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BY GRIGORIOS TSAGAS

1. Introduction. Let M be a compact Riemannian manifold of diminsion n.
We consider a vector field X on the manifold M. Then the point P is called a
singular point for the vector field X, if X(P)=0. It is known that if every vector
field X on M does not have singularities, then the index of X is zero and there-
fore the Euler characteristic of the manifold &(M)=0, ([1], p. 549) ([2], p. 203).

A harmonic 1-form ξ on the manifold M is a special covariant vector field
on M. The purpose of the present paper is to show that if the manifold is com-
pact of even dimension and admits a metric whose sectional curvature is negative
^-pinched, then every harmonic 1-form on M has a singularity.

2. We assume that the Riemannian manifold M is compact and even di-
mension. If ξ is a harmonic 1-form, to this harmonic 1-form we associate by the
duality of the metric a contravariant vector field X.

Let P be a point of the manifold M. We consider a normal coordinate neigh-
borhood U of P with normal coordinate system (x1, •••, xn) at P. The Riemannian
metric g, the harmonic 1-form ζ and the vector field X have, in the neighborhood
£7, components g—(glj), ξ=(ξι) and X=(X3=gjίξl\ respectively.

If α, β are two vector fields on the manifold M their local inner product is
defined

(α, J8)=α*j8i=αlj8»

and the norm of a vector field a is defined by

|α|2=α lα t

and for the harmonic 1-form ς we have

ξ\*=F&. (2.1)
On the manifold M we consider a function defined as follows

f:M IR
(2.2)

f:P
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The function / is continuous on the manifold M. Since this manifold is
compact and the function / is continuous, on this compact manifold, there exist
a point P at which / attains the minimum at P, that is

For every Q in a neighborhood of P.
Since the function /— | f | 2 has a minimum at the point P, then we have

(d(\ς I2))p-<vί, xyP=w, *)p=o.
It is known, that the harmonic 1-form ξ, in local condinates, statistics the

relations

7,f,-7,£<=0 7<£*=0. (2.4)

Let TP(M) be the tangent space of M at the point P. From the first relation
of (2.4) we conclude that (7f)P can be considered as a bilinear symmetric form
on the vector space TP(M).

From the linear Algebra the following theorem is known.

THEOREM (1) Let F be a bilinear symmetric form on the vector space TP(M).
Then there exists a basse {Elt" tEn} of TP(M) such that we have F(Eit £y)=0,
for iΦj, F(Ei,Ej)=l for l^i^p, F(Ei,Ej)=-l for p+l<k<r and F(Eit E,)=0
for r+lrg ίgft. The number r is the rank of F and p is an integer O^^rgr, which
is uniquely determined by F.

From the relation (2.3) and the second relation of (2.4) the fact that the
dimension of the vector space TP(M} is even dimension from the above theorem
we conclude that the null space of (7f)p is at least dimension 2.

Therefore there is another unit vector t perpendicular to X for which we
have

)=0 (2.5)

We obtain the covariant derivative of the function /= \ξ\2=ξiξl in the di-
rection of the vector t, then we have

,7,?) (2.6)
or

(7l7ί(|e|')p=2«(7£)p> f»'+(2<*, Vί7ίί»P . (2.7)

The relation (2.7) by means of (2.5) takes the form

(7t7t( I ξ 1 2))p-2«Z, Vί7£f»P . (2.8)

Since the exterior 1-form ξ is harmonic, then it satisfies the relation ([4],
P. 42)

gbeV*V£i=Rv& , i=l, ,n. (2.9)

The relation (2.9) for the point P, which is the origin of the normal co-
ordinate system (x1, ••• ,xn), gives
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(V,7,f(+ - +VnVnf1)ί=( Σ RIS&}P , ι=ί, •- , n (2.10)
3 = 1

which can by simply written

7,7,6+ - +7n7n6= Σ#ty£,, ι=l, - , n (2.11)
J = l

the above notation will be used below, that means, we evaluate all the relations
at the point P.

From (2.4) we obtain

7»7<£,-7jk7,6=0, k=l, - , n, ι*j=l, - ,n, (2.12)

7,7,6+7,7,6+ - +7,7,6-0, k=l, - , n . (2.13)

We also have the formula

"* 1 = 1

The relations (2.11), (2.12), (2.13) and (2.14) form a system of n3-n2+2n
equations with 7*7,6 unknowns z, 7, &=1, •••, n.

If we put

7t7i6=0, z, k=l, — ,n, iφk (2.15)

then from (2.11) we obtain

6 . (2.16)

From (2.13) and for k=l we have

V V £ 4-V 7 £ -4- ••• -4-7 7 £ —0 (? 17")" 1 ' ISlT^ " 1 y 2S2 1̂  T ^ ' l ^ n S n — v W L ' /

which by means of (2.14) and (2.16) takes the form

?? n n.

Σ^ι^+727^2- Σ^i22ϊ6+ - +7n7!fn-Σ^ίnnl6=0 . (2.18)

The relation (2.18) by virtue of (2.12) becomes

16+ - +7n7n6-ΣΛί»»ι6=0

which by means of (2.15) takes the form

lfί~ "* ~ Σ^innlίi — 0
]=l 1=1 1=1

from which we obtain

(R n — R 1221— '" —Rlnnί)ζι

(2.19)
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We also have the formula

from which we obtain

-^11— ̂ 2112 ~Γ -^31 13+

*M2 = ^3123 ~Γ -^4124 ~T~ "

.......................................... (2.20)

^ln=z ^2in2 i ^3ln3 I •'• ~r-Kn_ l l n n_:L

The relation (2.19), by means of (2.20), is true and therefore (2.17) and from
this all the relations (2.13).

From the above we conclude that we have determined n2 unknowns 7^^
ι=l, ••• , n 7=1, ... , n. Their values are given by (2.15) and (2.16). Therefore we
have to determine n3— n2 unknowns. These unknowns satisfy n3— n2 equations,
which are (2.12) and (2.14)

From (2.12) and (2.15) we obtain

7t7*£,=0, ι V = f e , i , f e = l , - , w . (2.21)

Similarly from (2.14) and (2.21) we have

7*7,£1=- ΈRiukξi , iΦk , i, fe=l, - , n . (2.22)

The other unknowns are determined by virtue of the following system

Vt7,f *=7t7Af , , 7,7*^=7,7^* , 7*7,^=7*7^, , (2.23)

iξι , (2.34)

^l , (2.35)

f j , (2.26)

^n, in which we have six equations with six unknowns. One solution
of this system is

Vt7^A=7t7A^=0, (2.27)

ξι , (2.28)

J k f l . (2.29)

Let {£„, — , ̂ } be an orthonormal base of TP(M). We assume that the vector
has components (ί1, ••• f) with respect to this base. Then we have
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(VίVίf,)p=Σ ΣH/^V.f^Σ ΣΛ' V^f,. (2.30)
3=1/1=1 Λ ^ 2=1/1=1

The relation (2.8) by means of (2.30) takes the form

(V ίV ί(|f|2))P=2(f17 ίV£f1+ - +?»7t7t?,,)

=2?, Σ Σ ̂ 7,7̂ ,+ - +2?n Σ Σ t*t^tfμξn . (2.31)
Λ = l ju = l ^=1 μ=l

From the relation (2.31) and by means of (2.15), (2.16), (2.20), (2.21), (2.22),
(2.27), (2.28) and (2.29) we obtain

l/2(7,7,( I ξ I '))P= -/Wf^-ff,)'

(7,7,?,)?,} ----- Rtn^St-t^nY
3

»,?»)? J+ί2ί"{(V27nf1)fι+ Σ* (7,7,?,)?,}
ί=ί,ΐ=2 ί=l,ΐ2

-Λ.mί^a-ί4?^"-^ Σ ΛM.^.+Λ,^,?^?,}
ί = lgfc3,4

2)f2+ Σ (7,7,?,)?,} ----- Λn-L-ln^-'fn-i-^fn)

The relation (2.32) by virtue of

α, 0=1, — , n ,

(2.28) and (2.29) takes the form
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n n

n—2 n—2 n—l

£ = 1 Unn 1 = 1 1 = 1

n-l

1)2 Σ Σ/?«ι,fιfι+ - +(*")* "ϋ "ΣΛ«ιAf.. (2.33)

We assume that the Riemannian manifold M is negative ^-pinched, that means
its sectional curvature σ(X) satisfies the inequalities

-δ (2.34)

for every λ^TP(M) and PeM.
It is known, that the following formulas hold ([3], p. 477)

</?(et, e3)ek, e^=Rtjkl , σ(et, eJ)=σtJ=-RlJiJ . (2.35)

Where RtJ ki are the components of the Riemannian curvature.
The components of the Riemannian curvature satisfy the inequalities

I ̂ , α l^(l-3)/2, \RtJn\£2(l-δ)/3, iΦjΦkΦl. (2.36)

From (2.36) we obtain the inequalities

Rljik(tjYξjξk^
 ε(l~δ} (t^ζjξk , (2.37)

^ s(1~a) (ξtft't* , (2.38)

ε(1~δ) *t* , (2.39)

ξiξkt>tl , (2.40)

where e= + l, or — 1 .
We also have the inequalities

ι,j=l, - , n . (2.41)

The inequalities (2.37), (2.38), (2.39) and (2.40) by virtue of the first of (2.40),
can be written
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ςjξ^-C^1-® , -Rljtk(ξtγt>t*^ c*tt-V , (2.42)

(2.43)

The relation (2.33) by means of (2.34), the second of (2.35), (2.42) and (2.43)
becomes

(2.44)P -- .

If the number d satisfies the inequality

δ n*+n-6
ό> n*+n+3

then
(V ί V ί ( i f l 2 )) P <0. (2.46)

Since the function f— \ ζ 2 has a minimum at the point P and the minimum
value is different from zero, then we have (V t7ί(|£ |2))p>0. If the sectional
curvature of the manifold is negative ^-pinched δ>(n2+n— 6)/(?ι2+n+3) then in
order the inequality (2.45) is valid we must have \ξ\2

P=0 and therefore the
harmonic 1-form ξ has a singularity at the point P.

Therefore we have the theorem

THEOREM (II). Let M be a compact negative δ-pinched Riemannian manifold
of even dimension. If δ>(n2jrn— 6)/(n2+?z+3), then every harmonic 1-form on M
has a singularity.

From the above theorem we obtain the corollary.

COROLLARY (III). Let M be a compact Riemannian manifold of even dimen-
sion. If the sectional curvature of M is constant negative, then every harmonic
1-form on M has a singularity.

3. If the dimension of the manifold M is 2, then the formula (2.32) takes
the form

(V^df |2))p=/?1218(ί1f1-ί2fa)
a . (3.1)

From the formula (3.1) we have the theorem.

THEOREM (IV). Let M be a compact Riemannian manifold of two dimension.
If the sectional curvature of the manifold is strictly negative, then every harmonic
1-forιn on M has a singularity.

We assume that M is a compact surface with h handles where h^2, that
means the genus of the surface M is §;2. Let ξ^Hl(M, IR) be a harmonic 1-form.
The vector space H\M, IR) is independent of the Riemannian metric on the
surface. It is known that a compact surface of genus greater or equal to two
admits a metric with a constant negative Gaussian curvature.



466 GRIGORIOS TSAGAS

From this we obtain the following theorem.

THEOREM (V). Let M be a compact surface of genus g^2. Then every
harmonic 1-form on M has a singularity.
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