for iΦj, ifj=l9 — ,s.

In the next we shall restrict ourselves to the study of metric polynomial
structures of the first type only.

2. Let / be a metric polynomial structure of the first type on a manifold
A/, and denote by (A, ••• , A) the s— ̂ --structure associated with /. P% will be
the corresponding projectors. We are going in this paragraph to give a neces-
sary and sufficient condition for integrability of this s— ττ-structure. First we
need

LEMMA 3. Let (A» ,A) be a s—π-structure on a manifold M, Pτ the
corresponding projectors. Let clf ••• , cs be real numbers, CiΦc} for iφj, and define

s

a tensor /cci^c^ΣCίΛ Then (A, '" > A) is integrable if and only if

where bracket denotes Nijenhuis torsion tensor.

Proof. According to [8] (A, — , A) is integrable if and only if [Pt, PJ=0
for i,j=l, m

 9s. Our condition is therefore necessary.
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If Q is a tensor field of type (1, 2) and C a tensor field of type (1, 1) we
denote by CQ, QC, Q-C tensor fields of type (1, 2) defined by

CQ(X, Y)=C(Q(X, F)) , QC(X, Y)=Q(CX, Y) , Q C(X, Y)=Q(X, CY)

where X, Y are two vectors. Now if A, B, C are tensor fields of type (1, 1) we
have the following identity

(i) [A 5CG+D4C, BI=A\:B, CI+BIA, C]+EΛ BUC+CA #] c

(see e. g. [9]).
s

Let us suppose now that there is C/(cl,...,cs), /<«,-,<:,>] =0, i.e. Σcίcj\_Pτ,P1~]

=0. Using (1) we get

(2) [P,, P,

=PilP}, PJ+P/Λ,

which implies

Σ CiCjEPi, PjP3+ Σ c,c,

= ^CP,, PJ+ Σ c^P^P,, PJ .

Then applying Pf on both sides we have

from which for /=£& follows ΛEΣ^Λ, ^*]=0. But from this, by virtue of
1 = 1

ΣcA[Σc tP t, PΛ]=0, we get easily [Σ^Λ, PJ=0, at first for all fe with ck^O,
k-l 1=1 t=l

s

and then using ΣΛ— ̂  also for a possible ̂  with ck=Q. Using this last relation
1=1

we have from (2)

Σc<CPΛ,PJ=Σc<P<[P,,PΛ]
1=1 1=1

and again applying Pt on both sides we get

Now as a consequence of this equality we can find, in the exactly same way
as above,

DP,, PJ=0 for , Af=l, - , s

and this finishes the proof.

PROPOSITION 3. s—π-structure associated with a metric polynomial structure
f is integrable if and only if there is
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Proof is an easy application of Lemma 3. It is enough to set cί—2al and
to notice that /(2αι, ,,2αs)^~~(/+/~1) The last equality follows immediately from
the fact that on Ώ% there is /2+2αt/+/=0.

3. In this last paragraph we establish the existence of a linear connection
F satisfying F/=0 and give a necessary and sufficient condition for the existence
of a symmetric connection with the same property.

Let us define on M a tensor / by

It is easy to check that / is an almost complex structure on M and that all the
distributions Dτ are /-invariant. Clearly they are also even-dimensional. From
this we can conclude that a metric polynomial structure is very closely related
to a couple of another structures, namely almost complex structure and s— π-
structure the all distributions of which are invariant under this almost complex
structure.

PROPOSITION 4. A linear connection V on M satisfies F/— 0 if and onlf if
it satisfies F/=0 and FP^O, i=l, — , s.

Proof. F/=0 implies F/=0 and FP^=0. The second equality we get by
virtue of Proposition 1 expressing Pτ as a polynomial in / and the first one
follows from the definition of / when using FP^— 0. On the other hand F/=0

and PPt=Q implies F/=0 because there is f=^Σ(^ΐI^J-aJ)P,.
ί=l

PROPOSITION 5. There exists a linear connection F on M satisfying F/=0.

Proof. This proposition follows from a result of Wong (see [10], Theorem
1). Obviously at any point u^M we can find a frame r(u) such that a matrix
expression of / with respect to r(u) is

~H2 \
-"-" where

0

^
/t denotes here a unit matrix of dimension equal to -«- dim Dτ.

Before stating the last proposition we must have a new tensor defined. Let
A, B be two tensor fields of type (1, 1) on M such that AB=BA. Then we
define a tensor [A, B} of type (1, 2) by

{A, B}(X, Y)=IAX, BY^+AB[_X, Y]-A\_X, BY^-BίAX, F]
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where X, Y are vector fields on M. One can easily check that this definition
is good.

PROPOSITION 6. There exists a symmetric linear connection V on M with
Ff=Q if and only if the following conditions are satisfied

( i ) J is integrable
(ii) (D^ -iDs) is integrable
(iii) UPJ=0, i=l,-,s.

Proof. If there exists a symmetric connection V on M satisfying F/=0
then we have also F/=0 and FP^O by Proposition 4. But the existence of a
symmetric connection F satisfying Fy=0 is equivalent to the integrability of /
(see e. g. [11], Chap. IX, § 3) as well as the existence of a symmetric connection
V satisfying FP^O is equivalent to the integrability of (D19 ••• , DJ (see [8], § 4).
Moreover if V is symmetric we have for any vector fields X, Y

{/, Pt}(X, Y}=PJX(P.Y)-^P

To prove the converse part we remember the fact that if f7/ is any symmetric
connection and / a complex structure then a connection F defined by FχY=
P'ZY-Q(X, Y) where

satiffies F/=0 (see e. g. [11], Char. IX, § 3). Let us take for V' a symmetric
connection satisfying F'P^O, i=l, ••• , s. Such a cennection surely exists because
(Dlr •••,£>,}) is integrable. Now it suffices to show that the new connection F
has also the property FP^O, i= 1, ••• , s. In other words we are to prove
Q(X, PlF)-PiQ(^, y)=0. We get

, 7)
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=2{JPUX. Yl-JLJX,

=2{J,Pi}(JX,Y)

-0

and this finishes the proof.
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