KAEHLER IMMERSIONS WITH VANISHING BOCHNER CURVATURE TENSORS

By Masahiro Kon

Introduction.

In [4] Tachibana has introduced the notion of the Bochner curvature tensor in a Kaehler manifold and Yamaguchi-Sato [6] have proved that a complex hypersurface M^{n} with vanishing Bochner curvature tensor in a Kaehler manifold \bar{M}^{n+1} with vanishing Bochner curvature tensor is totally geodesic if $n \geqq 6$. On the other hand, by Theorem 3 of O'Neill [2], we can see that a complex submanifold M^{n} of a Kaehler manifold \bar{M}^{n+p} is totally geodesic if $p<n(n+1) / 2$ under the assumption both manifolds are of constant holomorphic sectional curvature. With these connection, the purpose of this note is to prove the following:

Theorem. Let \bar{M}^{n+p} be a Kaehler manifold of complex dimension $n+p$ with vanishing Bochner curvature tensor, and let M^{n} be a complex submanifold of \bar{M} of complex dimension n with vanishing Bochner curvature tensor. If $p<$ $(n+1)(n+2) /(4 n+2)$, then M is totally geodesic in \bar{M}.

Corollary. Under the same assumption as in Theorem, if $p=1$ and $n \geqq 2$, then M is totally geodesic in \bar{M}.

1. Preliminaries.

Let \bar{M} be a Kaehler manifold of complex dimension $n+p$ with the structure tensor J and the Kaehler metric \langle,$\rangle . We denote by \bar{R}, \bar{S}$ and \bar{Q} the curvature tensor, the Ricci tensor and the Ricci operator of \bar{M} respectively. \bar{S} and \bar{Q} have the relation $\langle\bar{Q} \bar{x}, \bar{y}\rangle=\bar{S}(\bar{x}, \bar{y})$ for any vectors $\bar{x}, \bar{y} \in T_{m}(\bar{M})$. And we can see $\bar{Q} J=J \bar{Q}$ and $\bar{S}(J \bar{x}, J \bar{y})=\bar{S}(\bar{x}, \bar{y})$. The Bochner curvature tensor \bar{K} of \bar{M} is defined by setting

$$
\begin{align*}
\bar{K}(\bar{x}, \bar{y}) \bar{z}= & \bar{R}(\bar{x}, \bar{y}) \bar{z} \tag{1.1}\\
& -\frac{1}{(2 r+4)}\{\langle\bar{y}, \bar{z}\rangle \bar{Q} \bar{x}-\langle\bar{Q} \bar{x}, \bar{z}\rangle \bar{y}+\langle J \bar{y}, \bar{z}\rangle \bar{Q} J \bar{x}-\langle\bar{Q} J \bar{x}, \bar{z}\rangle J \bar{y} \\
& \quad+\langle\bar{Q} \bar{y}, \bar{z}\rangle \bar{x}-\langle\bar{x}, \bar{z}\rangle \bar{Q} \bar{y}+\langle\bar{Q} J \bar{y}, \bar{z}\rangle J \bar{x}-\langle J \bar{x}, \bar{z}\rangle \bar{Q} J \bar{y} \\
& \quad-2\langle J \bar{x}, \bar{Q} \bar{y}\rangle J \bar{z}-2\langle J \bar{x}, \bar{y}\rangle \bar{Q} J \bar{z}\}
\end{align*}
$$

Received Aug. 8, 1974.

$$
\begin{aligned}
& +\frac{\bar{k}}{(2 r+2)(2 r+4)}\{\langle\bar{y}, \bar{z}\rangle \bar{x}-\langle\bar{x}, \bar{z}\rangle \bar{y}+\langle J \bar{y}, \bar{z}\rangle J \bar{x}-\langle J \bar{x}, \bar{z}\rangle J \bar{y} \\
& -2\langle J \bar{x}, \bar{y}\rangle J \bar{z}\}, \quad r=n+p,
\end{aligned}
$$

for any $\bar{x}, \bar{y}, \bar{z} \in T_{m}(\bar{M})$ where \bar{k} is the scalar curvature of \bar{M}.
Let M be an n-dimensional complex submanifold of \bar{M}. The Riemannian metric induced on M is a Kaehler metric, which is denoted by the same <, >, and the complex structure of M is written by the same J as in \bar{M}. The covariant differentiation in \bar{M} (resp. M) will be denoted by $\bar{\nabla}$ (resp. \bar{V}). Then the GaussWeingarten formulas are given by

$$
\begin{array}{ll}
\bar{\nabla}_{X} Y=\nabla_{X} Y+B(X, Y), & X, Y \in \mathscr{X}(M), \\
\bar{\nabla}_{X} N=-A^{N}(X)+D_{X} N, & X \in \mathscr{X}(M), \quad N \in \mathscr{X}(M)^{\perp}
\end{array}
$$

where $\langle B(X, Y), N\rangle=\left\langle A^{N}(X), Y\right\rangle$ and D is the linear connection in the normal bundle $T(M)^{\perp}$. Since M is minimal in \bar{M}, we have $\Sigma B\left(e_{2}, e_{2}\right)=0$ for a frame $e_{1}, \cdots, e_{2 n}$ in $T_{m}(M)$. If the second fundamental form B of M is identically zero, M is called a totally geodesic submanifold of \bar{M}. By the Gauss-Weingarten formulas, the Gauss-equation is given by, for $x, y, z, w \in T_{m}(M)$,

$$
\begin{equation*}
\langle\bar{R}(x, y) z, w\rangle=\langle R(x, y) z, w\rangle-\langle B(x, w), B(y, z)\rangle+\langle B(y, w), B(x, z)\rangle \tag{1.2}
\end{equation*}
$$

where R is the Riemannian curvature tensor of M. In the following, we denote by S, Q and k the Ricci tensor, Ricci operator and the scalar curvature of M respectively. Let $v_{1}, \cdots, v_{2 p}$ be a frame for $T_{m}(M)^{\perp}$. Hereafter we write $A^{v a}$ by A^{a} to simplify the presentation.

Simons [3] has defined the following operators which are symmetric, positive semi-definite:

$$
\tilde{A}={ }^{t} A \circ A \quad \text { and } \quad \underset{\sim}{A}=\sum_{a=1}^{2 p} a d A^{a} a d A^{a} .
$$

And we define the operator A^{*} by setting

$$
A^{*}=\sum_{a=1}^{2 p}\left(A^{a}\right)^{2}
$$

which is also symmetric, positive semi-definite. Obviously we have $\operatorname{Tr} A^{*}=\|A\|^{2}$ where $\|A\|$ denotes the length of the second fundamental form A of M. And we have also $2 \operatorname{Tr}\left(A^{*}\right)=\langle A \circ A, A\rangle$ (cf. [1], [3]).

On the other hand, the second fundamental form A has the following properties:

$$
A^{v} J+J A^{v}=0 \quad \text { and } \quad A^{J v}-J A^{v}=0 .
$$

2. Proof of Theorem.

By the Gauss-equation (1.2), we obtain

$$
\begin{aligned}
& \sum_{a=1}^{2 p} \sum_{2, \jmath=1}^{2 n}\left\langle R\left(e_{\imath}, A^{a} e_{\jmath}\right) e_{\jmath}, A^{a} e_{\imath}\right\rangle \\
& \quad=\sum_{a=1}^{2 p} \sum_{2, j=1}^{2 n}\left\{\left\langle\bar{R}\left(e_{\imath}, A^{a} e_{\jmath}\right) e_{\jmath}, A^{a} e_{\imath}\right\rangle\right. \\
& \\
& \left.\quad+\left\langle B\left(e_{\imath}, A^{a} e_{\imath}\right), B\left(e_{\jmath}, A^{a} e_{\jmath}\right)\right\rangle-\left\langle B\left(A^{a} e_{\imath}, A^{a} e_{\jmath}\right), B\left(e_{\imath}, e_{\jmath}\right)\right\rangle\right\}
\end{aligned}
$$

Hereafter we use a frame $e_{1}, \cdots, e_{2 n}$ for $T_{m}(M)$ such that $e_{n+2}=J e_{\imath}$ and a frame $v_{1}, \cdots, v_{2 p}$ for $T_{m}(M)^{\perp}$ such that $v_{p+a}=J v_{a}$. Then we can see

$$
\begin{aligned}
\sum_{a=1}^{2 n} \sum_{\imath, j=1}^{2 n} & \left\langle B\left(A^{a} e_{\imath}, A^{a} e_{\jmath}\right), B\left(e_{\imath}, e_{\jmath}\right)\right\rangle \\
& =\sum_{a} \sum_{\imath, j}\left\langle A^{\left(B e_{i}, e_{\jmath}\right)} A^{a} e_{\jmath}, A^{a} e_{\imath}\right\rangle \\
& =\sum_{a, b} \sum_{\imath, j}\left\langle A^{b} A^{a} e_{\jmath}, A^{a} e_{\imath}\right\rangle\left\langle A^{b} e_{\imath}, e_{\jmath}\right\rangle \\
& =\sum_{a, b} \sum_{j}\left\langle A^{a} A^{b} A^{a} e_{\jmath}, A^{b} e_{\jmath}\right\rangle=0
\end{aligned}
$$

because $A^{J a} A^{b} A^{J a}=J A^{a} A^{b} J A^{a}=-A^{a} A^{b} A^{a}$, where $J a \equiv J v_{a}$. By the definition of \tilde{A}, we have also

$$
\sum_{a=1}^{2 p} \sum_{2, j=1}^{2 n}\left\langle B\left(e_{2}, A^{a} e_{2}\right), B\left(e_{\jmath}, A^{a} e_{\jmath}\right)\right\rangle=\langle A \circ \tilde{A}, A\rangle
$$

Consequently we obtain

$$
\begin{equation*}
\sum_{a=1}^{2 p} \sum_{\imath, j=1}^{2 n}\left\langle R\left(e_{\imath}, A^{a} e_{\jmath}\right) e_{\jmath}, A^{a} e_{\imath}\right\rangle=\sum_{a} \sum_{\imath, \jmath}\left\langle\bar{R}\left(e_{\imath}, A^{a} e_{\jmath}\right) e_{\jmath}, A^{a} e_{\imath}\right\rangle+\langle A \circ \tilde{A}, A\rangle \tag{2.1}
\end{equation*}
$$

By the assumption, M has the vanishing Bochner curvature tensor and we have by using (1.1)

$$
\begin{equation*}
\sum_{a=1}^{2 n} \sum_{\imath, j=1}^{2 n}\left\langle R\left(e_{\imath}, A^{a} e_{\jmath}\right) e_{\jmath}, A^{a} e_{\imath}\right\rangle=\frac{-4}{n+2} \operatorname{Tr} Q A^{*}+\frac{k}{(n+1)(n+2)}\|A\|^{2} . \tag{2.2}
\end{equation*}
$$

Similarly we obtain

$$
\begin{equation*}
\sum_{a=1}^{2 n} \sum_{\imath, \jmath=1}^{2 n}\left\langle\bar{R}\left(e_{\imath}, A^{a} e_{\jmath}\right) e_{\jmath}, A^{a} e_{\imath}\right\rangle=\frac{-4}{r+2} \operatorname{Tr} \bar{Q} A^{*}+\frac{\bar{k}}{(r+1)(r+2)}\|A\|^{2} \tag{2.3}
\end{equation*}
$$

where $r=n+p$ and we take the trace of $\bar{Q} A^{*}$ on $T_{m}(M)$. In the following we calculate $\operatorname{Tr} \bar{Q} A^{*}$. By (1.1) and (1.2), we get

$$
\begin{align*}
& S(x, y)=\frac{1}{2 r+4}\{(2 n+4) \bar{S}(x, y)+\operatorname{Tr} \bar{Q}\langle x, y\rangle\} \tag{2.4}\\
& \quad-\frac{(n+1) \bar{k}}{2(r+1)(r+2)}\langle x, y\rangle-\left\langle A^{*} x, y\right\rangle \\
& k=\frac{(2 n+2)}{(r+2)} \operatorname{Tr} \bar{Q}-\frac{(n+1) n \bar{k}}{(r+1)(r+2)}-\|A\|^{2} . \tag{2.5}
\end{align*}
$$

Using (2.4) and (2.5), we obtain

$$
\begin{aligned}
& \operatorname{Tr} Q A^{*}= \frac{(n+2)}{(r+2)} \operatorname{Tr} \bar{Q} A^{*}+\frac{1}{(2 r+4)} \operatorname{Tr} \bar{Q}\|A\|^{2} \\
&-\frac{(n+1) \bar{k}}{2(r+1)(r+2)}\|A\|^{2}-\operatorname{Tr}\left(A^{*}\right)^{2}, \\
& \operatorname{Tr} \bar{Q}=\frac{(r+2) k}{2(n+1)}+\frac{(r+2)}{2(n+1)}\|A\|^{2}+\frac{n \bar{k}}{2(r+1)} .
\end{aligned}
$$

From these equations, we have

$$
\begin{align*}
\operatorname{Tr} \bar{Q} A^{*}= & \frac{(r+2)}{(n+2)} \operatorname{Tr} Q A^{*}+\frac{\bar{r}}{4(r+1)}\|A\|^{2}-\frac{(r+2) k}{4(n+1)(n+2)}\|A\|^{2} \tag{2.6}\\
& -\frac{(r+2)}{4(n+1)(n+2)}\|A\|^{4}+\frac{(r+2)}{(n+2)} \operatorname{Tr}\left(A^{*}\right)^{2} .
\end{align*}
$$

Therefore (2.3) and (2.6) imply

$$
\begin{align*}
& \sum_{a=1}^{2 p} \sum_{2, \jmath=1}^{2 n}\left\langle\bar{R}\left(e_{2}, A^{a} e_{\jmath}\right) e_{\jmath}, A^{a} e_{\imath}\right\rangle \tag{2.7}\\
&= \frac{-4}{(n+2)} \operatorname{Tr} Q A^{*}+\frac{k}{(n+1)(n+2)}\|A\|^{2} \\
&+\frac{1}{(n+1)(n+2)}\|A\|^{4}-\frac{2}{(n+2)}\langle A \circ A, A\rangle .
\end{align*}
$$

Consequently, from (2.1), (2.2) and (2.7), we have

$$
\begin{equation*}
\frac{1}{(n+1)(n+2)}\|A\|^{4}+\langle A \circ \tilde{A}, A\rangle=\frac{2}{(n+2)}\langle A \circ A, A\rangle . \tag{2.8}
\end{equation*}
$$

On_ * the other hand, we have the following inequalities (see [1]):

$$
\frac{1}{2 p}\|A\|^{4} \leqq\langle A \circ \tilde{A}, A\rangle \leqq \frac{1}{2}\|A\|^{4} \quad \text { and } \quad \frac{1}{n}\|A\|^{4} \leqq\langle A \sim A, A\rangle \leqq\|A\|^{4} .
$$

Hence (2.8) becomes

$$
\frac{1}{(n+1)(n+2)}\|A\|^{4}+\frac{1}{2 p}\|A\|^{4} \leqq \frac{2}{(n+2)}\|A\|^{4},
$$

and hence we get

$$
\left\{p-\frac{(n+1)(n+2)}{(4 n+2)}\right\}\|A\|^{4} \geqq 0
$$

Thus if $p<(n+1)(n+2) /(4 n+2)$, then M is totally geodesic in \bar{M}, which proves our Theorem and Corollary is verified by Theorem obviousely.

Remark. Let \bar{M}^{n+p} be a Kaehler manifold with vanishing Bochner curvature tensor, and let M^{n} be a complex submanifold of \bar{M}. If M is totally geodesic in
\bar{M}, we can see that the Bochner curvature tensor of M vanishies, by using (1.1), (2.4) and (2.5).

References

[1] Kon, M., On some complex submanifolds in Kaehler manifolds, Can. J. Math., 26 (1974), 1442-1449.
[2] O'Neill, B., Isotropic and Kaehler immersions, Can. J. Math., 17 (1965), 907917.
[3] Simons, J., Minimal varieties in riemannian manifolds, Ann. of Math., 88 (1968), 62-105.
[4] Tachibana, S., On the Bochner curvature tensor, Nat. Sci. Rep. of Ochanomizu Univ., 18 (1967), 15-19.
[5] Tachibana, S. and R.C. Liu, Notes on Kaehler metrics with vanishing Bochner curvature tensor, Kōdai Math. Sem. Rep., 22 (1970), 313-321.
[6] Yamaguchi, S. and S. Sato, On complex hypersurfaces with vanishing Bochner curvature tensor in Kaehler manifolds. Tensor N. S., 22 (1971), 77-81.

Science University of Tokyo.

