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COMPLEX SUBMANIFOLDS WITH CERTAIN CONDITIONS

BY KUNIO SAKAMOTO

§ 0. Introduction.

Complex Einstein hypersurfaces in a complex space form were classified by
Smyth [8]. He showed that they are locally symmetric and used Cartan's list
of irreducible Hermitian symmetric spaces. Nomizu and Smyth [3] continued
their study of complex hypersurfaces in a complex space form.

On the other hand, Ogiue [4], applying a formula of Simons' type and results
obtained by O'Neill [6], studied complex submanifolds of constant holomorphic
sectional curvature in a complex space form.

In this paper, we shall study complex submanifolds, especially complex
Einstein submanifolds, in a complex space form which satisfy certain conditions
for the normal bundle. In § 1, we give basic formulas concerning complex sub-
manifolds. In § 2, we study complex submanifolds with certain holonomy groups
with respect to the induced connection in the normal bundle. In § 3, applying
a formula of Simons' type, we study, in a complex projective space with Fubini-
Study metric, complex Einstein submanifolds with certain curvature condition
concerning the normal bundle.

§ 1. Preliminaries.

Let Mn+p be a complex (n+p)-dimensional Kaehler manifold with complex
structure / and Kaehler metric g and Mn be a complex submanifold in Mn+p of
complex dimension n. Then Mn is a Kaehler manifold with the induced complex
structure and the induced metric, which will be also denoted by / and g re-
spectively. Let V (resp. F) be the connection with respect to the metric of
Mn+p (resp. the induced metric of Mn\ We can easily see that the connection
V in Mn is a Kaehler connection. If we denote by H the second fundamental
form of Mn, then the equation of Gauss can be written as

(1.1) 7zY=rzY+H(X, Y)

for any local vector fields X and Y of Mn. We note that the second fundamental
form H satisfies

(1.2) H(JX, Y)=H(X, JY)=JH(X, Y)
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for any vectors X and Y tangent to Mn.
Throughout this paper, X, Y and Z will be either local vector fields of Mn

or vectors tangent to Mn at a point and the inner product g(X, Y) of X and
Y will be denoted by (X, 7>.

Let N(Mn) be the normal bundle of Mn in Mn+p. Then N(Mn) is a
Hermitian vector bundle with the induced complex structure /* and the induced
metric g*. The induced connection f* in N(Mn) is a Hermitian connection.
Choosing local fields of orthonormal vectors CΛ, ••- , Cp, /CΊ, ••• ,JCP normal to Mn,
equations of Weingarten may be written as

(1.3) ^C4=- A*+JΊ?C, , Fj/C^-^+FJ/C,

for each z where the index z runs over the range {1, ••• ,p] and Λlt" ,Λpf

AI, - ,AP are local symmetric tensor fields of type (1, 1) on Mn satisfying

(1.4) <H(X, Y\ C,> = OMT, y> , <H(X, r), JCά = <AιX, r>

for each z. We have from (1.2) and (1.4)

(1.5) Aι=JAt ,

(1.6) /Λ+Λ/=0

for each z and hence we see that Mn is a minimal submanifold in Mn+p.
Next, we consider the structure equations of the submanifold Mn in Mn+p~

Let TM be the tangent bundle of Mn. If we denote by V the induced con-
nection in the bundle TM+N(Mn) and denote by Proj™ (resp. PΓOJ^CJO) the
projection map of vectors of the ambient manifold Mn+p to the tangent space
of Mn (resp. normal space), then structure equations of Gauss, Codazzi and Ricci
may be written as, for any X, Y and Z,

(1.7) PΓOJΓJT )?(*, Y)Z=R(X, Y)Z+Σ{<A*X, ZyA%Y-<A%Y,

(1.8) Proj^C3,)^(^, Y)Z=(r'zH)(Y, Z)-(Γ'γHχX, Z) ,

(1.9) ProjtfcjoM Y)Ct=R*(X,

respectively, where R, R and R* are the Riemann curvature tensors of Mn+p,
Mn and N(Mn} respectively.

By a complex space form Mn+p(c\ we shall mean a complex (n+ί)-dimen-
sional connected complete Kaehler manifold of constant holomorphic sectional
curvature c. We assume that the ambient^ manifold Mn+p is a complex space
form Mn+p(c). Then the curvature tensor R satisfies
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(1.10) R(X, Ϋ}Z

, zyx-<x, zyγ+(jτ, zyjx-<jx, zyjγ-2<jx, Tyjz}

for any vectors X, Ϋ and Z tangent to Mn+p(c). Thus we have, from (1.7), (1.8)
and (1.9),

, zyjx-<jx, zyjγ-2<jx,

(1.12) (Γ'fH)(Y, Z)=(ΓTSΓ)(X, Z) ,

(1.13) R*(X, F)Cί=Σ<CΛ, A,1X, F>C,+Σ<CΛ, JA^X, YyjC}

for any X, Y and Z. We can easily show from (1.11) that the Ricci tensor
and the scalar curvature p satisfy

(1.14) S(X, 7)=--<n+l)c<^, Y>-2^<A}X, Y} ,

(1.15) p=- 2-(n+l)c— J-Σtr AΪ

respectively, where tr^4f is the trace of A\.

§2. Submanif olds with certain holonomy groups in the normal bundle.

Let Mn be a complex submanifold of complex dimension n in a Kaehler
manifold Mn+p of complex dimension n-\-p. Using (1.7) and (1.9), we obtain

LEMMA 1. // S and S are the Ricci tensors of Mn+p and Mn respectively,
then we have

(2.1) S(X, JY)=S(X, JY)+λ(X, F)

for any vectors X and Y tangent to Mn where λ is a globally defined two form
on Mn such that

(2.2) λ(X, F)=Σ<#*(*, r)C<f/C4>=—-tτ/*Λ*(-Y, Y).

Proof. We note that S(X, JY) is equal to — ^ - t τ j R ( X 9 Y ) . Therefore

taking orthonormal basis Xlt — ,Xn, JXl9 — ,JXn of the tangent space of M
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at each point, we shall compute tr JR(X, Y), i. e.,

+Σ<JR(x,

where the index t runs over the range {1, ••• ,n}. From (1.7), we easily find

= Σ<JR(X,Y)Xt,Xtyt

. Xά<JAtY, Xty-<AlY, Xt)<JAtX, Xty},

, Y)Xt, Xtyt

+2*Σ [<AtX, JXί><JA,Y, JXa-<AtY, JXi><JA,X, JXty] .
l,t

Thus, noting that S(X, JY) is equal to — ̂ -tτ]R(X, Y), we have

= -2S(X, JY)+4:Σ<A1X, JA.Yy .
I

On the other hand, from (1.9), we find

, C<>

x, Y)Jcί,jciy+Σ{<JAtx,Alγy-<jAix,
% ^

Since Σ«JA1X, AtYy-(,JAϊX, Yy} is equal to -2Σ,<A1X, JAτYy, we have
I t

Σ<JR(X, Y)Ct,
i i

= tτJ*R*(X, y)-
I

Therefore we obtain

S(X, JY)=S(X, JYΪ— tr J*R*(X, Y) . Q. E. D.
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Let G* be the restricted holonomy group with respect to the induced con-
nection in the normal bundle N(Mn). Then G* is a Lie subgroup of U(p).
Applying Lemma 1, we have

THEOREM 1. Let Mn be a complex submanifpld in a Kaehler manifold Mn+p.
The restricted holonomy group G* in the normal bundle N(Mn) is contained in
SU(p) if and only if S=S on TM.

Proof. G* is contained in the real representation of SU(p) if and only if
trJ*R*(X,Y)=Q for every tangent vectors X and Y of Mn (see [2], p. 151).
Therefore we see from Lemma 1 that G* is contained in SU(p) if and only if
S=S on TM. Q. E. D.

In particular, if the ambient manifold Mn+p is a complex space from Mn+p(c\
we have

COROLLARY. Let Mn be a complex submamfold in a complex space form
Mn+p(c}. If the restricted holonomy group G* in N(Mn) is contained in SU(p\
then c must be non-positive and Mn is an Einstein manifold, and moreover if
c=Q, then Mn is a totally geodesic submamfold.

Proof. Since Mn+p(c) is a complex space form, S is given by S=

-2~(n+p+ΐ)cg. From Theorem 1, we obtain S=-^-(n+p-\-Ϋ)cgί and hence Mn

is an Einstein manifold. We have from (1.14)

, 7> = - - < χ , r> for any X and Y.

Thus we see that c must be non-positive and that Mn is totally geodesic if
c=0. _ Q. E. D.

Let Mn be a complex submanifold in a complex space form Mn+p(c). If G*
is trivial, then R*=Q. We have

THEOREM 2. Let Mn be a complex submanifold in a complex space from
Mn+p(c). The restricted holonomy group G* in N(Mn} is trivial if and only if
c=Q and Mn is a totally geodesic submanifold.

Proof. Using (1.13) we have

[Λ, ^]=CΛ, /Λ]=0 for all i, j (iΦj) ,

\_Aτ, JAJ^—f^-J.

From the former equations we obtain A^j—^ for all z, j (iφj). Taking suitable
orthonormal basis Xlt , Xn, JXlt ••• ,JXn of Mn, we can represent Aτ (i=l, ~ ,p)
by diagonal matrices of the form
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(*) «»

-a,

such that α^s satisfy at

lat

j=0 (ί=l, - , n, f^;, 1, •••,£). Noting
i 2— 2/4?, from latter equation, we find (at

i)2= — j- for all i and ί. Therefore

we can see that c=Q and α^—0 for all x and t if ί^2. When ί=l, the theorem
is proved by Nomizu and Smyth [3]. Q. E. D.

Remark. Let Mn be a complex Einstein submanifold with non-zero scalar
curvature in a complex space form Mn+p(c) with c^O. When G* is abelian, by
taking suitable local field of orthonormal vectors normal to Mn, we can repre-
sent every element of the Lie algebra of G* by matrices of the form

/ °

\ -λn

λ' \
' *n

° /
Since R*(X, Y) is contained in the Lie algebra of G* for every X and F, we
see from (1.13) that Λ^s with respect to the above local normal frame field
satisfy AtAj=Q (iφj). Hence we see that At's can be represented by diagonal
matrices of the form (*) with respect to suitable orthonormal basis of Mn. Using
the method in [3] and formula of Simons' type which will be given in § 3, we
can show that the restricted homogeneous holonomy group of the submanifold
Mn is either U(n) or SO(n)xSO(2).

§3. Formula of Simons' type and it's application (cf. [4], [5]).

Let Mn be a complex submanifold in a complex space form Mn+p(c). First
we compute the Laplacian of the square of the length of the second fundamental
form by taking a local cordinate system of Mn. The components of the metric
tensor, the complex structure etc. will be denoted as follows;

*=(£»«) , /=(Λα) , R=(Rdcb

aϊ , S=(S6β) , H=(hba*) ,

where the indices α, b, ••• run over the range {!,-•• , 2n} and the indices x,y,

over the range {1, — ,p, 1, — , £}
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LEMMA 2. We obtain the formula of Simons' type

(3.1)

where \\H\\*=2*Σtr Aϊ=hba*h<>a

x.
i

Proof. We first note that hb

ax, hbax, ••• are defined by hb

ax=hbc

xgca, hbax=
hba

ygyx, — Since the Laplacian Λ||/ί||2 of the square of the length of the second
fundamental form is defined by

we have

We shall compute the first tirm of the right hand side. The structure equations
(1.11), (1.12) and (1.13) are given in tirms of local coordinates by

cb gcagdb~^~JdaJcb JcaJdb 2JdcJba)

where Rdcba=Rdcbegea and Jdc=Jdgbc From (1.12)' and Ricci equality, we have

σ^fΠfΠr i. x}hύa —σeά(WLhs x}hba

& \y ev d'^ba )ri x — & \y ev b'^da J11 x

— σeά(l7fϊ7fh x _ /? ch x _ /? ch x-\-P xh y}hba

— g \y b' e"-da ^ebd nca -^eba ndc \^ eby "da )"- x

Substituting (1.11)' and (1.13)', we obtain from minimality of Mn
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Since we can easily show

hec

vhbayh
ecxhba

x=2Σ (tr A A3γ+2 Σ (tr/A^)2,
1,3 l,J

i, XL d Leayijb Λ L xi, d LeayLb /14.-/>Γ* A 2\2ftβd nb yfi yn ax—u, nbd ne yn
 yn ax—4tr(,2-ι^H) »

I

we obtain (3.1). Q. E. D.
Next, using (3.1), we study complex Einstein submanifold Mn satisfying the

condition *ΣR*(Xt, JXt)=/A/* in a complex projective space CPn+p of constant

holomorphic sectional curvature c (>0), where A^, •••, Xn, /^, ••• ,/Jw are ortho-
normal basis of the tangent space Mn and μ is a globally difined function on
Mn. We note that the condition Σ^*(^ί, J%t)=μJ* is always satisfied when

p=1. We need the following Lemma.

LEMMA 3. Lei Mn be a complex Einstein submanifold (i. e. S=pg) satisfying
the condition ΣR*(XtJXt}=μJ* ^ 0 complex space form Mn+p(c\ If Mn is

not totally geodesic, then the codimension p is smaller than -9-71 (n+1) and Mn

is of constant holomorphic sectional curvature if and only if p= n~\ c or

p- 2 ,,

Proof. We first prove

(3.2) wj. ̂ z — .

(3.3) trΛ^=0

(3.4) trJAtAj=0

for any z and j, where a=-^-{(n+ΐ)c—2ρ}. From (1.14) and (2.1), we have

(3.5)

τ~

and hence we obtain

Thus from (2.2) and the condition "ΣR*(Xtt JXt)=μJ*,

On the other hand, using (1.13), we find immediately that
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*», JXt)Ct, /Cί>=-trA,«— ¥- ,

for all ί and j. Therefore we see that the condition ~ΣR*(Xt, JXt)=[*J* implies

(3.2), (3.3) and (3.4).
The equation (1.11) may be written as

R(X, Y)Z=R0(X, Y)Z+D(X, Y)Z,

where

R£X, F)Z=<F, Z>X-<X,

+<JY,
D(X,

Next, we compute

where y is arbitrary number and < , > means the extended inner product on the
tensor space of type (1.3). Using (3.2), (3.3) and (3.4), we can easily find

Thus it follows that

(3.6)

Since the left-hand side is non-negative for arbitary number v, we obtain

az{p — g-n(n+l)}gO.

The left-hand side is equal to zero for some v if and only if a=0 or p~

--nCtt+l). This completes the proof. Q. E. D.

THEOREM 3. Let Mn be a connected complete complex Einstein submanifold
(i.e., S=pg) satisfying the condition ΣR*(Xt, JXώ—μJ* ιn a complex projective

space CPn+p of holomorphic sectional curvature c. If p^-^ — ol"f c> then
z £p ~τ~ n
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F'/f=0 and p is - r ^ or -- + c V

geodesic submanifold, i. e., CPn. // p= * ^ C) then MU ίs the comPlex

quadric Qn when p=l and Mn is the complex projective space of constant holo-
c 1

morphic sectional curvature -g- when p=-^-n(n+ί).

Proof. From (3.3) and (3.4), we see that (3.1) reduces to

(3.7) ^ll |̂[2-4-(n
L L

Using (3.5), we obtain

(3.8)

(3.9)
I

Substituting (3.2), (3.8) and (3.9) in (3.7), we have

Therefore if ̂ \^^c (i.e., fe\* ̂ ^ c), then 7'H=0 and p=

or P=~ C If P = C ' then H=° Le" MH is

geodesic. If P=-γ 2ύ4-n c> then MU is the comPlex quadric Qn when p=l

(cf. [8]). If /p=-- n ( " ^ C and ^^~n(n + 1)' then we see that MΛ is of

constant holomorphic sectional curvature by Lemma 3. Substituting a=

P ° and ^^"n(n+1) in (3 6)» we have

Thus, if p=- - " g and ^:=r--^(n+1)» then we see that Mn is of

^constant holomorphic sectional curvature —^- and hence from results obtained

by Ogiue [5] that Mn is rigid. For the imbedding of complex projective space

of holomorphic sectional curvature -g- into complex projective space of holo-

morphic sectional curvature c, see O'Neill [6]. Q. E. D.
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