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KAEHLER IMMERSIONS WITH VANISHING BOCHNER

CURVATURE TENSORS

BY MASAHIRO KON

Introduction.

In [4] Tachibana has introduced the notion of the Bochner curvature tensor
in a Kaehler manifold and Yamaguchi-Sato [6] have proved that a complex
hypersurface Mn with vanishing Bochner curvature tensor in a Kaehler manifold
Mn+1 with vanishing Bochner curvature tensor is totally geodesic if n^6. On
the other hand, by Theorem 3 of O'Neill [2], we can see that a complex sub-
manifold Mn of a Kaehler manifold Mn+p is totally geodesic if p<n(n+ΐ)/2
under the assumption both manifolds are of constant holomorphic sectional cur-
vature. With these connection, the purpose of this note is to prove the following:

THEOREM. Let Mn+p be a Kaehler manifold of complex dimension n-\-p with
vanishing Bochner curvature tensor, and let Mn be a complex submanifold of
M of complex dimension n with vanishing Bochner curvature tensor. If p<
(n+l)O+2)/(4tt+2), then M is totally geodesic in M.

COROLLARY. Under the same assumption as in Theorem, if p—\ and n^2,
then M is totally geodesic in M.

1. Preliminaries.

Let M be a Kaehler manifold of complex dimension n+p with the structure
tensor /and the Kaehler metric < , >. We denote by R, S and Q the curvature
tensor, the Ricci tensor and _the Ricci operator of M respectively. S and Q
have the relation (Qx,yy=S(x,y) for any vectors x,y^Tm(M). And we can
see QJ=JQ and S(Jx, Jy)=S(x, y\ The Bochner curvature tensor K of M is
defined by setting

(1.1) K(x,y}z=R(x,y}z

1 f/ .
(2r+4) l^J' Λ/^Λ'~~^^Λ"> * /J~τ~\jJι zyQJx~\QJχ>

+ (Qy, z>x-(x, z>Qy+<Qjy, z)Jx-Qx, z)QJy

-2<Jχ, Qyyjz-2<Jχ,
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(2r+2X2r+4)

r=n+p,

for any x,y,z^Tm(M) where k is the scalar curvature of M.
Let M be an n-dimensional complex submanifold of M. The Riemannian

metric induced on M is a Kaehler metric, which is denoted by the same < , >,
and the complex structure of M is written by the same / as in M. The covariant

differentiation in M (resp. M) will be denoted by F (resp. F). Then the Gauss-
Weingarten formulas are given by

, Y) , X,

PZN=-A*(X)+DZN,

where <β(X, Γ), JV> = <AΛΓ(A'), F> and D is the linear connection in the normal
bundle T(M)-1-. Since M is minimal in M, we have ^B(e^ eτ}=Q for a frame
£ι, ••• i £27* in Tm(M). If the second fundamental form B of M is identically zero,
M is called a totally geodesic submanifold of M. By the Gauss-Weingarten
formulas, the Gauss-equation is given by, for x,y,z,w<^Tm(M},

(1.2) <g(x, y}z, wy=(R(x, y}z, wy-(B(x, w\ B(y, z»+(B(y, w\ B(x, z)>

where R is the Riemannian curvature tensor of M. In the following, we denote
by S, Q and k the Ricci tensor, Ricci operator and the scalar curvature of M
respectively. Let vl9 — ,v2p be a frame for TOT(M)-L. Hereafter we write Λ°a

by Aa to simplify the presentation.
Simons [3] has defined the following operators which are symmetric, positive

semi-definite :

and A=
~ α

And we define the operator A* by setting

which is also symmetric, positive semi-definite. Obviously we have Tr ^L*=||
where \\A\\ denotes the length of the second fundamental form A of M. And
we have also 2Tr (A*}=(AoA, A) (cf. [1], [3]).

On the other hand, the second fundamental form A has the following
properties :

A9J+JA*=0 and AJυ-JAΌ=Q.

2. Proof of Theorem.

By the Gauss-equation (1.2), we obtain
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Σ %<R(et, A'eje,, A*e

α=l 1,3 = 1

+ <β(et, A
ae,\ B(e,, ΛαeJ)>-<β(Aαe» A*e,\ β(e,, e,)>} .

Hereafter we use a frame e1( ••• ,e27! for Tm(M) such that en+l=Jel and a frame
wι, ••• . vΐp for T^M)-1- such that vp+a=Jva. Then we can see

Σ Σ <B(Λ βt> Λ%), β(et, *,)>
α=l ι,j = i

= Σ
α

= Σ
a,b ι,

-Σ
a,b

because AJaAbAJa=JAaAbJAa=-AaAbAa, where Ja=Jva. By the definition of Af

we have also

Σ Σ <5(elf A^\ B(eJ9 A*e3y> = (AoΆ, Ay .
a=l ι,j=^l

Consequently we obtain

(2.1) Σ Σ <R(el9 Aa

ej)ejf Aaeτy = Σ Σ<^, A*eJeJ9 Aaeτy + <AoΆ, Ay .
a—l ι,j — l a ι,j

By the assumption, M has the vanishing Bochner curvature tensor and we have
by using (1.1)

(2'2) I J <*' '

Similarly we obtain

(2.3) Σ Σ e . , A eje,, Aaety=-- Tr QA* +
α .

where r=n+p and we take the trace of QA* on Tm(M). In the following we
calculate Tr QA*. By (1.1) and (1.2), we get

(2.4) S(x, y)=~ {(2n+4)S(x, y)+Ύr Q<x, y^}

(2.5)
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Using (2.4) and (2.5), we obtain

- Tr QA*+

FromΓ these equations, we have

(2.6) TrQA^^

(H~2)

~ 4(n+l)(n+2)

Therefore (2.3) and (2.6) imply
_

<R(et, A^e

(n+2)

(2.7)
2p

Σ

Consequently, from (2.1), (2.2) and (2.7), we have

(2-8) ' A> = oA' A>

' the other hand, we have the following inequalities (see [1]) :

and -\~2/ΓiκAn =^^^1 ^/= 2

Hence (2.8) becomes

2p (n+2)

and hence we get

Thus if ί<(n+l)(n+2)/(4n+2), then M is totally geodesic in M, which proves
our Theorem and Corollary is verified by Theorem obviousely.

Remark. Let Mn+p be a Kaehler manifold with vanishing Bochner curvature
tensor, and let Mn be a complex submanifold of M. If M is totally geodesic in
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M, we can see that the Bochner curvature tensor of M vanishies, by using (1.1),
(2.4) and (2.5).
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