COMPLEX SUBMANIFOLDS WITH CERTAIN CONDITIONS

By Kunio Sakamoto

§ 0. Introduction.

Complex Einstein hypersurfaces in a complex space form were classified by Smyth [8]. He showed that they are locally symmetric and used Cartan's list of irreducible Hermitian symmetric spaces. Nomizu and Smyth [3] continued their study of complex hypersurfaces in a complex space form.

On the other hand, Ogiue [4], applying a formula of Simons' type and results obtained by O'Neill [6], studied complex submanifolds of constant holomorphic sectional curvature in a complex space form.

In this paper, we shall study complex submanifolds, especially complex Einstein submanifolds, in a complex space form which satisfy certain conditions for the normal bundle. In $\S 1$, we give basic formulas concerning complex submanifolds. In § 2, we study complex submanifolds with certain holonomy groups with respect to the induced connection in the normal bundle. In $\S 3$, applying a formula of Simons' type, we study, in a complex projective space with FubiniStudy metric, complex Einstein submanifolds with certain curvature condition concerning the normal bundle.

§ 1. Preliminaries.

Let \bar{M}^{n+p} be a complex $(n+p)$-dimensional Kaehler manifold with complex structure J and Kaehler metric g and M^{n} be a complex submanifold in \bar{M}^{n+p} of complex dimension n. Then M^{n} is a Kaehler manifold with the induced complex structure and the induced metric, which will be also denoted by J and g respectively. Let \bar{V} (resp. \bar{V}) be the connection with respect to the metric of \bar{M}^{n+p} (resp. the induced metric of M^{n}). We can easily see that the connection ∇ in M^{n} is a Kaehler connection. If we denote by H the second fundamental form of M^{n}, then the equation of Gauss can be written as

$$
\begin{equation*}
\bar{\nabla}_{X} Y=\nabla_{X} Y+H(X, Y) \tag{1.1}
\end{equation*}
$$

for any local vector fields X and Y of M^{n}. We note that the second fundamental form H satisfies

$$
\begin{equation*}
H(J X, Y)=H(X, J Y)=J H(X, Y) \tag{1.2}
\end{equation*}
$$

Received Aug. 8, 1974.
for any vectors X and Y tangent to M^{n}.
Throughout this paper, X, Y and Z will be either local vector fields of M^{n} or vectors tangent to M^{n} at a point and the inner product $g(X, Y)$ of X and Y will be denoted by $\langle X, Y\rangle$.

Let $N\left(M^{n}\right)$ be the normal bundle of M^{n} in \bar{M}^{n+p}. Then $N\left(M^{n}\right)$ is a Hermitian vector bundle with the induced complex structure J^{*} and the induced metric g^{*}. The induced connection ∇^{*} in $N\left(M^{n}\right)$ is a Hermitian connection. Choosing local fields of orthonormal vectors $C_{1}, \cdots, C_{p}, J C_{1}, \cdots, J C_{p}$ normal to M^{n}, equations of Weingarten may be written as

$$
\begin{equation*}
\bar{\nabla}_{X} C_{i}=-A_{\imath} X+\nabla_{X}^{*} C_{i}, \quad \bar{\nabla}_{X} J C_{i}=-A_{\tilde{i}} X+\nabla_{X}^{*} J C_{i} \tag{1.3}
\end{equation*}
$$

for each i where the index \imath runs over the range $\{1, \cdots, p\}$ and A_{1}, \cdots, A_{p}, $A_{\tilde{1}}, \cdots, A_{\tilde{p}}$ are local symmetric tensor fields of type (1,1) on M^{n} satisfying

$$
\begin{equation*}
\left\langle H(X, Y), C_{i}\right\rangle=\left\langle A_{\imath} X, Y\right\rangle, \quad\left\langle H(X, Y), J C_{i}\right\rangle=\left\langle A_{\tilde{i}} X, Y\right\rangle \tag{1.4}
\end{equation*}
$$

for each i. We have from (1.2) and (1.4)

$$
\begin{align*}
& A_{i}=J A_{\imath}, \tag{1.5}\\
& J A_{\imath}+A_{\imath} J=0 \tag{1.6}
\end{align*}
$$

for each i and hence we see that M^{n} is a minimal submanifold in \bar{M}^{n+p}.
Next, we consider the structure equations of the submanifold M^{n} in \bar{M}^{n+p}. Let $T M$ be the tangent bundle of M^{n}. If we denote by ∇^{\prime} the induced connection in the bundle $T M+N\left(M^{n}\right)$ and denote by $\operatorname{Proj}_{T M}$ (resp. $\operatorname{Proj}_{N(M)}$) the projection map of vectors of the ambient manifold \bar{M}^{n+p} to the tangent space of M^{n} (resp. normal space), then structure equations of Gauss, Codazzi and Ricci may be written as, for any X, Y and Z,

$$
\begin{align*}
\operatorname{Proj}_{T M} \bar{R}(X, Y) Z= & R(X, Y) Z+\sum_{\imath}\left\{\left\langle A_{\imath} X, Z\right\rangle A_{\imath} Y-\left\langle A_{\imath} Y, Z\right\rangle A_{\imath} X\right\} \tag{1.7}\\
& +\sum_{i}\left\{\left\langle J A_{\imath} X, Z\right\rangle J A_{\imath} Y-\left\langle J A_{\imath} Y, Z\right\rangle J A_{\imath} X\right\} \\
\operatorname{Proj}_{N(M)} \bar{R}(X, Y) Z= & \left(\nabla_{X}^{\prime} H\right)(Y, Z)-\left(\nabla_{Y}^{\prime} H\right)(X, Z) \tag{1.8}\\
\operatorname{Proj}_{N(M)} \bar{R}(X, Y) C_{i}= & R^{*}(X, Y) C_{i}-\sum_{j}\left\{\left\langle A_{\imath} A_{\jmath} X, Y\right\rangle-\left\langle A_{\jmath} A_{\imath} X, Y\right\rangle\right\} C_{\jmath} \tag{1.9}\\
& -\sum_{j}\left\{\left\langle A_{\imath} J A_{\jmath} X, Y\right\rangle-\left\langle J A_{\jmath} A_{\imath} X, Y\right\rangle\right\} J C_{\jmath}
\end{align*}
$$

respectively, where \bar{R}, R and R^{*} are the Riemann curvature tensors of \bar{M}^{n+p}, M^{n} and $N\left(M^{n}\right)$ respectively.

By a complex space form $\bar{M}^{n+p}(c)$, we shall mean a complex $(n+p)$-dimensional connected complete Kaehler manifold of constant holomorphic sectional curvature c. We assume that the ambient manifold \bar{M}^{n+p} is a complex space form $\bar{M}^{n+p}(c)$. Then the curvature tensor \bar{R} satisfies

$$
\begin{align*}
& \bar{R}(\bar{X}, \bar{Y}) \bar{Z} \tag{1.10}\\
& \quad=\frac{c}{4}\{\langle\bar{Y}, \bar{Z}\rangle \bar{X}-\langle\bar{X}, \bar{Z}\rangle \bar{Y}+\langle J \bar{Y}, \bar{Z}\rangle J \bar{X}-\langle J \bar{X}, \bar{Z}\rangle J \bar{Y}-2\langle J \bar{X}, \bar{Y}\rangle J \bar{Z}\}
\end{align*}
$$

for any vectors \bar{X}, \bar{Y} and \bar{Z} tangent to $\bar{M}^{n+p}(c)$. Thus we have, from (1.7), (1.8) and (1.9),

$$
\begin{align*}
R(X, Y) Z= & \frac{c}{4}\{\langle Y, Z\rangle X-\langle X, Z\rangle Y \tag{1.11}\\
& +\langle J Y, Z\rangle J X-\langle J X, Z\rangle J Y-2\langle J X, Y\rangle J Z\} \\
& +\sum_{\imath}\left\{\left\langle A_{\imath} Y, Z\right\rangle A_{\imath} X-\left\langle A_{2} X, Z\right\rangle A_{\imath} Y\right\} \\
& +\sum_{\imath}\left\{\left\langle J A_{\imath} Y, Z\right\rangle J A_{\imath} X-\left\langle J A_{\imath} X, Z\right\rangle J A_{\imath} Y\right\} \\
\left(\nabla_{X}^{\prime} H\right)(Y, Z)= & \left(\nabla_{Y}^{\prime} H\right)(X, Z), \tag{1.12}\\
R^{*}(X, Y) C_{i}= & \sum_{\jmath}\left\langle\left[A_{\imath}, A_{\jmath}\right] X, Y\right\rangle C_{j}+\sum_{\jmath}\left\langle\left[A_{\imath}, J A_{\jmath}\right] X, Y\right\rangle J C_{j} \tag{1.13}\\
& -\frac{c}{2}\langle J X, Y\rangle J C_{i}
\end{align*}
$$

for any X, Y and Z. We can easily show from (1.11) that the Ricci tensor S and the scalar curvature ρ satisfy

$$
\begin{align*}
& S(X, Y)=\frac{1}{2}(n+1) c\langle X, Y\rangle-2 \sum_{i}\left\langle A_{i}^{2} X, Y\right\rangle, \tag{1.14}\\
& \rho=\frac{1}{2}(n+1) c-\frac{1}{n} \sum_{i} \operatorname{tr} A_{i}^{2} \tag{1.15}
\end{align*}
$$

respectively, where $\operatorname{tr} A_{i}^{2}$ is the trace of A_{i}^{2}.
§ 2. Submanifolds with certain holonomy groups in the normal bundle.
Let M^{n} be a complex submanifold of complex dimension n in a Kaehler manifold \bar{M}^{n+p} of complex dimension $n+p$. Using (1.7) and (1.9), we obtain

Lemma 1. If \bar{S} and S are the Ricci tensors of \bar{M}^{n+p} and M^{n} respectively, then we have

$$
\begin{equation*}
\bar{S}(X, J Y)=S(X, J Y)+\lambda(X, Y) \tag{2.1}
\end{equation*}
$$

for any vectors X and Y tangent to M^{n} where λ is a globally defined two form on M^{n} such that

$$
\begin{equation*}
\lambda(X, Y)=\sum_{i}\left\langle R^{*}(X, Y) C_{i}, J C_{i}\right\rangle=-\frac{1}{2} \operatorname{tr} J^{*} R^{*}(X, Y) \tag{2.2}
\end{equation*}
$$

Proof. We note that $\bar{S}(X, J Y)$ is equal to $-\frac{1}{2} \operatorname{tr} J \bar{R}(X, Y)$. Therefore, taking orthonormal basis $X_{1}, \cdots, X_{n}, J X_{1}, \cdots, J X_{n}$ of the tangent space of M^{n}
at each point, we shall compute $\operatorname{tr} J \bar{R}(X, Y)$, i. e.,

$$
\begin{aligned}
\sum_{t}\left\langle J \bar{R}(X, Y) X_{t}, X_{t}\right\rangle & +\sum_{t}\left\langle J \bar{R}(X, Y) J X_{t}, J X_{t}\right\rangle \\
& +\sum_{i}\left\langle J \bar{R}(X, Y) C_{i}, C_{i}\right\rangle+\sum_{i}\left\langle J \bar{R}(X, Y) J C_{i}, J C_{i}\right\rangle
\end{aligned}
$$

where the index t runs over the range $\{1, \cdots, n\}$. From (1.7), we easily find

$$
\begin{aligned}
& \sum_{t}\left\langle J \bar{R}(X, Y) X_{t}, X_{t}\right\rangle \\
& \quad=\sum_{t}\left\langle J R(X, Y) X_{t}, X_{t}\right\rangle \\
& \quad+2_{\imath} \sum_{\imath, t}\left\langle\left\langle A_{\imath} X, X_{t}\right\rangle\left\langle J A_{\imath} Y, X_{t}\right\rangle-\left\langle A_{\imath} Y, X_{t}\right\rangle\left\langle J A_{\imath} X, X_{t}\right\rangle\right\} \\
& \sum_{t}\left\langle J \bar{R}(X, Y) J X_{t}, J X_{t}\right\rangle \\
& = \\
& \sum_{t}\left\langle J R(X, Y) X_{t}, X_{t}\right\rangle \\
& \quad+2_{i} \sum_{\imath, t}\left\{\left\langle A_{\imath} X, J X_{t}\right\rangle\left\langle J A_{\imath} Y, J X_{t}\right\rangle-\left\langle A_{\imath} Y, J X_{t}\right\rangle\left\langle J A_{\imath} X, J X_{t}\right\rangle\right\}
\end{aligned}
$$

Thus, noting that $S(X, J Y)$ is equal to $-\frac{1}{2} \operatorname{tr} J R(X, Y)$, we have

$$
\begin{gathered}
\sum_{t}\left\langle J \bar{R}(X, Y) X_{t}, X_{t}\right\rangle+\sum_{t}\left\langle J \bar{R}(X, Y) J X_{t}, J X_{t}\right\rangle \\
=-2 S(X, J Y)+4 \sum_{\imath}\left\langle A_{\imath} X, J A_{\imath} Y\right\rangle .
\end{gathered}
$$

On the other hand, from (1.9), we find

$$
\begin{aligned}
& \sum_{\imath}\left\langle J \bar{R}(X, Y) C_{i}, C_{i}\right\rangle \\
& \quad=\sum_{\imath}\left\langle J R^{*}(X, Y) C_{i}, C_{i}\right\rangle+\sum_{\imath}\left\{\left\langle J A_{\imath} X, A_{\imath} Y\right\rangle-\left\langle J A_{i}^{2} X, Y\right\rangle\right\} \\
& \begin{aligned}
& \sum_{i}\left\langle J \bar{R}(X, Y) J C_{i}, J C_{i}\right\rangle \\
&=\sum_{\imath}\left\langle J R^{*}(X, Y) J C_{i}, J C_{i}\right\rangle+\sum_{\imath}\left\{\left\langle J A_{\imath} X, A_{\imath} Y\right\rangle-\left\langle J A_{i}^{2} X, Y\right\rangle\right\} .
\end{aligned}
\end{aligned}
$$

Since $\sum_{\imath}\left\{\left\langle J A_{\imath} X, A_{\imath} Y\right\rangle-\left\langle J A_{i}^{2} X, Y\right\rangle\right\}$ is equal to $-2 \sum_{\imath}\left\langle A_{\imath} X, J A_{\imath} Y\right\rangle$, we have

$$
\begin{gathered}
\sum_{i}\left\langle J \bar{R}(X, Y) C_{i}, C_{i}\right\rangle+\sum_{i}\left\langle J \bar{R}(X, Y) J C_{i}, J C_{i}\right\rangle \\
=\operatorname{tr} J^{*} R^{*}(X, Y)-4 \sum_{i}\left\langle A_{\imath} X, J A_{\imath} Y\right\rangle .
\end{gathered}
$$

Therefore we obtain

$$
\bar{S}(X, J Y)=S(X, J Y)-\frac{1}{2} \operatorname{tr} J^{*} R^{*}(X, Y) . \quad \text { Q. E. D. }
$$

Let G^{*} be the restricted holonomy group with respect to the induced connection in the normal bundle $N\left(M^{n}\right)$. Then G^{*} is a Lie subgroup of $U(p)$. Applying Lemma 1 , we have

Theorem 1. Let M^{n} be a complex submanifold in a Kaehler manifold \bar{M}^{n+p}. The restricted holonomy group G^{*} in the normal bundle $N\left(M^{n}\right)$ is contained in $S U(p)$ if and only if $\bar{S}=S$ on $T M$.

Proof. G^{*} is contained in the real representation of $S U(p)$ if and only if $\operatorname{tr} J^{*} R^{*}(X, Y)=0$ for every tangent vectors X and Y of M^{n} (see [2], p. 151). Therefore we see from Lemma 1 that G^{*} is contained in $\operatorname{SU}(p)$ if and only if $\bar{S}=S$ on $T M$.
Q. E. D.

In particular, if the ambient manifold \bar{M}^{n+p} is a complex space from $\bar{M}^{n+p}(c)$, we have

Corollary. Let M^{n} be a complex submanrfold in a complex space form $\bar{M}^{n+p}(c)$. If the restricted holonomy group G^{*} in $N\left(M^{n}\right)$ is contained in $\operatorname{SU}(p)$, then c must be non-positive and M^{n} is an Einstein manifold, and moreover if $c=0$, then M^{n} is a totally geodesic submanfold.

Proof. Since $\bar{M}^{n+p}(c)$ is a complex space form, \bar{S} is given by $\bar{S}=$ $\frac{1}{2}(n+p+1) c g$. From Theorem 1, we obtain $S=\frac{1}{2}(n+p+1) c g$, and hence M^{n} is an Einstein manifold. We have from (1.14)

$$
\sum_{\imath}\left\langle A_{i}^{2} X, Y\right\rangle=-\frac{p c}{4}\langle X, Y\rangle \quad \text { for any } X \text { and } Y .
$$

Thus we see that c must be non-positive and that M^{n} is totally geodesic if $c=0$.
Q. E. D.

Let M^{n} be a complex submanifold in a complex space form $\bar{M}^{n+p}(c)$. If G^{*} is trivial, then $R^{*}=0$. We have

Theorem 2. Let M^{n} be a complex submanifold in a complex space from $\bar{M}^{n+p}(c)$. The restricted holonomy group G^{*} in $N\left(M^{n}\right)$ is trivial if and only if $c=0$ and M^{n} is a totally geodesic submanifold.

Proof. Using (1.13) we have

$$
\begin{aligned}
& {\left[A_{2}, A_{\jmath}\right]=\left[A_{2}, J A_{\jmath}\right]=0 \quad \text { for all } i, j(i \neq j),} \\
& {\left[A_{2}, J A_{\imath}\right]=\frac{c}{2} J .}
\end{aligned}
$$

From the former equations we obtain $A_{2} A_{j}=0$ for all $i, j(i \neq j)$. Taking suitable orthonormal basis $X_{1}, \cdots, X_{n}, J X_{1}, \cdots, J X_{n}$ of M^{n}, we can represent $A_{\imath}(i=1, \cdots, p)$ by diagonal matrices of the form

$$
\left(\begin{array}{llll}
\alpha_{1}{ }^{2} & & & \\
& \ddots & & \\
& & \alpha_{n}{ }^{2} & \\
& & -\alpha_{1}{ }^{2} & \\
& & & \ddots \\
& & & \\
& & -\alpha_{n}{ }^{2}
\end{array}\right)
$$

such that $\alpha_{t}{ }^{i}$'s satisfy $\alpha_{t}{ }^{2} \alpha_{t}{ }^{3}=0(t=1, \cdots, n, i \neq j, 1, \cdots, p)$. Noting $\left[A_{\imath}, J A_{\imath}\right]=$ $-2 J A_{i}^{2}$, from latter equation, we find $\left(\alpha_{t}{ }^{i}\right)^{2}=-\frac{c}{4}$ for all i and t. Therefore we can see that $c=0$ and $\alpha_{t}{ }^{2}=0$ for all i and t if $p \geqq 2$. When $p=1$, the theorem is proved by Nomizu and Smyth [3].
Q. E. D.

Remark. Let M^{n} be a complex Einstein submanifold with non-zero scalar curvature in a complex space form $\bar{M}^{n+p}(c)$ with $c \neq 0$. When G^{*} is abelian, by taking suitable local field of orthonormal vectors normal to M^{n}, we can represent every element of the Lie algebra of G^{*} by matrices of the form

Since $R^{*}(X, Y)$ is contained in the Lie algebra of G^{*} for every X and Y, we see from (1.13) that A_{\imath} 's with respect to the above local normal frame field satisfy $A_{i} A_{j}=0(i \neq j)$. Hence we see that A_{i} 's can be represented by diagonal matrices of the form (*) with respect to suitable orthonormal basis of M^{n}. Using the method in [3] and formula of Simons' type which will be given in §3, we can show that the restricted homogeneous holonomy group of the submanifold M^{n} is either $U(n)$ or $S O(n) \times S O(2)$.
§ 3. Formula of Simons' type and it's application (cf. [4], [5]).
Let M^{n} be a complex submanifold in a complex space form $\bar{M}^{n+p}(c)$. First we compute the Laplacian of the square of the length of the second fundamental form by taking a local cordinate system of M^{n}. The components of the metric tensor, the complex structure etc. will be denoted as follows;

$$
\begin{aligned}
& g=\left(g_{b a}\right), \quad J=\left(J_{b}^{a}\right), \quad R=\left(R_{d c b^{a}}\right), \quad S=\left(S_{b a}\right), \quad H=\left(h_{b a}^{x}\right), \\
& g^{*}=\left(g_{y x}\right), \quad J^{*}=\left(J_{y}^{x}\right), \quad R^{*}=\left(R_{b a y}^{x}\right),
\end{aligned}
$$

where the indices a, b, \cdots run over the range $\{1, \cdots, 2 n\}$ and the indices x, y, \cdots over the range $\{1, \cdots, p, \tilde{1}, \cdots, \tilde{p}\}$

Lemma 2. We obtain the formula of Simons' type;

$$
\begin{align*}
\frac{1}{2} \Delta\|H\|^{2}= & \frac{c}{2}(n+2)\|H\|^{2}-8 \operatorname{tr}\left(\sum_{\imath} A_{i}^{2}\right)^{2} \tag{3.1}\\
& -2 \sum_{\imath, \jmath}\left(\operatorname{tr} A_{i} A_{\jmath}\right)^{2}-2 \sum_{\imath, \jmath}\left(\operatorname{tr} J A_{i} A_{\jmath}\right)^{2}+\left\|\nabla^{\prime} H\right\|^{2},
\end{align*}
$$

where $\|H\|^{2}=2 \sum_{2} \operatorname{tr} A_{i}^{2}=h_{b a}{ }^{x} h^{b a}{ }_{x}$.
Proof. We first note that $h_{b}{ }^{a x}, h_{b a x}, \cdots$ are defined by $h_{b}{ }^{a x}=h_{b c}{ }^{x} g^{c a}, h_{b a x}=$ $h_{b a}{ }^{y} g_{y x}, \cdots$. Since the Laplacian $\Delta\|H\|^{2}$ of the square of the length of the second fundamental form is defined by

$$
\Delta\|H\|^{2}=g^{e d}\left(\nabla_{e}^{\prime} \nabla_{a}^{\prime}\|H\|^{2}\right),
$$

we have

$$
\frac{1}{2} \Delta\|H\|^{2}=g^{e d}\left(\nabla_{e}^{\prime} \nabla_{d}^{\prime} h_{b a}^{x}\right) h^{b a}+\left\|\nabla^{\prime} H\right\|^{2} .
$$

We shall compute the first tirm of the right hand side. The structure equations (1.11), (1.12) and (1.13) are given in tirms of local coordinates by

$$
\begin{align*}
R_{d c b a}= & \frac{c}{4}\left(g_{d a} g_{c b}-g_{c a} g_{d b}+J_{d a} J_{c b}-J_{c a} J_{d b}-2 J_{d c} J_{b a}\right) \tag{1.11}\\
& +h_{d a}{ }^{x} h_{c b x}-h_{c a}^{x} h_{d b x}, \\
\nabla_{c}^{\prime} h_{b a}^{x}= & \nabla_{b}^{\prime} h_{c a}^{x}, \\
R_{d c y}{ }^{x}= & h_{d e}{ }^{x} h_{c}^{e} y-h_{c e} h_{d y}^{e}-\frac{c}{2} J_{d c} J_{y}^{x},
\end{align*}
$$

where $R_{d c b a}=R_{d c b}{ }^{e} g_{e a}$ and $J_{d c}=J_{d}{ }^{b} g_{b c}$. From (1.12)' and Ricci equality, we have

$$
\begin{aligned}
g^{e d}\left(\nabla_{e}^{\prime} \nabla_{a}^{\prime} h_{b a}{ }^{x}\right) h^{b a} & =g^{e d}\left(\nabla_{e}^{\prime} \nabla_{b}^{\prime} h_{d a}{ }^{x}\right) h^{b a}{ }_{x} \\
& =g^{e d}\left(\nabla_{b}^{\prime} \nabla_{e}^{\prime} h_{d a}{ }^{x}-R_{e b d} h_{c a}{ }^{x}-R_{e b a}{ }^{c} h_{d c}{ }^{x}+R_{e b y}{ }^{x} h_{d a}{ }^{y}\right) h^{b a} .
\end{aligned}
$$

Substituting (1.11)' and (1.13)', we obtain from minimality of M^{n}

$$
\begin{aligned}
& g^{e d}\left(\nabla_{e}^{\prime} \nabla_{d}^{\prime} h_{b a}\right) h^{b a}{ }_{x} \\
&=\left\{\frac{c}{2}(n+1) \delta_{b}^{c}-h_{e}^{c}{ }_{e}{ }^{y} h_{b}{ }^{e}{ }_{y}\right\} h_{c a}{ }^{x} h^{b a}{ }_{x} \\
&-\left\{\frac{c}{4}\left(g_{e c} g_{b a}-g_{b c} g_{e a}+J_{e c} J_{b a}-J_{b c} J_{e a}-2 J_{e b} J_{a c}\right)+h_{e c}{ }^{y} h_{b a y}-h_{b c}{ }^{y} h_{e a y}\right\} h^{e c x} h^{b a}{ }_{x} \\
&+\left(h_{e d}{ }^{x} h_{b}{ }^{d}{ }_{y}-h_{b d}{ }^{x} h_{e}{ }^{d}{ }_{y}-\frac{c}{2} J_{e b} J_{y}{ }^{x}\right) h^{e a y} h_{a x}^{b}{ }_{a x} \\
&= \frac{c}{2}(n+2)\|H\|^{2}-h_{e c}{ }^{y} h_{b a y} h^{e c x} h^{b a}{ }_{x}+2 h_{e d}{ }^{x} h_{b}{ }^{d} h^{e a y} h^{b}{ }_{a x}-2 h_{b d}{ }^{y} h_{e}{ }_{e}^{d} h^{e a y} h^{b}{ }_{a x} .
\end{aligned}
$$

Since we can easily show

$$
\begin{aligned}
& h_{e c}{ }^{y} h_{b a y} h^{e c x} h^{b a}=2 \sum_{\imath, \nu}\left(\operatorname{tr} A_{\imath} A_{j}\right)^{2}+2 \sum_{\imath, j}\left(\operatorname{tr} J A_{\imath} A_{\jmath}\right)^{2}, \\
& h_{e d}{ }^{x} h_{b}{ }^{d}{ }_{y} h^{e a y} h_{a x}^{b}=0, \quad h_{b d}{ }^{x} h_{e}{ }_{y} h^{e a y} h_{a x}^{b}=4 \operatorname{tr}\left(\sum_{\imath} A_{\imath}{ }^{2}\right)^{2},
\end{aligned}
$$

we obtain (3.1).
Q.E.D.

Next, using (3.1), we study complex Einstein submanifold M^{n} satisfying the condition $\sum_{t} R^{*}\left(X_{t}, J X_{t}\right)=\mu J^{*}$ in a complex projective space $C P^{n+p}$ of constant holomorphic sectional curvature $c(>0)$, where $X_{1}, \cdots, X_{n}, J X_{1}, \cdots, J X_{n}$ are orthonormal basis of the tangent space M^{n} and μ is a globally difined function on M^{n}. We note that the condition $\sum_{t} R^{*}\left(X_{t}, J X_{t}\right)=\mu J^{*}$ is always satisfied when $p=1$. We need the following Lemma.

Lemma 3. Let M^{n} be a complex Einstein submanifold (i. e. $S=\rho g$) satisfying the condition $\sum_{t} R^{*}\left(X_{t}, J X_{t}\right)=\mu J^{*}$ in a complex space form $\bar{M}^{n+p}(c)$. If M^{n} is not totally geodesic, then the codimension p is smaller than $\frac{1}{2} n(n+1)$ and M^{n} is of constant holomorphic sectıonal curvature if and only if $\rho=\frac{n+1}{2} c$ or $p=\frac{1}{2} n(n+1)$.

Proof. We first prove

$$
\begin{align*}
& \operatorname{tr} A_{\imath}{ }^{2}=\frac{n \alpha}{p} \tag{3.2}\\
& \operatorname{tr} A_{\imath} A_{j}=0 \quad(i \neq j) \tag{3.3}\\
& \operatorname{tr} J A_{\imath} A_{j}=0 \tag{3.4}
\end{align*}
$$

for any \imath and \jmath, where $\alpha=\frac{1}{2}\{(n+1) c-2 \rho\}$. From (1.14) and (2.1), we have

$$
\begin{align*}
& \sum_{\imath}\left\langle A_{\imath}{ }^{2} X, Y\right\rangle=-\frac{p c}{4}\langle X, Y\rangle-\frac{1}{2} \lambda(X, J Y), \\
& \sum_{i}\left\langle A_{\imath}{ }^{2} X, Y\right\rangle=\frac{\alpha}{2}\langle X, Y\rangle \tag{3.5}
\end{align*}
$$

and hence we obtain

$$
\lambda(X, J Y)=-\left(\frac{p c}{2}+\alpha\right)\langle X, Y\rangle
$$

Thus from (2.2) and the condition $\sum_{l} R^{*}\left(X_{t}, J X_{t}\right)=\mu J^{*}$,

$$
\mu=\frac{1}{p} \sum_{t, \imath}\left\langle R^{*}\left(X_{t}, J X_{t}\right) C_{i}, J C_{i}\right\rangle=\frac{1}{p} \sum_{t} \lambda\left(X_{t}, J X_{t}\right)=-\frac{n c}{2}-\frac{n}{p} \alpha .
$$

On the other hand, using (1.13), we find immediately that

$$
\begin{aligned}
& \mu=\sum_{t}\left\langle R^{*}\left(X_{t}, J X_{t}\right) C_{i}, J C_{i}\right\rangle=-\operatorname{tr} A_{\imath}{ }^{2}-\frac{n c}{2}, \\
& \sum_{t}\left\langle R^{*}\left(X_{t}, J X_{t}\right\rangle C_{i}, J C_{\jmath}\right\rangle=-\operatorname{tr} A_{\imath} A_{j} \quad(i \neq j), \\
& \sum_{t}\left\langle R^{*}\left(X_{t}, J X_{t}\right) C_{i}, C_{\jmath}\right\rangle=-\operatorname{tr} J A_{\imath} A_{j}
\end{aligned}
$$

for all i and j. Therefore we see that the condition $\sum_{t} R^{*}\left(X_{t}, J X_{t}\right)=\mu J^{*}$ implies (3.2), (3.3) and (3.4).

The equation (1.11) may be written as

$$
R(X, Y) Z=\frac{c}{4} R_{0}(X, Y) Z+D(X, Y) Z
$$

where

$$
\begin{aligned}
R_{0}(X, Y) Z= & \langle Y, Z\rangle X-\langle X, Z\rangle Y \\
& +\langle J Y, Z\rangle J X-\langle J X, Z\rangle J Y-2\langle J X, Y\rangle J Z, \\
D(X, Y) Z= & \sum_{\imath}\left\{\left\langle A_{\imath} Y, Z\right\rangle A_{2} X-\left\langle A_{\imath} X, Z\right\rangle A_{\imath} Y\right\} \\
& +\sum_{\imath}\left\{\left\langle J A_{\imath} Y, Z\right\rangle J A_{\imath} X-\left\langle J A_{\imath} X, Z\right\rangle J A_{\imath} Y\right\} .
\end{aligned}
$$

Next, we compute

$$
\left\|D+\frac{\nu}{4} R_{0}\right\|^{2}=\|D\|^{2}+\frac{\nu}{2}\left\langle D, R_{0}\right\rangle+\frac{\nu^{2}}{16}\left\|R_{0}\right\|^{2}
$$

where ν is arbitrary number and \langle,$\rangle means the extended inner product on the$ tensor space of type (1.3). Using (3.2), (3.3) and (3.4), we can easily find

$$
\|D\|^{2}=4 \frac{n^{2}}{p} \alpha^{2}, \quad \frac{\nu}{2}\left\langle D, R_{0}\right\rangle=-8 n \alpha \nu, \quad \frac{\nu^{2}}{16}\left\|R_{0}\right\|^{2}=2 n(n+1) \nu^{2} .
$$

Thus it follows that

$$
\begin{equation*}
\left\|D+\frac{\nu}{4} R_{0}\right\|^{2}=2 n\left\{(n+1) \nu^{2}-4 \alpha \nu+\frac{2 n}{p} \alpha^{2}\right\} . \tag{3.6}
\end{equation*}
$$

Since the left-hand side is non-negative for arbitary number ν, we obtain

$$
\alpha^{2}\left\{p-\frac{1}{2} n(n+1)\right\} \leqq 0 .
$$

The left-hand side is equal to zero for some ν if and only if $\alpha=0$ or $p=$ $\frac{1}{2} n(n+1)$. This completes the proof.
Q.E.D.

Theorem 3. Let M^{n} be a connected complete complex Einstein submanifold (i. e., $S=\rho g$), satisfying the condition $\sum_{t} R^{*}\left(X_{t}, J X_{t}\right)=\mu J^{*}$ in a complex projective space $C P^{n+p}$ of holomorphic sectional curvature c. If $\rho \geqq \frac{1}{2} \frac{n(n+p+1)}{2 p+n} c$, then
$\nabla^{\prime} H=0$ and ρ is $\frac{n+1}{2} c$ or $\frac{1}{2} \frac{n(n+p+1)}{2 p+n} c$. If $\rho=\frac{n+1}{2} c$, then M^{n} is a totally geodesic submanifold, i. e., $C P^{n}$. If $\rho=\frac{1}{2} \frac{n(n+p+1)}{2 p+n} c$, then M^{n} is the complex quadric Q^{n} when $p=1$ and M^{n} is the complex projective space of constant holomorphic sectional curvature $\frac{c}{2}$ when $p=\frac{1}{2} n(n+1)$.

Proof. From (3.3) and (3.4), we see that (3.1) reduces to

$$
\begin{equation*}
\frac{1}{2} \Delta\|H\|^{2}=\frac{c}{2}(n+2)\|H\|^{2}-8 \operatorname{tr}\left(\sum_{\imath} A_{\imath}{ }^{2}\right)^{2}-2 \sum_{l}\left(\operatorname{tr} A_{\imath}{ }^{2}\right)^{2}+\left\|\nabla^{\prime} H\right\|^{2} . \tag{3.7}
\end{equation*}
$$

Using (3.5), we obtain

$$
\begin{align*}
& \|H\|^{2}=2 \sum_{\imath} \operatorname{tr} A_{\imath}{ }^{2}=2 n \alpha \tag{3.8}\\
& \operatorname{tr}\left(\sum_{\imath} A_{\imath}{ }^{2}\right)^{2}=\frac{n}{2} \alpha^{2} \tag{3.9}
\end{align*}
$$

Substituting (3.2), (3.8) and (3.9) in (3.7), we have

$$
n \alpha\left\{(n+2) c-4 \alpha-2 \frac{n}{p} \alpha\right\}+\left\|\nabla^{\prime} H\right\|^{2}=0
$$

Therefore if $\alpha \leqq \frac{1}{2} \frac{p(n+2)}{2 p+n} c$ (i. e., $\left.\rho \geqq \frac{1}{2} \frac{n(n+p+1)}{2 p+n} c\right)$, then $\nabla^{\prime} H=0$ and $\rho=$ $\frac{n+1}{2} c$ or $\rho=\frac{1}{2} \frac{n(n+p+1)}{2 p+n} c$. If $\rho=\frac{n+1}{2} c$, then $H=0$, i. e., M^{n} is totally geodesic. If $\rho=\frac{1}{2} \frac{n(n+p+1)}{2 p+n} c$, then M^{n} is the complex quadric Q^{n} when $p=1$ (cf. [8]). If $\rho=\frac{1}{2} \frac{n(n+p+1)}{2 p+n} c$ and $p=\frac{1}{2} n(n+1)$, then we see that M^{n} is of constant holomorphic sectional curvature by Lemma 3. Substituting $\alpha=$ $\frac{1}{2} \frac{p(n+2)}{2 p+n} c$ and $p=\frac{1}{2} n(n+1)$ in (3.6), we have

$$
\left\|D+\frac{\nu}{4} R_{0}\right\|^{2}=2 n(n+1)\left(\nu-\frac{c}{2}\right)^{2} .
$$

Thus, if $\rho=\frac{1}{2} \frac{n(n+p+1)}{2 p+n} c$ and $p=\frac{1}{2} n(n+1)$, then we see that M^{n} is of constant holomorphic sectional curvature $\frac{c}{2}$ and hence from results obtained by Ogiue [5] that M^{n} is rigid. For the imbedding of complex projective space of holomorphic sectional curvature $\frac{c}{2}$ into complex projective space of holomorphic sectional curvature c, see O'Neill [6].
Q. E. D.

BIBLIOGRAPHY

[1] S. Chern, S. Kobayashi and M. do Carmo, Minimal submanifolds of a sphere with second fundamental form of constant length, Functional analysis and related fields, Proc. Conf. in Honor of Marshall Stone, Springer, Berlin, 1970.
[2] S. Kobayashi and K. Nomizu, Foundations of differential geometry, Vol. II, Interscience, 1969.
[3] K. Nomizu and B. Smyth, Differential geometry of complex hypersurfaces II, J. Math. Soc. Japan, 20 (1968), 498-521.
[4] K. Ogiue, On Kähler immersions, Can. J. Math., 24 (1972), 1178-1182.
[5] K. Ogiue, N-dimensional complex space forms immersed in $\left\{n+\frac{n(n+1)}{2}\right\}$. dimensional complex space forms, J. Math. Soc. Japan, 24 (1972), 518-526.
[6] B. O'Neill, Isotropic and Kähler immersions, Canad. J. Math., 17 (1965), 907915.
[7] J. Simons, Minimal varieties in Riemannian manifolds, Ann. of Math., 88 (1968), 62-105.
[8] B. Smyth, Differential geometry of complex hypersurfaces, Ann. of Math., 85 (1967), 246-266.

Tokyo Institute of Technology

