ON THE SINGULARITIES OF HARMONIC 1-FORMS ON A RIEMANNIAN MANIFOLD

Dedicated to Professor K. Yano on this sixtieth Birthday

By Grigorios Tsagas

1. Introduction. Let M be a compact Riemannian manifold of diminsion n. We consider a vector field X on the manifold M. Then the point P is called a singular point for the vector field X, if $X(P)=0$. It is known that if every vector field X on M does not have singularities, then the index of X is zero and therefore the Euler characteristic of the manifold $k(M)=0$, ([1], p. 549) ([2], p. 203).

A harmonic 1 -form ξ on the manifold M is a special covariant vector field on M. The purpose of the present paper is to show that if the manifold is compact of even dimension and admits a metric whose sectional curvature is negative δ-pinched, then every harmonic 1 -form on M has a singularity.
2. We assume that the Riemannian manifold M is compact and even dimension. If ξ is a harmonic 1 -form, to this harmonic 1 -form we associate by the duality of the metric a contravariant vector field X.

Let P be a point of the manifold M. We consider a normal coordinate neighborhood U of P with normal coordinate system $\left(x^{1}, \cdots, x^{n}\right)$ at P. The Riemannian metric g, the harmonic 1 -form ξ and the vector field X have, in the neighborhood U, components $g=\left(g_{\imath \jmath}\right), \xi=\left(\xi_{\imath}\right)$ and $X=\left(X^{\jmath}=g^{j i} \xi_{\imath}\right)$, respectively.

If α, β are two vector fields on the manifold M their local inner product is defined

$$
(\alpha, \beta)=\alpha^{2} \beta_{i}=\alpha_{i} \beta^{2}
$$

and the norm of a vector field α is defined by

$$
|\alpha|^{2}=\alpha^{2} \alpha_{\imath}
$$

and for the harmonic 1 -form ξ we have

$$
\begin{equation*}
|\xi|^{2}=\xi^{\imath} \xi_{2} . \tag{2.1}
\end{equation*}
$$

On the manifold M we consider a function defined as follows

$$
\begin{align*}
& f: M-I R \\
& f: P-f(P)=|\xi|^{2}=\left(\xi_{i} \xi^{l}\right)_{P} \tag{2.2}
\end{align*}
$$

Received Jan, 4, 1974.

The function f is continuous on the manifold M. Since this manifold is compact and the function f is continuous, on this compact manifold, there exist a point P at which f attains the minimum at P, that is

$$
f(Q) \geqq f(P)
$$

For every Q in a neighborhood of P.
Since the function $f=|\xi|^{2}$ has a minimum at the point P, then we have

$$
\left(d\left(|\xi|^{2}\right)\right)_{P}=\langle\nabla \xi, X\rangle_{P}=(\nabla \xi, X)_{P}=0 .
$$

It is known, that the harmonic 1 -form ξ, in local condinates, statisfies the relations

$$
\begin{equation*}
\nabla_{i} \xi_{j}-\nabla_{j} \xi_{i}=0 \quad \nabla_{i} \xi^{2}=0 \tag{2.4}
\end{equation*}
$$

Let $T_{P}(M)$ be the tangent space of M at the point P. From the first relation of (2.4) we conclude that $(\nabla \xi)_{P}$ can be considered as a bilinear symmetric form on the vector space $T_{P}(M)$.

From the linear Algebra the following theorem is known.
Theorem (1) Let F be a bilinear symmetric form on the vector space $T_{P}(M)$. Then there exists a basse $\left\{E_{1}, \cdots, E_{n}\right\}$ of $T_{P}(M)$ such that we have $F\left(E_{i}, E_{j}\right)=0$, for $i \neq j, F\left(E_{i}, E_{j}\right)=1$ for $1 \leqq i \leqq p, F\left(E_{i}, E_{j}\right)=-1$ for $p+1<k<r$ and $F\left(E_{i}, E_{j}\right)=0$ for $r+1 \leqq j \leqq n$. The number r is the rank of F and p is an integer $0 \leqq p \leqq r$, which is uniquely determined by F.

From the relation (2.3) and the second relation of (2.4) the fact that the dimension of the vector space $T_{p}(M)$ is even dimension from the above theorem we conclude that the null space of $(\nabla \xi)_{p}$ is at least dimension 2.

Therefore there is another unit vector t perpendicular to X for which we have

$$
\begin{equation*}
\left\langle(\nabla \xi)_{P} t\right\rangle=\left((\nabla \xi)_{P} t\right)=0 \tag{2.5}
\end{equation*}
$$

We obtain the covariant derivative of the function $f=|\xi|^{2}=\xi_{i} \xi^{2}$ in the direction of the vector t, then we have
or

$$
\begin{equation*}
\nabla_{t} \nabla_{t}\left(|\xi|^{2}\right)=2\left\langle\nabla_{t} X, \nabla_{t} X\right\rangle+2\left\langle X, \nabla_{t} \nabla_{t} \xi\right\rangle \tag{2.6}
\end{equation*}
$$

$$
\begin{equation*}
\left(\nabla_{t} \nabla_{t}\left(|\xi|^{2}\right)_{P}=2\left(\left\langle(\nabla \xi)_{p}, t\right\rangle\right)^{2}+\left(2\left\langle X, \nabla_{t} \nabla_{t} \xi\right\rangle\right)_{P} .\right. \tag{2.7}
\end{equation*}
$$

The relation (2.7) by means of (2.5) takes the form

$$
\begin{equation*}
\left(\nabla_{t} \nabla_{t}\left(|\xi|^{2}\right)\right)_{P}=2\left(\left\langle X, \nabla_{t} \nabla_{t} \xi\right\rangle\right)_{P} . \tag{2.8}
\end{equation*}
$$

Since the exterior 1 -form ξ is harmonic, then it satisfies the relation ([4], p. 42)

$$
\begin{equation*}
g^{b c} \nabla_{b} \nabla_{c} \xi_{i}=R_{2 j} \xi^{j}, \quad i=1, \cdots, n . \tag{2.9}
\end{equation*}
$$

The relation (2.9) for the point P, which is the origin of the normal coordinate system (x^{1}, \cdots, x^{n}), gives

$$
\begin{equation*}
\left(\nabla_{l} \nabla_{l} \xi_{i}+\cdots+\nabla_{n} \nabla_{n} \xi_{\imath}\right)_{P}=\left(\sum_{j=1}^{n} R_{\imath j} \xi^{j}\right)_{P}, \quad \imath=1, \cdots, n \tag{2.10}
\end{equation*}
$$

which can by simply written

$$
\begin{equation*}
\nabla_{\iota} \nabla_{l} \xi_{i}+\cdots+\nabla_{n} \nabla_{n} \xi_{i}=\sum_{j=1}^{n} R_{\imath j} \xi_{\jmath}, \quad \imath=1, \cdots, n \tag{2.11}
\end{equation*}
$$

the above notation will be used below, that means, we evaluate all the relations at the point P.

From (2.4) we obtain

$$
\begin{array}{ll}
\nabla_{k} \nabla_{i} \xi_{j}-\nabla_{k} \nabla_{j} \xi_{i}=0, \quad k=1, \cdots, n, & \imath \neq \jmath=1, \cdots, n, \\
\nabla_{k} \nabla_{l} \xi_{l}+\nabla_{k} \nabla_{2} \xi_{2}+\cdots+\nabla_{k} \nabla_{n} \xi_{n}=0, & k=1, \cdots, n . \tag{2.13}
\end{array}
$$

We also have the formula

$$
\begin{equation*}
\nabla_{k} \nabla_{j} \xi_{i}-\nabla, \nabla_{k} \xi_{i}=-\sum_{l=1}^{n} R_{l i j k} \xi_{l}, \quad k \neq \jmath, \quad i=1, \cdots, n \tag{2.14}
\end{equation*}
$$

The relations (2.11), (2.12), (2.13) and (2.14) form a system of $n^{3}-n^{2}+2 n$ equations with $\nabla_{k} \nabla_{j} \xi_{2}$ unknowns $i, j, k=1, \cdots, n$.

If we put

$$
\begin{equation*}
\nabla_{\imath} \nabla_{i} \xi_{k}=0, \quad \imath, k=1, \cdots, n, \quad \imath \neq k \tag{2.15}
\end{equation*}
$$

then from (2.11) we obtain

$$
\begin{equation*}
\nabla_{\imath} \nabla_{i} \xi_{i}=\sum_{j=1}^{n} R_{\imath j} \xi_{j} \tag{2.16}
\end{equation*}
$$

From (2.13) and for $k=1$ we have

$$
\begin{equation*}
\nabla_{1} \nabla_{1} \xi_{1}+\nabla_{1} \nabla_{2} \xi_{2}+\cdots+\nabla_{1} \nabla_{n} \xi_{n}=0 \tag{2.17}
\end{equation*}
$$

which by means of (2.14) and (2.16) takes the form

$$
\begin{equation*}
\sum_{j=1}^{n} R_{1 j} \xi_{3}+\nabla_{2} \nabla_{1} \xi_{2}-\sum_{l=1}^{n} R_{l 22 l} \xi_{l}+\cdots+\nabla_{n} \nabla_{1} \xi_{n}-\sum_{l=1}^{n} R_{l n n 1} \xi_{l}=0 \tag{2.18}
\end{equation*}
$$

The relation (2.18) by virtue of (2.12) becomes

$$
\sum_{i=1}^{n} R_{1 j} \xi_{\jmath}+\nabla_{2} \nabla_{2} \xi_{1}-\sum_{l=1}^{n} R_{l 221} \xi_{l}+\cdots+\nabla_{n} \nabla_{n} \xi_{1}-\sum_{l=1}^{n} R_{l n n 1} \xi_{l}=0
$$

which by means of (2.15) takes the form

$$
\sum_{j=1}^{n} R_{1 j} \xi_{j}-\sum_{l=1}^{n} R_{l 221} \xi_{l}-\cdots-\sum_{l=1}^{n} R_{l n n 1} \xi_{l}=0
$$

from which we obtain

$$
\begin{align*}
& \left(R_{11}-R_{1221}-\cdots-R_{1 n n 1}\right) \xi_{1} \\
& \quad+\left(R_{12}-R_{2331}-\cdots-R_{2 n n 1}\right) \xi_{2} \\
& \quad+\cdots+\left(R_{1 n}-R_{n 221}-\cdots-R_{n n-1 n-11}\right) \xi_{n}=0 \tag{2.19}
\end{align*}
$$

We also have the formula

$$
R_{j k}=\sum_{s=1}^{n} R_{s j k s}
$$

from which we obtain

$$
\begin{align*}
& R_{11}=R_{2112}+R_{3113}+\cdots+R_{n 11 n} \\
& R_{12}=R_{3123}+R_{4124}+\cdots+R_{n 12 n} \\
& \ldots \tag{2.20}
\end{align*}
$$

$$
R_{1 n}=R_{21 n 2}+R_{31 n 3}+\cdots+R_{n-11 n n-1} .
$$

The relation (2.19), by means of (2.20), is true and therefore (2.17) and from this all the relations (2.13).

From the above we conclude that we have determined n^{2} unknowns $\nabla_{2} \nabla_{i} \xi_{j}$ $i=1, \cdots, n \jmath=1, \cdots, n$. Their values are given by (2.15) and (2.16). Therefore we have to determine $n^{3}-n^{2}$ unknowns. These unknowns satisfy $n^{3}-n^{2}$ equations, which are (2.12) and (2.14)

From (2.12) and (2.15) we obtain

$$
\begin{equation*}
\nabla_{2} \nabla_{k} \xi_{i}=0, \quad i \neq k, \quad i, k=1, \cdots, n . \tag{2.21}
\end{equation*}
$$

Similarly from (2.14) and (2.21) we have

$$
\begin{equation*}
\nabla_{k} \nabla_{i} \xi_{i}=-\sum_{l=1}^{n} R_{l i i k} \xi_{l}, \quad i \neq k, \quad \imath, k=1, \cdots, n \tag{2.22}
\end{equation*}
$$

The other unknowns are determined by virtue of the following system

$$
\begin{align*}
& \nabla_{2} \nabla_{j} \xi_{k}=\nabla_{\imath} \nabla_{k} \xi_{j}, \quad \nabla_{J} \nabla_{k} \xi_{i}=\nabla_{j} \nabla_{i} \xi_{k}, \quad \nabla_{k} \nabla_{i} \xi_{j}=\nabla_{k} \nabla_{j} \xi_{i}, \tag{2.23}\\
& \nabla_{2} \nabla_{j} \xi_{k}-\nabla_{j} \nabla_{i} \xi_{k}=-\sum_{l=1}^{n} R_{l k j i} \xi_{l}, \tag{2.34}\\
& \nabla_{j} \nabla_{k} \xi_{i}-\nabla_{k} \nabla_{j} \xi_{i}=-\sum_{l=1}^{n} R_{l i k j} \xi_{l}, \tag{2.35}\\
& \nabla_{2} \nabla_{k} \xi_{j}-\nabla_{k} \nabla_{i} \xi_{j}=-\sum_{l=1}^{n} R_{l j k i} \xi_{l}, \tag{2.26}
\end{align*}
$$

$1 \leqq i<j<k \leqq n$, in which we have six equations with six unknowns. One solution of this system is

$$
\begin{align*}
& \nabla_{i} \nabla_{j} \xi_{k}=\nabla_{\imath} \nabla_{k} \xi_{\jmath}=0, \tag{2.27}\\
& \nabla_{j} \nabla_{i} \xi_{k}=\nabla_{\jmath} \nabla_{k} \xi_{i}=-\sum_{l=1}^{n} R_{l k i j} \xi_{l}, \tag{2.28}\\
& \nabla_{k} \nabla_{i} \xi_{j}=\nabla_{k} \nabla_{j} \xi_{i}=-\sum_{l=1}^{n} R_{l j i k} \xi_{l} . \tag{2.29}
\end{align*}
$$

Let $\left\{e_{n}, \cdots, e_{n}\right\}$ be an orthonormal base of $T_{P}(M)$. We assume that the vector t has components $\left(t^{1}, \cdots t^{n}\right)$ with respect to this base. Then we have

$$
\begin{equation*}
\left(\nabla_{t} \nabla_{t} \xi_{2}\right)_{P}=\sum_{\lambda=1}^{n} \sum_{\mu=1}^{n} t^{\lambda} t^{\prime \prime} \nabla_{e_{\lambda}} \nabla_{e_{\mu}} \xi_{i}=\sum_{\lambda=1}^{n} \sum_{\mu=1}^{n} t^{\lambda} t^{\mu} \nabla_{\lambda} \nabla_{\mu} \xi_{2} \tag{2.30}
\end{equation*}
$$

The relation (2.8) by means of (2.30) takes the form

$$
\begin{align*}
\left(\nabla_{t} \nabla_{t}\left(|\xi|^{2}\right)\right)_{P} & =2\left(\xi_{1} \nabla_{t} \nabla_{t} \xi_{1}+\cdots+\xi_{n} \nabla_{t} \nabla_{t} \xi_{n}\right) \\
& =2 \xi_{1} \sum_{\lambda=1}^{n} \sum_{\mu=1}^{n} t^{\lambda} t^{\mu} \nabla_{\lambda} \nabla_{\mu} \xi_{1}+\cdots+2 \xi_{n} \sum_{\lambda=1}^{n} \sum_{\mu=1}^{n} t^{\lambda} t^{\mu} \nabla_{\lambda} \nabla_{\mu} \xi_{n} \tag{2.31}
\end{align*}
$$

From the relation (2.31) and by means of (2.15), (2.16), (2.20), (2.21), (2.22), (2.27), (2.28) and (2.29) we obtain

$$
\begin{aligned}
& 1 / 2\left(\nabla_{t} \nabla_{t}\left(\mid \xi^{2}\right)\right)_{P}=-R_{1212}\left(t^{1} \xi_{1}-t^{2} \xi_{2}\right)^{2} \\
& \quad-t^{1} t^{2}\left\{\sum_{l=3}^{n}\left(R_{l 112} \xi_{1}+R_{l 221} \xi_{2}\right) \xi_{l}\right\}+t^{1} t^{2}\left(\sum_{l=3}^{n}\left(\nabla_{2} \nabla_{1} \xi_{l}\right) \xi_{l}\right)-\cdots-R_{1 n 1 n}\left(t^{1} \xi_{1}-t^{n} \xi_{n}\right)^{2} \\
& \quad-t^{1} t^{n}\left\{\sum_{l=2}^{n-1}\left(R_{l 11 n} \xi_{1}+R_{l n n 1} \xi_{n}\right) \xi_{l}\right\}+t^{1} t^{n}\left(\sum_{l=2}^{n-1}\left(\nabla_{n} \nabla_{1} \xi_{l}\right) \xi_{l}-R_{2323}\left(t^{2} \xi_{2}-t^{3} \xi_{3}\right)^{2}\right. \\
& \quad-t^{2} t^{3}\left\{\sum_{l \neq 1, \neq 2,3}^{n}\left(R_{l 223} \xi_{2}+R_{l 332} \xi_{3}\right) \xi_{l}\right\} \\
& \quad+t^{2} t^{3}\left\{\left(\nabla_{2} \nabla_{3} \xi_{1}\right) \xi_{1}+\sum_{l=1, \neq 2,3}^{n}\left(\nabla_{3} \nabla_{2} \xi_{l}\right) \xi_{l}\right\}-\cdots-R_{2 n 2 n}\left(t^{2} \xi_{2}-t^{n} \xi_{n}\right)^{2} \\
& \quad-t^{2} t^{n}\left\{\sum_{l=l, \neq 2}^{n-1}\left(R_{l 22 n} \xi_{2}+R_{l n n 2} \xi_{n}\right) \xi_{l}\right\}+t^{2} t^{n}\left\{\left(\nabla_{2} \nabla_{n} \xi_{1}\right) \xi_{1}+\sum_{l=1, \neq 2}^{n-1}\left(\nabla_{n} \nabla_{2} \xi_{l}\right) \xi_{l}\right\} \\
& \left.\quad-R_{3434}\left(t^{3} \xi_{3}-t^{4} \xi_{4}\right)^{2}-t^{3} t^{4}\left\{\sum_{l=1 \neq 3,4}^{n} R_{l 334} \xi_{3}+R_{l 443} \xi_{4}\right) \xi_{l}\right\} \\
& \quad+t^{3} t^{4}\left\{\left(\nabla_{3} \nabla_{4} \xi_{1}\right) \xi_{1}+\left(\nabla_{3} \nabla_{4} \xi_{2}\right) \xi_{2}+\sum_{l=1, \neq 3,4}^{n}\left(\nabla_{4} \nabla_{3} \xi_{l}\right) \xi_{l}\right\}-\cdots-R_{n-1 n-1 n}\left(t^{n-1} \xi_{n-1}-t^{n} \xi_{n}\right)^{2} \\
& \quad-t^{n-1} t^{n}\left\{\sum_{l=1}^{n-2}\left(R_{l n-1 n-1 n} \xi_{n-1}+R_{l n n n-1} \xi_{n}\right) \xi_{l}\right\}+t^{n-1} t^{n}\left\{\sum_{l=1}^{n-2}\left(\nabla_{n-1} \nabla_{n} \xi_{l}\right) \xi_{l}+\sum_{l=1}^{n-2}\left(\nabla_{n} \nabla_{n-1} \xi_{l}\right) \xi_{l}\right\} \\
& \quad+\left(t^{1}\right)^{2}\left(R_{12} \xi_{1} \xi_{2}+\cdots+R_{1 n} \xi_{1} \xi_{n}\right) \\
& \quad+\left(t^{2}\right)^{2}\left(R_{21} \xi_{2} \xi_{1}+\cdots+R_{2 n} \xi_{2} \xi_{n}\right)+\cdots+\left(t^{n}\right)^{2}\left(R_{n 1} \xi_{n} \xi_{1}+\cdots+R_{n-1 n} \xi_{n-1} \xi_{n}\right) .
\end{aligned}
$$

The relation (2.32) by virtue of

$$
\begin{aligned}
R_{\alpha, \beta}=\sum R_{s \alpha \beta}= & R_{1 \alpha \beta 1}+\cdots+R_{\alpha-1 \alpha \beta \alpha-1}+R_{\alpha+1 \alpha \beta \alpha+1} \\
+\cdots+R_{\beta-1 \alpha \beta, \beta-1}+ & R_{\beta+1 \alpha \beta \beta+1}+\cdots+R_{n \alpha \beta n} \\
& \alpha, \beta=1, \cdots, n, \quad \alpha<\beta
\end{aligned}
$$

(2.28) and (2.29) takes the form

$$
\left(\nabla_{t} \nabla_{t}\left(|\xi|^{2}\right)_{P}\right.
$$

$$
\begin{aligned}
&=-R_{1212}\left(t^{1} \xi_{1}-t^{2} \xi_{2}\right)^{2}-2 t^{1} t^{2}\left(\sum_{l=3}^{n} R_{l 221} \xi_{2} \xi_{l}\right) \\
&-\cdots-R_{1 n 1 n}\left(t^{1} \xi_{1}-t^{n} \xi_{n}\right)^{2}-2 t^{1} t^{n}\left(\sum_{l=2}^{n} R_{l n n 1} \xi_{n} \xi_{l}\right)
\end{aligned}
$$

$$
\begin{align*}
& -R_{2333}\left(t^{2} \xi_{2}-t^{3} \xi_{3}\right)^{2}-2 t^{2} t^{3}\left(\sum_{l=1, \neq 2,3}^{n} R_{l 332} \xi_{l} \xi_{3}+\sum_{l=1, \neq 3}^{n} R_{12 l 3} \xi_{1} \xi_{l}\right) \\
& \quad-\cdots-R_{2 n 2 n}\left(t^{2} \xi_{2}-t^{n} \xi_{n}\right)^{2}-2 t^{2} t^{n}\left(\sum_{l=1 \neq 2}^{n-1} R_{l n n 2} \xi_{l} \xi_{n}+\sum_{l=1}^{n-1} R_{12 l n} \xi_{1} \xi_{l}\right) \\
& -R_{3434}\left(t^{3} \xi_{3}-t^{4} \xi_{4}\right)^{2}-2 t^{3} t^{4}\left(\sum_{l=1, \neq 3,4}^{n} R_{l 443} \xi_{4} \xi_{l}+\sum_{l=1 \neq 4}^{n} R_{13 l 4} \xi_{1} \xi_{l}+\sum_{l=1 \neq 4}^{n} R_{23 l 4} \xi_{2} \xi_{l}\right) \\
& \quad-\cdots-R_{n-1 n n-1 n}\left(t^{n-1} \xi_{n-1}-t^{n} \xi^{n}\right)^{2} \\
& -2 t^{n-1} t^{n}\left(\sum_{l=1}^{n-2} R_{l n n n-1} \xi_{l} \xi_{n}+\sum_{l=1}^{n-2} R_{1 n-1 l n} \xi_{1} \xi_{l}+\sum_{l=1}^{n-1} R_{2 n-1 l n} \xi_{2} \xi_{l}\right. \\
& \left.\quad+\cdots+\sum_{l=1}^{n-1} R_{n-2 n-1 l n} \xi_{n-2} \xi_{1}\right) \\
& +\left(t^{1}\right)^{2} \sum_{s=l, \neq l}^{n} \sum_{l=2}^{n} R_{s 1 l s} \xi_{1} \xi_{l}+\cdots+\left(t^{n}\right)^{2} \sum_{s=1, \neq l}^{n-1} \sum_{l=1}^{n-1} R_{s n l s} \xi_{l} \xi_{n} \tag{2.33}
\end{align*}
$$

We assume that the Riemannian manifold M is negative δ-pinched, that means its sectional curvature $\sigma(\lambda)$ satisfies the inequalities

$$
\begin{equation*}
-1 \leqq \sigma(\lambda) \leqq-\delta \tag{2.34}
\end{equation*}
$$

for every $\lambda \in T_{P}(M)$ and $P \in M$.
It is known, that the following formulas hold ([3], p. 477)

$$
\begin{equation*}
\left\langle R\left(e_{\imath}, e_{\jmath}\right) e_{k}, e_{l}\right\rangle=R_{\imath j k l}, \quad \sigma\left(e_{\imath}, e_{\jmath}\right)=\sigma_{\imath j}=-R_{\imath j i j} . \tag{2.35}
\end{equation*}
$$

Where $R_{\imath j k l}$ are the components of the Riemannian curvature.
The components of the Riemannian curvature satisfy the inequalities

$$
\begin{equation*}
\left|R_{\imath j i k}\right| \leqq(1-\delta) / 2, \quad\left|R_{\imath \jmath k l}\right| \leqq 2(1-\delta) / 3, \quad i \neq \jmath \neq k \neq l . \tag{2.36}
\end{equation*}
$$

From (2.36) we obtain the inequalities

$$
\begin{align*}
& R_{\imath j i k}\left(t^{j}\right)^{2} \xi_{j} \xi_{k} \leqq \frac{\varepsilon(1-\delta)}{2}\left(t^{j}\right)^{2} \xi_{j} \xi_{k}, \tag{2.37}\\
& -R_{\imath j i k}\left(\xi_{\imath}\right)^{2} t^{\jmath} t^{k} \leqq \frac{\varepsilon(1-\delta)}{2}\left(\xi_{\imath}\right)^{2} t^{\jmath} t^{k}, \tag{2.38}\\
& -R_{\imath j i k} \xi_{i} \xi_{j} t^{t} t^{k} \leqq \frac{\varepsilon(1-\delta)}{2} \xi_{\imath} \xi_{j} t^{l} t^{k}, \tag{2.39}\\
& -R_{\imath j k l} \xi_{i} \xi_{k} t^{j} t^{l} \leqq \frac{2 \varepsilon(1-\delta)}{3} \xi_{i} \xi_{k} t^{\prime} t^{l}, \tag{2.40}
\end{align*}
$$

where $\varepsilon=+1$, or -1 .
We also have the inequalities

$$
\begin{equation*}
\left|\xi_{i} t^{j}\right| \leqq C, \quad\left|\xi_{i} t^{2}-\xi_{j} t^{j}\right| \leqq 2 C, \quad \imath, \jmath=1, \cdots, n \tag{2.41}
\end{equation*}
$$

The inequalities (2.37), (2.38), (2.39) and (2.40) by virtue of the first of (2.40), can be written

$$
\begin{array}{ll}
-R_{\imath j i k}\left(t^{j}\right)^{2} \xi_{j} \xi_{k} \leqq \frac{C^{2}(1-\delta)}{2}, & -R_{\imath j i k}\left(\xi_{\imath}\right)^{2} t^{\jmath} t^{k} \leqq \frac{C^{2}(1-\delta)}{3}, \\
-R_{\imath j i k} \xi_{2} \xi_{j} t^{2} t^{k} \leqq \frac{C^{2}(1-\delta)}{2}, & -R_{\imath j k l} \xi_{i} \xi_{k} t^{2} t^{1} \leqq \frac{2 c^{2}(1-\delta)}{3} . \tag{2.43}
\end{array}
$$

The relation (2.33) by means of (2.34), the second of (2.35), (2.42) and (2.43) becomes

$$
\begin{equation*}
\left(\nabla_{t} \nabla_{t}\left(|\xi|^{2}\right)\right)_{P} \leqq \frac{2 C^{2} n(n-1)}{9}\left\{n^{2}+n-6-\delta\left(n^{2}+n+3\right)\right\} . \tag{2.44}
\end{equation*}
$$

If the number δ satisfies the inequality

$$
\begin{equation*}
\delta>\frac{n^{2}+n-6}{n^{2}+n+3} \tag{2.45}
\end{equation*}
$$

then

$$
\begin{equation*}
\left(\nabla_{t} \nabla_{t}\left(|\xi|^{2}\right)\right)_{P}<0 . \tag{2.46}
\end{equation*}
$$

Since the function $f=|\xi|^{2}$ has a minimum at the point P and the minimum value is different from zero, then we have $\left(\nabla_{t} \nabla_{t}\left(|\xi|^{2}\right)\right)_{P}>0$. If the sectional curvature of the manifold is negative δ-pinched $\delta>\left(n^{2}+n-6\right) /\left(n^{2}+n+3\right)$ then in order the inequality (2.45) is valid we must have $|\xi|^{2}{ }_{P}=0$ and therefore the harmonic 1 -form ξ has a singularity at the point P.

Therefore we have the theorem
Theorem (II). Let M be a compact negatwe δ-pinched Riemannian manrfold of even dimension. If $\delta>\left(n^{2}+n-6\right) /\left(n^{2}+n+3\right)$, then every harmonic 1 -form on M has a singularity.

From the above theorem we obtain the corollary.
Corollary (III). Let M be a compact Riemannian manıfold of even dimension. If the sectional curvature of M is constant negative, then every harmonic 1-form on M has a singularity.
3. If the dimension of the manifold M is 2 , then the formula (2.32) takes the form

$$
\begin{equation*}
\left(\nabla_{t} \nabla_{t}\left(|\xi|^{2}\right)\right)_{P}=R_{1212}\left(t^{1} \xi_{1}-t^{2} \xi_{2}\right)^{2} . \tag{3.1}
\end{equation*}
$$

From the formula (3.1) we have the theorem.
Theorem (IV). Let M be a compact Riemannian manıfold of two dimension. If the sectional curvature of the manifold is strictly negatve, then every harmonic 1 -form on M has a singularity.

We assume that M is a compact surface with h handles where $h \geqq 2$, that means the genus of the surface M is $\geqq 2$. Let $\xi \in H^{1}(M, I R)$ be a harmonic 1 -form. The vector space $H^{1}(M, I R)$ is independent of the Riemannian metric on the surface. It is known that a compact surface of genus greater or equal to two admits a metric with a constant negative Gaussian curvature.

From this we obtain the following theorem.
Theorem (V). Let M be a compact surface of genus $g \geqq 2$. Then every harmonic 1-form on M has a singularity.

Bibiliography

[1] Alexandroff, P. und Hopf. H., Topologie I, Springer Verlag, Berlin 1935, reprinted by Edwards Brothers, Ann Arbor, Michigan, 1945.
[2] Steenord, N., Topology of Fibre Bundles, Princeton Univ. Press, 1951.
[3] Tsagas, G. A relation between killing tensor fields and negative pinched Riemannian manifolds, Proc. Amer. Math. Soc., 22 (1969), 476-478.
[4] Yano, K. and Bochner, S., Curvature and Betti numbers, Ann. of Math. studies, No. 32, Princeton Univ. Press, Princeton, N. J., 1953.

Department of Mathematics
University of Patras
Patras, Greece.

