SCHWARZ'S LEMMA IN H_{p} SPACES

By Shōji Kobayashi

§ 1. Introduction.

Let R be a Riemann surface and let $t \in R$ be any fixed point. For $0<p<\infty$, let $H_{p}(R)$ denote the class of all functions f analytic on R for which the subharmonic function $|f|^{p}$ has a harmonic majorant. We put for any $f \in H_{p}(R)$

$$
\begin{equation*}
\|f\|_{p}=(u(t))^{1 / p}, \tag{1}
\end{equation*}
$$

where u is the least harmonic majorant of $|f|^{p}$ on R. Then, for $1 \leqq p<\infty$, $H_{p}(R)$ is a Banach space with the norm $\left\|\|_{p}\right.$, and for $0<p<1, H_{p}(R)$ is not a Banach space but a Fréchet space with the metric $d($,$) defined by d(f, g)=$ $\|f-g\|_{p}^{p}\left(f, g \in H_{p}(R)\right)$. Although the " norm" $\left\|\|_{p}\right.$ defined by (1) depends on the choice of t, the induced topology does not ([11]). Let $H_{\infty}(R)$ be the Banach algebra of all functions which are analytic and bounded on R, with the uniform norm $\left\|\|_{\infty}\right.$. These H_{p} spaces, which generalize the classical Hardy classes in the unit disc, were introduced by Parreau [10] and independently by Rudin [11].

In this paper we are concerned with the problem of maximizing $\left|f^{\prime}(t)\right|$ under the restrictions $f \in H_{p}(R), f(t)=0$ and $\|f\|_{p} \leqq 1$. Let H_{p}^{0} denote the class which consists of all $f \in H_{p}(R)$ such that $f(t)=0$ and $\|f\|_{p} \leqq 1$. We put for $0<p \leqq \infty$

$$
\alpha_{p}=\sup _{f \in H_{p}^{0}}\left|f^{\prime}(t)\right| .
$$

We shall investigate some properties of α_{p} as a function of p on ($0, \infty$]. It is easily shown by the normal family argument that there exists a function $f \in H_{p}^{0}$ for which $f^{\prime}(t)=\alpha_{p}$. Such a function is called an extremal function for H_{p}^{0} and denoted by f_{p}. If $1<p<\infty$, then the uniform convexity of $H_{p}(R)$ implies that f_{p} is unique for any Riemann surface. It is well known that for any plane region there is a unique extremal function f_{∞} for H_{∞}^{0} ([5]). In this paper we shall also investigate the convergence of f_{p} as p approaches to some p_{0} with $1<p_{0} \leqq \infty$. In Section 5, we shall consider another extremal problem similar to the above one.

I would like to express my deep gratitude to Professor N. Suita for his constant encouragement and helpful suggestions.

Received May 4, 1974.

§ 2. Some lemmas on L_{p}.

We begin with three lemmas on L_{p} spaces. Lemma 1 is easily proved by applying Holder's inequality, and Lemma 2 by Fatou's lemma. Lemma 3, which is a generalization of Clarkson's result, is proved by the same method as his ([2], p. 403).

Lemma 1. Let $(X, d \mu)$ be a measure space with total mass 1. If $0<r<s \leqq \infty$ and $f \in L_{s}(d \mu)$, then $f \in L_{r}(d \mu)$ and

$$
\begin{equation*}
\|f\|_{r} \leqq\|f\|_{s} . \tag{2}
\end{equation*}
$$

Equality holds in (2) if and only if $|f|=$ const. a. e. on X.
Lemma 2. Let $(X, d \mu)$ be a measure space with tatal mass 1 , and let $0<p \leqq \infty$. If $f \in L_{q}(d \mu)$ for all $q<p$, then

$$
\begin{equation*}
\|f\|_{p}=\lim _{q \nmid p}\|f\|_{q} . \tag{3}
\end{equation*}
$$

In the case that $f \oplus L_{p}(d \mu)$, the left side of (3) should be interpreted as $+\infty$.
Lemma 3. Let $(X, d \mu)$ be a measure space and let $1<a<b<\infty$. Then, for any positive number ε, there exists a positive number δ such that if $a \leqq p \leqq b$, $f, g \in L_{p}(d \mu),\|f\|_{p},\|g\|_{p} \leqq 1$ and $\|1 / 2(f+g)\|_{p} \geqq 1-\delta$, then $\|f-g\|_{p}<\varepsilon$.

Remark. Since we can regard $H_{p}(R)$ as a subspace of $L_{p}(C,(1 / 2 \pi) d \theta)$, where C is the unit circle and $(1 / 2 \pi) d \theta$ is the normalized Lebesgue measure on C ([11], p. 51), the above three lemmas are also valid for $H_{p}(R)$.
§ 3. Continuity of α_{p} and convergence of f_{p}.
Theorem 1. α_{p} is nonincreasing and left-continuous on $(0, \infty]$.
We need a lemma.
Lemma 4. Let $0<p \leqq \infty$ and $g_{k} \in H_{p}(R)$ for $k=1,2, \cdots$. If g_{k} converges to some g uniformly on every compact subset of R, then

$$
\begin{equation*}
\|g\|_{p} \leqq \lim _{k \rightarrow \infty}\left\|g_{k}\right\|_{p} \tag{4}
\end{equation*}
$$

In the case that $g \notin H_{p}(R)$, the left side of (4) should be interpreted as $+\infty$.
Proof. Let $\left\{R_{m}\right\}$ be a regular exhaustion of R such that $t \in R_{1}$. Let μ_{m} denote the harmonic measure for t on the boundary ∂R_{m} of R_{m}. It is known that for $0<p<\infty$ and for any function f analytic on R

$$
\begin{equation*}
\|f\|_{p}=\lim _{m \rightarrow \infty}\left(\int_{\partial R_{m}}|f|^{p} d \mu_{m}\right)^{1 / p} \tag{5}
\end{equation*}
$$

where the sequence of the right side is nondecreasing in m and the limit does not depend on the choice of $\left\{R_{m}\right\}$. In the case that $f \oplus H_{p}(R)$, the left side of (5) should be interpreted as $+\infty$ ([10], p. 137).

If $p<\infty$, then we see by (5)

$$
\begin{aligned}
\|g\|_{p} & =\lim _{m \rightarrow \infty}\left(\int_{\partial R_{m}}|g|^{p} d \mu_{m}\right)^{1 / p} \\
& =\lim _{m \rightarrow \infty} \lim _{k \rightarrow \infty}\left(\int_{\partial R_{m}}\left|g_{k}\right|^{p} d \mu_{m}\right)^{1 / p} \\
& \leqq \lim _{k \rightarrow \infty}\left\|g_{k}\right\|_{p}
\end{aligned}
$$

If $p=\infty$, then the assertion of the lemma is almost trivial.
Proof of Theorem 1. It is evident from Lemma 1 that α_{p} is nonincreasing on $(0, \infty]$. Let $p_{0} \in(0, \infty]$. Since $\left\{f_{p} ; c<p<p_{0}\right\}$ forms a normal family, where $0<c<p_{0}$, we can choose a sequence $\left\{p_{k}\right\}$ which converges increasingly to p_{0} so that $f_{p_{k}}$ converges to some g uniformly on every compact subset of R as $k \rightarrow \infty$. It is easily shown that $g(t)=0$ and $g^{\prime}(t) \geqq \alpha_{p_{0}}$. By Lemma 4 , we see

$$
\|g\|_{p} \leqq \lim _{k \rightarrow \infty}\left\|f_{p_{k}}\right\|_{p} \leqq \lim _{k \rightarrow \infty}\left\|f_{p_{k}}\right\|_{p_{k}}=1,
$$

for any $p<p_{0}$. Then, by Lemma 2, we see that $g \in H_{p_{0}}^{0}$, and hence g is an extremal function for $H_{p_{0}}^{0}$ and $\lim _{p \uparrow p_{0}} \alpha_{p}=\alpha_{p_{0}}$.

Corollary 1. If $1<p_{0}<\infty$, then f_{p} converges to $f_{p_{0}}$ uniformly on every compact subset of R as $p \uparrow p_{0}$.

Theorem 2. If $1<p_{0}<\infty$, then $\lim _{p \nmid p_{0}}\left\|f_{p}-f_{p_{0}}\right\|_{p}=0$.
Proof. Let $a=1 / 2\left(p_{0}+1\right)$ and $b=p_{0}$. Let ε be any positive number. Applying Lemma 3, we can find a positive number δ such that if $a \leqq p \leqq b, f, g \in H_{p}(R)$, $\|f\|_{p},\|g\|_{p} \leqq 1$ and $\|1 / 2(f+g)\|_{p} \geqq 1-\delta$, then $\|f-g\|_{p}<\varepsilon$. Since f_{p} converges to $f_{p_{0}}$ uniformly on every compact subset of R as $p \uparrow p_{0}$ by Corollary 1 , we see by (5) and Fatou's lemma

$$
\begin{gathered}
\frac{\lim _{p\left\lceil p_{0}\right.}\left\|\frac{1}{2}\left(f_{p}+f_{p_{0}}\right)\right\|_{p} \geqq \varliminf_{\bar{l} \mid}^{p\left\lceil p_{0}\right.}\left(\int_{\partial R_{m}}\left|\frac{1}{2}\left(f_{p}+f_{p_{0}}\right)\right|^{p} d \mu_{m}\right)^{1 / p}}{\geqq\left(\int_{\partial R_{m}}\left|f_{p_{0}}\right|^{p_{0}} d \mu_{m}\right)^{1 / p_{0}}},
\end{gathered}
$$

for any m. Letting $m \rightarrow \infty$, we have

$$
\lim _{p \backslash p_{0}}\left\|\frac{1}{2}\left(f_{p}+f_{p_{0}}\right)\right\|_{p} \geqq\left\|f_{p_{0}}\right\|_{p_{0}}=1 .
$$

Therefore we can find p_{1} such that $\left\|1 / 2\left(f_{p}+f_{p_{0}}\right)\right\|_{p} \geqq 1-\delta$ for $p_{1} \leqq p<p_{0}$. Thus we have $\left\|f_{p}-f_{p_{0}}\right\|_{p}<\varepsilon$.

Theorem 3. If $1<p_{0}<\infty$, then the following conditions are equivalent:
(a) α_{p} is continuous at p_{0}.
(b) $\lim _{p \backslash p_{0}}\left\|f_{p}-f_{p_{0}}\right\|_{p_{0}}=0$.

Proof. Suppose that (a) holds. Since $\left\{f_{p} ; p>p_{0}\right\}$ forms a normal family, we can find a sequence $\left\{p_{k}\right\}$ which converges decreasingly to p_{0} so that $f_{p_{k}}$ converges to some g uniformly on every compact subset of R. Applying Lemma 1 and 4 , we see $\|g\|_{p_{0}} \leqq 1$. Since α_{p} is continuous at p_{0}, we see $g^{\prime}(t)=\alpha_{p_{0}}$. Then the uniqueness of $f_{p_{0}}$ implies that $g=f_{p_{0}}$ and that f_{p} converges to $f_{p_{0}}$ uniformly on every compact subset of R as $p \downarrow p_{0}$. Applying Lemma 4, we see

$$
\lim _{p \backslash p_{0}}\left\|\frac{1}{2}\left(f_{p}+f_{p_{0}}\right)\right\|_{p_{0}} \geqq\left\|f_{p_{0}}\right\|_{p_{0}}=1
$$

and hence the uniform convexity of $H_{p_{0}}(R)$ implies (b).
Next we assume that (b) holds. Then we see

$$
\lim _{p \backslash p_{0}} \alpha_{p}=\lim _{p \backslash p_{0}} f_{p}^{\prime}(t)=f_{p_{0}}^{\prime}(t)=\alpha_{p_{0}}
$$

Theorem 4. Let $0<p_{0}<\infty$. If $H_{p}(R)$ is dense in $H_{p_{0}}(R)$ for some p with $p_{0}<p \leqq \infty$, then α_{p} is continuous at p_{0}.

Proof. Let $\left\{g_{k}\right\}$ be a sequence of functions in $H_{p}(R)$ such that $\lim _{k \rightarrow \infty}\left\|g_{k}-f_{p_{0}}\right\|_{p_{0}}$ $=0$. Since $\alpha_{r} \geqq\left|g_{k}^{\prime}(t)\right| /\left\|g_{k}-g_{k}(t)\right\|_{r}$ for any r with $p_{0}<r \leqq p$, we see

$$
\lim _{r \backslash p_{0}} \alpha_{r} \geqq \lim _{r \downarrow p_{0}}\left|g_{k}^{\prime}(t)\right| /\left\|g_{k}-g_{k}(t)\right\|_{r}=\left|g_{k}^{\prime}(t)\right| /\left\|g_{k}-g_{k}(t)\right\|_{p_{0}}
$$

for any k. Letting $k \rightarrow \infty$, we have $\lim _{r \downarrow p_{0}} \alpha_{r} \geqq \alpha_{p_{0}}$.
Corollary 2. If D is a regular region (i. e. D is bounded by a finite number of disjoint analytic simple closed curves) in the extended complex plane, then α_{p} is continuous on $(0, \infty]$.

Proof. By Lemma 3.4 of Rudin's paper ([11], p. 57), $H_{\infty}(D)$ is dense in $H_{p}(D)$ for any $p \in(0, \infty]$.

Remark. It is known that for $0<p<\infty$

$$
O_{p} \subsetneq \bigcap_{q>p} O_{q},
$$

where O_{p} denotes the class of all Riemann surfaces R for which $H_{p}(R)$ contains no functions but the constants ([7], p. 34). Therefore we see that there is a Riemann surface for which α_{p} is not necessarily continuous.

Theorem 5. If D is a regular region in the extended complex plane, then $\lim _{r \rightarrow \infty}\left\|f_{r}-f_{\infty}\right\|_{p}=0$ for any p with $0<p<\infty$.

Proof. Since f_{∞} is analytic on \bar{D} and $\left|f_{\infty}\right|=1$ on ∂D ([1], [5], [6]), we see
that $\left\|f_{\infty}\right\|_{p}=1$ for $0<p<\infty$. Then, applying Lemma 1 and 4, we have $\lim _{r \rightarrow \infty}\left\|f_{r}\right\|_{p}$ $=1$ for $0<p<\infty$. Since we may assume $1<p<\infty$, the uniform convexity of $H_{p}(D)$ implies $\lim _{r \rightarrow \infty}\left\|f_{r}-f_{\infty}\right\|_{p}=0$.

Remark. We do not know whether Theorem 5 is valid or not for general regions.

§4. Condition for $\alpha_{1}=\alpha_{\infty}$.

Theorem 6. If there are r and s such that $0<r<s \leqq \infty$ and $\alpha_{r}=\alpha_{s}$, then $\alpha_{r}=\alpha_{\infty}$.

Proof. Since $f_{s} \in H_{r}^{0}$ by Lemma 1, we see

$$
\alpha_{s}=\alpha_{r} \geqq f_{s}^{\prime}(t)=\alpha_{s} .
$$

Thus, again by Lemma 1 , we have $f_{s} \in H_{\infty}^{0}$, and hence $\alpha_{r}=\alpha_{\infty}$.
Theorem 7. Let $1<p<\infty$. If $H_{p}(R)$ is dense in $H_{1}(R)$ and if $\alpha_{p}=\alpha_{r}$ for some r with $p<r \leqq \infty$, then $\alpha_{1}=\alpha_{\infty}$.

Proof. We can regard $H_{p}(R)$ as a subspace of $L_{p}(C,(1 / 2 \pi) d \theta)$ as we stated in the remark after Lemma 3. By Hahn-Banach theorem and the conjugate relation between L_{p} and L_{q}, where $1 / p+1 / q=1$, we can find a function $g \in$ $L_{q}(C,(1 / 2 \pi) d \theta)$ such that $\|g\|_{q}=\alpha_{p}$ and

$$
f^{\prime}(t)=\frac{1}{2 \pi} \int_{C} f\left(e^{i \theta}\right) g\left(e^{i \theta}\right) d \theta
$$

for any $f \in H_{p}^{0}$. Applying Lemma 1 , we see that $|g|=\alpha_{p}$ a. e. on C. Since there are $g_{k} \in H_{p}(R), k=1,2, \cdots$, such that $\lim _{k \rightarrow \infty}\left\|g_{k}-f_{1}\right\|_{1}=0$,

$$
\begin{aligned}
\alpha_{1}=f_{1}^{\prime}(t) & =\lim _{k \rightarrow \infty} g_{k}^{\prime}(t)=\lim _{k \rightarrow \infty} \frac{1}{2 \pi} \int_{C} g_{k}\left(e^{i \theta}\right) g\left(e^{i \theta}\right) d \theta \\
& \leqq \lim _{k \rightarrow \infty} \alpha_{p}\left\|g_{k}\right\|_{1}=\alpha_{p}
\end{aligned}
$$

Hence, by Theorem 6, we obtain $\alpha_{1}=\alpha_{\infty}$.
Corollary 3. Let D be a regular region in the extended complex plane. If there are r and s such that $0<r<s \leqq \infty$ and $\alpha_{r}=\alpha_{s}$, then $\alpha_{1}=\alpha_{\infty}$.

Remark. It is known that for $0<p<\infty$

$$
\bigcup_{q<p} O_{q} \subsetneq O_{p},
$$

where O_{p} is as we stated in the remark after Theorem 4 ([7], p. 34). Then we see that there is a Riemann surface for which $\alpha_{r}=0$ if $p \leqq r \leqq \infty$ but $\alpha_{r}>0$ if $0<r<p$.

§ 5. Another extremal problem.

In this section we consider a similar extremal problem without the restriction $f(t)=0$, that is, consider the problem of maximizing $\left|f^{\prime}(t)\right|$ under the restrictions $f \in H_{p}(R)$ and $\|f\|_{p} \leqq 1$. Let H_{p}^{1} denote the unit ball of $H_{p}(R)$, and we put

$$
\beta_{p}=\sup _{f \in H_{p}^{1}}\left|f^{\prime}(t)\right|
$$

for $0<p \leqq \infty$. A function $f \in H_{p}^{1}$ for which $f^{\prime}(t)=\beta_{p}$ (such a function always exists) is called an extremal function for H_{p}^{1}. It is evident that $\alpha_{p} \leqq \beta_{p}$ for $0<p \leqq \infty$, and it is well known that $\alpha_{\infty}=\beta_{\infty}$ ([1]).

We can prove by a similar way the same propositions for this extremal problem as all the theorems and the corollaries before mentioned.

Lemma 5. $\alpha_{2}=\beta_{2}$.
Proof. Let f be the extremal function for H_{2}^{1}, and we put $g(z)=f(z)-c$, where $c=f(t)$. Then we see by (5)

$$
\begin{aligned}
\|g\|_{2}^{2} & =\lim _{m \rightarrow \infty} \int_{\partial R_{m}}|g|^{2} d \mu_{m} \\
& =\lim _{m \rightarrow \infty} \int_{\partial R_{m}}\left(|f|^{2}-\bar{c} f-c \bar{f}+|c|^{2}\right) d \mu_{m} \\
& =\|f\|_{2}^{2}-|c|^{2} \leqq 1
\end{aligned}
$$

and hence $\alpha_{2}=\beta_{2}$.
Combining Corollary 3, $\alpha_{\infty}=\beta_{\infty}$ and Lemma 5, we have the following theorem:
Theorem 8. Let D be a regular region in the extended complex plane. Then the following conditions are equivalent:
(a) $\alpha_{1}=\alpha_{\infty}$.
(b) There are r and s such that $0<r<s \leqq \infty$ and $\alpha_{r}=\alpha_{s}$.
(c) $\beta_{1}=\beta_{\infty}$.
(d) There are r and s such that $0<r<s \leqq \infty$ and $\beta_{r}=\beta_{s}$.

Remark. By Rudin's result ([11], p. 63), the conditions of Theorem 8 are also equivalent to the following condition:
(e) The critical points of Green's function $G(z, t)$ for D, with pole at t, coincide, including multiplicity, with the zeros of f_{∞} except t.

He also showed that for any ring domain D there is a point $t \in D$ for which $\alpha_{1}=\alpha_{\infty}$. And he posed a problem whether there is such a point, if the connectivity of D is greater than 2 ([11], p. 64). The following example, which was given by the author and Suita [9], partially presents an affirmative answer to the problem.

Example. Let k be any positive integer and let

$$
E_{j}=\left\{z ;\left|z-e^{i(2 \pi j / k)}\right| \leqq \varepsilon\right\},
$$

for $j=0,1, \cdots, k-1$, where ε is such a small positive number that E_{j} are pairwise disjoint. Let D be the domain obtained by removing $\bigcup_{j=0}^{k-1} E$ from the extended complex plane, and let $t=0$. Then it is easily shown, by the symmetry of D and the uniqueness of $G(z, 0)$ and f_{∞}, that both the critical points of $G(z, 0)$ and the zeros of f_{∞} except 0 are placed at ∞ with multiplicity $k-1$. Therefore the condition (e) in the previous remark is satisfied, and hence $\alpha_{1}=\alpha_{\infty}$.

§ 6. Simply-connected region.

Theorem 9. Suppose that R is a simply-connected hyperbolic Riemann surface, then
(i) α_{p} is constant on $(0, \infty]$;
(ii) f_{p} is unique and the same for $0<p \leqq \infty$.

Proof. Since the problem is conformally invariant, we may assume that $R=U$ and $t=0$. It is easily shown by Cauchy's integral formula that $\alpha_{p}=1$ and $f_{p}(z)=z$ for $1 \leqq p \leqq \infty$. Let $0<p<1$ and let g be any extremal function for H_{p}^{0}. We put

$$
\begin{equation*}
h(z)=z(g(z) / B(z))^{\frac{1}{2} p} . \tag{6}
\end{equation*}
$$

where $B(z)$ is the Blaschke product formed by the zeros of g. By the canonical factorization theorem ([3], p. 24, [9], p. 67), we see $h \in H_{2}^{0}$. On the other hand

$$
\left|h^{\prime}(0)\right|=\lim _{z \rightarrow 0}|h(z) / z|=\left|g^{\prime}(0) / B_{1}(0)\right|^{\frac{1}{2} p} \geqq \alpha_{p}^{\frac{1}{2} p}
$$

where $B_{1}(z)=B(z) / z$. Hence we have that $\alpha_{p}=1, B(z)=z$ and $h(z)=f_{2}(z)=z$. Thus, by (6), we obtain $g(z)=z$.

Remark. Theorem 9 is not true for the other extremal problem considered in Section 5. In fact, if $R=U, t=0$ and $f(z)=1 / 2(z+1)^{2}$, then we easily see that $\|f\|_{1}=1$ and $f^{\prime}(t)=1$. Since $\beta_{p}=1$ on $[1, \infty]$ by Theorem 8 and $9, f$ is an extremal function for H_{1}^{1}, which distincts from f_{∞}. Then, by Lemma $1,\|f\|_{p}<1$ for $0<p<1$, since $|f| \neq$ const. on C. Thus $\beta_{p}>\beta_{1}=\beta_{\infty}$ and β_{p} is strictly decreasing on (0,1).

Theorem 10. Let D be a regular region in the extended complex plane. If $\alpha_{p_{0}}=\alpha_{1}$ for some p_{0} with $0<p_{0}<1$, then D is conformally equivalent to the unit disc U.

Proof. By Theorem 6 we have $\alpha_{1}=\alpha_{\infty}$, and hence the condition (e) in the remark after Theorem 8 is satisfied. Let k be the connectivity of D and we
assume $k \geqq 2$. Let $G=G(z, t)$ be Green's function for D, with pole at t, and put $P=G+i H$, where H is the harmonic conjugate of G. Let t_{1}, \cdots, t_{k-1} be the critical points of G, that is, the zeros of $P^{\prime} d z$. It is well known that \bar{D} can be completed, by symmetrization, to a closed Riemann surface \hat{D}, which is called the double of \bar{D}. There is given an involutory, indirectly conformal mapping of \hat{D} onto itself which leaves every point on ∂D fixed, and the image of $z \in \bar{D}$ is denoted by \tilde{z}. Let δ be the divisor defined by $\delta=t_{1} \cdots t_{k-1} \tilde{t}_{1} \cdots \tilde{t}_{k-1} t^{-1} \tilde{t}^{-1}$. If two or more of $t_{1} \cdots t_{k-1}$ coincide, we must modify the representation. But nothing in our proof is affected by such a change. Let \mathcal{L} be the complex vector space consisting of all functions meromorphic on \hat{D} which are multiples of δ^{-1}, and \mathscr{B} be that of all Abelian differentials on \hat{D} which are multiples of δ. By RiemannRoch theorem [12], we see

$$
\begin{equation*}
\operatorname{dim} \mathcal{L}=\operatorname{dim} \mathscr{B}+(2(k-2)+1-(k-1))=\operatorname{dim} \mathscr{B}+k-2, \tag{7}
\end{equation*}
$$

since the order of δ is $2(k-2)$ and the genus of \hat{D} is $k-1$. As usual, we can extend P^{\prime} to a function meromorphic on \hat{D}, which is again denoted by P^{\prime}. For any $\omega \in \mathscr{B}, h=\omega /\left(P^{\prime} d z\right)=$ const. on \hat{D}, since h has no poles on \hat{D}, and hence $\operatorname{dim} \mathscr{B}=1$. Then, by (7), we have $\operatorname{dim} \mathcal{L}=k-1$. Therefore there exists a non-constant function $\psi \in \mathcal{L}$. If we put $g_{1}(z)=(\psi(z)+\overline{\psi(\bar{z})}) / 2$ and $g_{2}(z)=$ $(\psi(z)-\overline{\psi(\tilde{z})}) / 2 i$ for $z \in \bar{D}$, then at least one of them, say g_{1}, is non-constant on \bar{D}. It is evident that g_{1} is meromorphic on \bar{D}, real-valued on ∂D and multiple of δ_{1}^{-1}, where δ_{1} is the divisor defined by $\delta_{1}=t_{1} \cdots t_{k-1} t^{-1}$. Let $\phi(z)=\left(g_{1}(z)+K\right) / K$, where K is such a large positive number that $\psi \geqq 0$ on ∂D, and let $f(z)=\phi(z) f_{\infty}(z)$. So we have

$$
\begin{aligned}
\|f\|_{1} & =\frac{i}{2 \pi} \int_{\partial D}\left|\phi(z) f_{\infty}(z)\right| P^{\prime}(z) d z \\
& =\frac{i}{2 \pi} \int_{\partial D} \phi(z) P^{\prime}(z) d z=\phi(t)=1
\end{aligned}
$$

since $\left|f_{\infty}\right|=1$ and $\phi \geqq 0$ on ∂D. It is easily shown that $f^{\prime}(t)=\alpha_{1}$ and $f(t)=0$, that is, f is an extremal function for H_{1}^{0}. Since ϕ is non-constant on ∂D, we see $\|f\|_{p_{0}}<1$ by Lemma 1, and hence $\alpha_{p_{0}}>\alpha_{1}$. This contradiction shows $k=1$, and hence D is conformally equivalent to U.

Remark. If D is a regular region in the extended complex plane, then the set of all extremal functions for H_{1}^{0} can be imbedded in \boldsymbol{R}^{k-1} as a convex compact subset with non-empty interior, where k is the connectivity of D ([9]).

References

[1] Ahlfors, L. V., Bounded analytic functions. Duke Math., 14 (1947), 1-11.
[2] Clarkson, J. A., Uniformaly convex spaces. Trans. Amer. Math. Soc., 40 (1936), 396-414.
[3] Duren, P.L., Theory of H^{p} spaces. Academic press New York (1970).
[4] Fisher, S. D., Rational functions, H^{∞} and H^{p} on infinitely connected domains. Illinois J. Math., 12 (1968), 513-523.
[5] Fisher, S.D., On Schwarz's lemma and inner functions. Trans. Amer. Math. Soc., 138 (1969), 229-240.
[6] Garabedian, P. R., Schwarz's lemma and Szegö kernel function. Trans. Amer. Math. Soc., 67 (1949), 1-35.
[7] Heins, M., Hardy classes on Riemann surfaces. Lecture Notes in Math., 98, Springer-Verlag, Berlin and New York (1969).
[8] Hoffman, K., Banach spaces of analytic functions. Prentice-Hall, New Jersey (1962).
[9] Kobayashi, S. and Suita, N., On H_{1} extremal value. (Japanese) Sūgaku, 26 (1974), 347-349.
[10] Parreau, M., Sur les moyennes des fonctions harmoniques et analytiques et la classification des surfaces de Riemann. Annales de l'Inst. Fourier, 3 (1951), 103-197.
[11] Rudin, W., Analytic functions of class H_{p}. Trans. Amer. Math. Soc., 78 (1955), 46-66.
[12] Weyl, H., Die Idee der Riemannschen Fläche. Teubner, Stuttgart (1955).

Department of Mathematics,
Tokyo Institute of Technology.

