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SCHWARZ'S LEMMA IN Hp SPACES

BY SHOJI KOBAYASHI

§ 1. Introduction.

Let R be a Riemann surface and let t<=R be any fixed point. For 0<ί<oo,
let HP(R) denote the class of all functions / analytic on R for which the sub-
harmonic function \ f \ p has a harmonic majorant. We put for any

(1) ll/!lp-(w(0)1/p,

where u is the least harmonic majorant of \ f \ p on R. Then, for l^
HP(R) is a Banach space with the norm || ||p, and for 0<ί<l, HP(R) is not a
Banach space but a Frechet space with the metric d( , ) defined by d(f, g)=
\\f-gK (f,g^Hp(R)\ Although the "norm" || H, defined by (1) depends on
the choice of /, the induced topology does not ([11]). Let HJ^R) be the Banach
algebra of all functions which are analytic and bounded on R, with the uniform
norm || |U These Hp spaces, which generalize the classical Hardy classes in
the unit disc, were introduced by Parreau [10] and independently by Rudin [11].

In this paper we are concerned with the problem of maximizing |/'(OI under
the restrictions f<=Hp(R\ /(ί)=0 and ||/||p^l. Let H$ denote the class which
consists of all f^Hp(R) such that /(0=0 and ||/||p^l. We put for

αp=supl/ '(f) l .

We shall investigate some properties of ap as a function of p on (0, oo]. It is
easily shown by the normal family argument that there exists a function f^H°p

for which f'(t)=ap. Such a function is called an extremal function for H°p and
denoted by fp. If l<ί<co, then the uniform convexity of HP(R) implies that
fp is unique for any Riemann surface. It is well known that for any plane region
there is a unique extremal function /«, for H*L ([5]). In this paper we shall also
investigate the convergence of fp as p approaches to some p0 with l<ίo^°°.
In Section 5, we shall consider another extremal problem similar to the above
one.
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§2. Some lemmas on Lp.

We begin with three lemmas on Lp spaces. Lemma 1 is easily proved by
applying Holder's inequality, and Lemma 2 by Fatou's lemma. Lemma 3, which
is a generalization of Clarkson's result, is proved by the same method as his
(C2], p. 403).

LEMMA 1. Let (X,dμ) be a measure space with total mass 1. // 0<r<s^oo
and f^Ls(dμ\ then f^Lr(dμ) and

(2) l l / l l r^ l l/L

Equality holds in (2) if and only if \f\ =const. a. e. on X.
LEMMA 2. Let (X, dμ) be a measure space with tatal mass 1, and let 0<£^oo.

If ft=Lq(dμ) for all q<p, then

(3) ll/llp=lim||/ | |β.
«ίί>

In the case that f^Lp(dμ)f the left side of (3) should be interpreted as +00.
LEMMA 3. Let (X,dμ) be a measure space and let l<a<b<oo. Then, for

any positive number ε, there exists a positive number δ such that if a^p^b,
f,g^Lp(dμ\ \\f\\9, \\g\\p^l and \\l/2(f+g)\\p^l-δ, then ||/-*||p<β.

Remark. Since we can regard HP(R) as a subspace of LP(C, (\/2π)dθ), where
C is the unit circle and (l/2π)dθ is the normalized Lebesgue measure on C ([11],
p. 51), the above three lemmas are also valid for HP(R).

§ 3. Continuity of ap and convergence of fp.

THEOREM 1. ap is nonincreasing and left-continuous on (0, oo],

We need a lemma.

LEMMA 4. Let Q<p^oo and gk<=Hp(R) for k=l,2, . If gk converges to
some g uniformly on every compact subset of R, then

(4) lldl^UmllΛH,.
ft-»oo

In the case that g$Hp(R), the left side of (4) should be interpreted as +00.

Proof. Let \Rm} be a regular exhaustion of R such that t^Rlt Let μm

denote the harmonic measure for t on the boundary dRm of Rm. It is known
that for 0<£<oo and for any function / analytic on R

(5) I l / H p = l i m ( f
m-oo \J QR
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where the sequence of the right side is nondecreasing in m and the limit does
not depend on the choice of {Rm}. In the case that f&Hp(R], the left side of
(5) should be interpreted as +00 ([10], p. 137).

If ί<oo, then we see by (5)

/ /»

11*11,=limΠ"
m-^oo \J d

If p—oo, then the assertion of the lemma is almost trivial.

Proof of Theorem 1. It is evident from Lemma 1 that ap is nonincreasing
on (0, oo]. Let £0

e(0, oo]. Since { f p ; c<p<p0} forms a normal family, where
0<c<pQ, we can choose a sequence {pk} which converges increasingly to p0 so
that fPk converges to some g uniformly on every compact subset of R as &->oo.
It is easily shown that g(t)=Q and g'(t)*zapy By Lemma 4, we see

for any p<pϋ. Then, by Lemma 2, we see that g<^H°Po, and hence g is an ex-
tremal function for H% and limαp— aPo.

COROLLARY 1. // l<ίo<°°, then fp converges to fpo uniformly on every
compact subset of R as p t PO.

THEOREM 2. // l<ίo<°°, then lim||/p— /Po||p=0.

Proof. Let a=l/2(p0+ί) and b=p0. Let ε be any positive number. Applying
Lemma 3, we can find a positive number δ such that if a^p^b, f,g^Hp(R\
l l/llp, Wlp^l and ||l/2(/+£)||^l-S, then ||/- |̂|,<e. Since fp converges to
/Po uniformly on every compact subset of R as p ] p0 by Corollary 1, we see by
(5) and Fatou's lemma

*(f.
for any m. Letting w->oo, We have

Therefore we can find p1 such that ||l/2(/ί,+/2?0)||1>^l-^ for P^P<p0. Thus
we have ||/p-/p0||p<e.
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THEOREM 3. // Kp0<oo, then the following conditions are equivalent:.
(a) ap is continuous at p0*
(b) lim ||/,-Λβ||Pβ=0.

Proof. Suppose that (a) holds. Since {fp p>p0} forms a normal family,
we can find a sequence {pk} which converges decreasingly to p0 so that fPk

converges to some g uniformly on every compact subset of R. Applying Lemma
1 and 4, we see ||^||Po^l. Since ap is continuous at p0, we see gr(ϊ)=apQ. Then
the uniqueness of fPo implies that g=fPo and that fp converges to fPo uniformly
on every compact subset of R as p | pQ. Applying Lemma 4, we see

Hm i-o-(Λ+/p0)| ^IIΛolU-1*
P l P θ \ \ 6 \\Po

and hence the uniform convexity of HPo(R) implies (b).
Next we assume that (b) holds. Then we see

lim αp=lim fp(fy=fpQ(t)=ap(..

THEOREM 4. Let 0<p0<oo. If HP(R) is dense in HPo(R) for some p with
^<x>, then αp is continuous at p0.

Proof. Let {gk} be a sequence of functions in HP(R) such that lim\\gk~fPo\\pQ

— 0. Since ar^\gί(t)\/\\gk—gk(t)\\r for any r with pQ<r<^p, we see

for any k. Letting k-*oo, we have
rPϋ

COROLLARY 2. // D is a regular region (i. e. D is bounded by a finite number
of disjoint analytic simple closed curves) in the extended complex plane, then ap

is continuous on (0, oo],

Proof. By Lemma 3.4 of Rudin's paper ([11], p. 57), H^D) is dense in
HP(D) for any ίe(0,oo].

Remark. It is known that for 0<ί<oo

where Op denotes the class of all Rίemann surfaces R for which HP(R) contains
no functions but the constants ([7], p. 34). Therefore we see that there is a
Riemann surface for which ap is not necessarily continuous.

THEOREM 5. // D is a regular region in the extended complex plane, then
lim ||/r-/oα||p=0 for any p with 0<p<oo.
r-»oo

Proof. Since /«, is analytic on D and !/«!= 1 on dD ([1], [5], [6]), we see
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that ||/oo|L=l for Q<p<oo. Then, applying Lemma 1 and 4, we have lim||/r||p^ r-»oo

—1 for 0<£<oo. Since we may assume Kp<oo, the uniform convexity of
HP(D) implies UmU/r-/Jp=0.

r->oo

Remark. We do not know whether Theorem 5 is valid or not for general
regions.

§4. Condition for a1=a00.

THEOREM 6. // there are r and s such that 0<r<s^oo and ar=as, then
ar=a00.

Proof. Since /,e//° by Lemma 1, we see

Thus, again by Lemma 1, we have /,e/f2o, and hence αr=α«>.

THEOREM 7. Let Kp<oo. If HP(R) is dense in H^R) and if ap=ar for
some r with p<r^oo, then a1=a00.

Proof. We can regard HP(R) as a subspace of LP(C, (l/2π)dθ) as we stated
in the remark after Lemma 3. By Hahn-Banach theorem and the conjugate
relation between Lp and Lq, where l/£+l/#=l, we can find a function g^
Lq(C, (ί/2π)dθ) such that \\g\\q=ap and

for any f^H°p. Applying Lemma 1, we see that \g\=ap a. e. on C. Since there
are gk^Hp(R\ k=l, 2, — , such that lim||^— Λl|1=0,

«ι=/ί(0=lim «i(ί)=lίm 4r f
k->oo k-^oo Δ7ζ J Q

Hence, by Theorem β, we obtain a1=a00.

COROLLARY 3. Let D be a regular region in the extended complex plane.
If there are r and s such that 0<r<srgoo and ar=a$, then al=a00.

Remark. It is known that for 0<£<oo

Q<P

where Op is as we stated in the remark after Theorem 4 ([7], p. 34). Then
we see that there is a Riemaim surface for which αr^0 if p^r^oo but αr>0
if Q<r<p.
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§ 5. Another extremal problem.

In this section we consider a similar extremal problem without the restric-
tion /(O^O, that is, consider the problem of maximizing |/'(f)l under the re-
strictions f^Hp(R) and ||/||p^l. Let Hp denote the unit ball of HP(R), and we
put

Ar=SUp|/'(OI
/sir*

for Q<p^oo. A function f<^H\> for which f'(t)=βp (such a function always
exists) is called an extremal function for Hp. It is evident that ap^βp for

^oo, and it is well known that a00=β00 ([!]).

We can prove by a similar way the same propositions for this extremal
problem as all the theorems and the corollaries before mentioned.

LEMMA 5. az=β2.

Proof. Let / be the extremal function for H\, and we put g(z)=f(z)—c9

where c=/(ί). Then we see by (5)

Rm

lg{2dμm

and hence a2=βz.

Combining Corollary 3, a00=β00 and Lemma 5, we have the following theorem:

THEOREM 8. Let D be a regular region in the extended complex plane.
Then the following conditions are equivalent:

(a) a1=a00.
(b) There are r and s such that 0<r<s^oo and ar=as.
(C) β1 = β00.

(d) There are r and s such that 0<r<s^oo and βr=βs.

Remark. By Rudin's result ([11], p. 63), the conditions of Theorem 8 are
also equivalent to the following condition:

(e) The critical points of Green's function G(z, ϊ) for D, with pole at tt

coincide, including multiplicity, with the zeros of /«> except t.

He also showed that for any ring domain D there is a point t^D for which
a1=a00. And he posed a problem whether there is such a point, if the con-
nectivity of D is greater than 2 ([11], p. 64). The following example, which
was given by the author and Suita [9], partially presents an affirmative answer
to the problem.
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Example. Let k be any positive integer and let

for j— 0, 1, ••• , k— 1, where ε is such a small positive number that Ej are pairwise

disjoint. Let D be the domain obtained by removing U E, from the extended
J = 0

complex plane, and let t=Q. Then it is easily shown, by the symmetry of D
and the uniqueness of G(z, 0) and /«,, that both the critical points of G(z, 0) and
the zeros of /«, except 0 are placed at oo with multiplicity k—1. Therefore the
condition (e) in the previous remark is satisfied, and hence aλ= &«>.

§6. Simply-connected region.

THEOREM 9. Suppose that R is a simply-connected hyperbolic Riemann sur-
face, then

(i) ap is constant on (0, oo];
(ii) fp is unique and the same for

Proof. Since the problem is conformally invariant, we may assume that
R=U and t=Q. It is easily shown by Cauchy's integral formula that ap— 1 and
fp(z)=z for l^ί^oo. Let Q<p<l and let g be any extremal function for H°p.
We put

(6) h(z)=z(g(z)/B(z))^.

where B(z) is the Blaschke product formed by the zeros of g. By the canonical
factorization theorem ([3], p. 24, [9], p. 67), we see h<ΞH\. On the other hand

I A'(0) I =lim I h(z)/z \ = \
z-»0

where B1(z)=B(z)/z. Hence we have that ap=l, B(z)=z and h(z)=f*(z)=z.
Thus, by (6), we obtain g(z)=z.

Remark. Theorem 9 is not true for the other extremal problem considered
in Section 5. In fact, if R=U, t— 0 and f(z)=l/2(z+l)2, then we easily see that
11/11!=! and f'(t)=l. Since βp=l on [1, oo] by Theorem 8 and 9, / is an ex-
tremal function for H\, which distincts from /». Then, by Lemma 1, ||/||P<1
for 0<p<l, since |/|^const. on C. Thus βp>β1=β~ and βp is strictly de-
creasing on (0, 1).

THEOREM 10. Let D be a regular region in the extended complex plane. If
aPϋ=aλ for some p0 with Q<pQ<l, then D is conformally equivalent to the unit
disc U.

Proof. By Theorem 6 we have a1=a00f and hence the condition (e) in the
remark after Theorem 8 is satisfied. Let k be the connectivity of D and we
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assume k^2. Let G=G(z, t) be Green's function for D, with pole at £, and put
P=G+iH, where H is the harmonic conjugate of G. Let tlf ••• , f^-j. be the critical
points of G, that is, the zeros of P'dz. It is well known that D can be com-

pleted, by symmetrization, to a closed Riemann surface D, which is called the

double of D. There is given .an involutory, indirectly conformal mapping of D
onto itself which leaves every point on dD fixed, and the image of z^D is
denoted by 2. Let δ be the divisor defined by 3=^ — ̂ -Λ — ίY^r1. If two
or more of ^ ••• tk-± coincide, we must modify the representation. But nothing
in our proof is affected by such a change. Let X be the complex vector space

consisting of all functions meromorphic on D which are multiples of δ"1, and &

be that of all Abelian differentials on D which are multiples of δ. By Riemann-
Roch theorem [12], we see

(7) dim J7=dim ^+(2(*-2)+l-(fe-l))=dim <B+k-2 ,

since the order of δ is 2(k—2) and the genus of D is £— 1. As usual, we can

extend Pf to a function meromorphic on D, which is again denoted by P' '. For

any ωe.0, h=ω/(P'dz)=const. on D, since h has no poles on D, and hence
dim .0=1. Then, by (7), we have dim-£=fe— 1. Therefore there exists a

non-constant function φ^X. If we put gι(z) = (φ(z)+φ(z))/2 and g2(z)=

(φ(z)—φ(z})/2i for z<^D, then at least one of_them, say glt is non-constant on
D. It is evident that gλ is meromorphic on D, real-valued on dD and multiple
of δ?, where δλ is the divisor defined by δ^^ — ί*.^"1. Let φ(z)=(g1(z)+K)/K,
where K is such a large positive number that φ^Q on dD, and let f(z)=φ(z)f00(z).
So we have

since |/oo|=l and ^^0 on 9D. It is easily shown that f/(t)—al and /(ί)=0, that
is, / is an extremal function for #5. Since φ is non-constant on 3D, we see
||/||.PO<1 by Lemma 1, and hence aPύ>aλ. This contradiction shows k=l, and
hence D is conformally equivalent to U.

Remark. If D is a regular region in the extended complex plane, then the
set of all extremal functions for HI can be imbedded in Rk~l as a convex com-
pact subset with non-empty interior, where k is the connectivity of D ([9]).
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