RADIAL DISTRIBUTION OF ZEROS AND DEFICIENCY OF A CANONICAL PRODUCT OF FINITE GENUS

By Mitsuru Ozawa

1. Introduction. Edrei and Fuchs [1] proved the following

Theorem A. Let $f(z)$ be an entire function of finite order ρ, having only negative zeros. If $\rho>1$, then $\delta(0, f)>0$.

This reveals a quite interesting fact that a simple geometrical restriction is enough to make zero a deficient value. Edrei, Fuchs and Hellerstein [2] made the above result better. They gave a numerical bound

$$
\delta(0, f) \geqq \frac{A}{1+A}
$$

with an absolute constant $A>0$. By a rough estimation their constant A satisfies $A<0.0017$. This is, of course, far from the best. There is still no reasonable conjecture for the best possible A.

They [2] gave the following result. (We state it here only in the case of genus one.)

Theorem B. Let $g(z)$ be a canonical product of genus one and having zeros $\left\{a_{\mu}\right\}$ in the sector

$$
\left|\pi-\arg {a_{p}}\right| \leqq \frac{\pi}{60} .
$$

If the order of g is greater than one, then

$$
\delta(0, g) \geqq \frac{A}{1+A},
$$

where A is the constant already mentioned.
Again $\pi / 60$ is far from the best together with A. In this paper we shall prove the following

Theorem 1. Let $g(z)$ be a canonical product of genus q, having only negative

[^0]zeros. If $q \geqq 2$, then
$$
\delta(0, g) \geqq \frac{A(q)}{1+A(q)}
$$
where
$$
A(q)=\frac{\cos \pi / 2 q}{\pi \sin \pi / 2 q} \int_{1}^{\infty} \frac{d s}{s^{q}(s+1)^{2}} \geqq \frac{1}{12 \pi} .
$$

If q tends to infinity, then $A(q)$ tends to $1 / 2 \pi^{2}$. If $q=1$, then

$$
\delta(0, g) \geqq \frac{A(1)}{1+A(1)},
$$

where

$$
A(1)=\left(1-\frac{\sqrt{3}}{9} \pi\right) \frac{\sqrt{3}}{2 \pi} .
$$

Our method of proof depends heavily upon the extremely precise analysis about the behavior of $\log \left|g\left(r e^{i \theta}\right)\right|$ on $|z|=r$ due to Hellerstein and Williamson [3] and the representation of $m(r, g)$ due to Shea [4]. In principle we can imagin how to get the best possible numerical bound of A by our method, although it is very hard to give any explicit form.

Theorem 2. Let $g(z)$ be a canonical product of genus q, having only zeros $\left\{-a_{k}\right\}$ which satisfy

$$
\begin{gathered}
\left|\arg a_{k}\right| \leqq \beta<\frac{\pi}{2(q+1)} \text { if } q \text { is odd, } \\
0 \leqq \arg a_{k} \leqq \beta<\frac{(q-1) \pi}{2 q(q+1)} \text { if } q \text { is even } \geqq 2 .
\end{gathered}
$$

Then with a positive constant $A=A(q, \beta)$

$$
\delta(0, g) \geqq \frac{A}{1+A} .
$$

Corollary. Let $g(z)$ be a canonical product of genus q, whose zeros a_{μ} satisfy

$$
\sum_{\mu=1}^{\infty} \frac{1}{\left|a_{\mu}\right|^{q}}=\infty, \sum_{\mu=1}^{\infty} \frac{1}{\left|a_{\mu}\right|^{q+1}}<\infty, q \geqq 1
$$

and lie in

$$
\begin{gathered}
\left|\arg a_{\mu}-\frac{2 \pi k}{q}\right| \leqq \frac{\beta}{q}, \beta<\frac{\pi}{4} \\
(k=0,1, \cdots, q-1) .
\end{gathered}
$$

Then

$$
\delta(0, g) \geqq \frac{A}{1+A},
$$

where

$$
\begin{aligned}
& A=A(1, \beta) \\
= & \frac{1}{\pi} \int_{1}^{\infty} \frac{1}{s^{2}}\left(\frac{s+\sqrt{2} / 2}{s^{2}+\sqrt{2} s+1}-\frac{s \sin 2 \beta+\sin \beta}{s^{2}+2 s \cos \beta+1}\right) d s,
\end{aligned}
$$

defined in Theorem 2.

This corollary gives a better result than that of the case of even genus in Theorem 2 in the opening of one sector and the value of A.

Theorem 3. Let $g(z)$ be a canonical product of genus q with zeros $\left\{-a_{\mu}\right\}$ such that

$$
\sum \frac{1}{\left|a_{\mu}\right|^{q}}=\infty
$$

and

$$
\left|\arg a_{\mu}\right| \leqq \beta<\frac{\pi}{2(q+1)} .
$$

Then

$$
q \leqq \mu \leqq \rho \leqq q+1,
$$

where ρ and μ indicate the order and the lower order of $g(z)$, respectively.
In Theorem 1 we have given a numerical bound of $A(q)$. By a minor modification of our method we can give a slightly improved bound of $A(q)$. In the lower genus cases we can easily improve it.

2. Proof of Theorem 1.

$$
1-\delta(0, g)=\varlimsup_{r \rightarrow \infty} \frac{N(r, g)}{m(r, g)}=\varlimsup_{r \rightarrow \infty} \frac{N(r, 0)}{N(r, 0)+m(r, 0, g)} .
$$

Hence it is sufficient to estimate $m(r, 0, g)$ from below by $A(q) N(r, 0)$. Assume $q=2 p+1, p \geqq 1$ in the first place. Hellerstein and Williamson's analysis gives

$$
m(r, 0, g)=\frac{1}{\pi} \sum_{j=1}^{p} \int_{\alpha_{2}}^{\alpha_{2 j+1}} \log \frac{1}{\left|g\left(r e^{i \theta}\right)\right|} d \theta+\frac{1}{\pi} \int_{\alpha_{q}+1}^{\pi} \log \frac{1}{\left|g\left(r e^{i \theta}\right)\right|} d 0 .
$$

Here $\left\{\alpha_{j}\right\}$ is given in [3], Main Lemma. Since by their lemma

$$
\log \left|g\left(r e^{i \theta}\right)\right|<0
$$

in and only in ($\alpha_{2 j}, \alpha_{2 j+1}$) and (α_{q+1}, π), which may be empty, we have the above representation of $m(r, 0, g)$. Here α_{\jmath} and α_{q+1} satisfy

$$
\begin{aligned}
& \frac{2 j-1}{2(q+1)} \pi<\alpha_{j}<\frac{2 j-1}{2 q} \pi, \quad j=1, \cdots, q, \\
& \frac{2 q+1}{2(q+1)} \pi<\alpha_{q+1} \leqq \pi, \quad \alpha_{0}=0 .
\end{aligned}
$$

If we select $\left\{\alpha_{j}^{*}\right\}$ such that $\alpha_{-1}^{*}<\alpha_{\jmath-1}<\alpha_{j}^{*}<\alpha_{\jmath}$ for $j \leqq(q+2) / 2$ and $\alpha_{j}^{*} \in((2 j-1) \pi / 2(q+1)$, $(2 j-1) \pi / 2 q)$ for $j>(q+2) / 2$, then

$$
m(r, 0, g) \geqq \frac{1}{\pi} \sum_{j=0}^{p} \int_{\alpha_{2} j^{*}}^{\alpha_{2 j+1}{ }^{*}} \log \frac{1}{\left|g\left(r e^{i \theta}\right)\right|} d \theta
$$

We may take $\alpha_{0}^{*}=\alpha_{1}^{*}=0$. There is such a selection. Let α_{j}^{*} be $(j-1) \pi / q$. Then if $j>(q+2) / 2$

$$
\frac{2 j-1}{2 q} \pi>\alpha_{j}^{*}>\frac{2 j-1}{2(q+1)} \pi
$$

and if $j \leqq(q+2) / 2, j \geqq 2$

$$
\alpha_{j-1}<\frac{2 j-3}{2 q} \pi<\alpha_{j}^{*}<\frac{2 j-1}{2(q+1)}=<
$$

and $\alpha_{0}^{*}=\alpha_{1}^{*}=0$. On the other hand

$$
\begin{aligned}
& =\frac{1}{\pi} \int_{\alpha_{2 j}}^{\alpha_{2 j+1^{*}}} \log \left|g\left(r e^{i \theta}\right)\right| d \theta \\
= & -\frac{1}{\pi}\left(\int_{0}^{\alpha_{2 j+1^{*}}}-\int_{0}^{\alpha_{2} j^{*}}\right) \log \left|g\left(r e^{i \theta}\right)\right| d \theta \\
= & -\frac{1}{\pi} \int_{0}^{\infty} \frac{N(s r, 0)}{s^{q+1}}\left[\frac{s \sin (q+1) \alpha_{2 j+1^{*}}+\sin q \alpha_{2 j+1}^{*}}{s^{2}+2 s \cos \alpha_{2 j+1}^{*}+1}\right. \\
& \left.\quad-\frac{s \sin (q+1) \alpha_{2 j}{ }^{*}+\sin q \alpha_{2 j}}{s^{2}+2 s \cos \alpha_{2 j}^{*}+1}\right] d s
\end{aligned}
$$

by Shea's representation. Hence we have

$$
\begin{aligned}
m(r, 0, g) & \geqq \frac{1}{\pi} \sum_{j=2}^{q} \int_{0}^{\infty} \frac{N(s r, 0)}{s^{q}} \frac{\sin ((j-1) \pi / q)}{s^{2}+2 s \cos ((j-1) \pi / q)+1} d s \\
& \geqq \frac{1}{\pi} \sum_{j=1}^{q-1} \sin \frac{j}{q} \pi \int_{0}^{\infty} \frac{N(s r, 0)}{s^{q}} \frac{d s}{(s+1)^{2}} \\
& \geqq \frac{N(r, 0)}{\pi} \int_{1}^{\infty} \frac{d s}{s^{q}(s+1)^{2}} \frac{\sin ((q-1) \pi / 2 q)}{\sin (\pi / 2 q)}
\end{aligned}
$$

Hence we have

$$
\delta(0, g) \geqq \frac{A(q)}{1+A(q)}
$$

with

$$
A(q)=\frac{1}{\pi} \frac{\cos (\pi / 2 q)}{\sin (\pi / 2 q)} \int_{1}^{\infty} \frac{d s}{s^{q}(s+1)^{2}}
$$

Since

$$
\begin{aligned}
& \int_{1}^{\infty} \frac{d s}{s^{q}(s+1)^{2}}>\frac{1}{4} \int_{1}^{\infty} \frac{d s}{s^{q+2}}=\frac{1}{4(q+1)} \\
& \int_{1}^{\infty} \frac{d s}{s^{q}(s+1)^{2}}<\frac{1}{4} \int_{1}^{\infty} \frac{d s}{s^{q}}=\frac{1}{4(q-1)}
\end{aligned}
$$

we have

$$
\lim _{q \rightarrow \infty} A(q)=\frac{1}{2 \pi^{2}} .
$$

Further

$$
\begin{aligned}
A(q) & >\frac{1}{4 \pi} \frac{\cos (\pi / 2 q)}{\sin (\pi / 2 q)} \frac{1}{q+1} \\
& \geqq \frac{1}{12 \pi}
\end{aligned}
$$

for $q \geqq 2$.
Assume $q=2 p, p \geqq 1$. Then

$$
\begin{aligned}
& m(r, g)=N(r, 0)+m(r, 0, g) \\
& m(r, 0, g)=\frac{1}{\pi} \sum_{j=1}^{q} \int_{\alpha_{2} \jmath-1}^{\alpha_{2}} \log \frac{1}{\left|g\left(r e^{i \theta}\right)\right|} d \theta+\frac{1}{\pi} \int_{q+1}^{\pi} \log \frac{1}{\left|g\left(r e^{i \theta}\right)\right|} d \theta \\
& \geqq-\frac{1}{\pi} \sum_{j=1}^{p} \int_{\alpha_{2} j_{-1} 1^{*}}^{\alpha_{2}{ }^{*}} \log \left|g\left(r e^{i \theta}\right)\right| d \theta
\end{aligned}
$$

by the same $\alpha_{j}^{*}=(j-1) \pi / q$. Then the same process leads the same expression for $A(q)$. Hence we have the desired result.

If $q=1$, we have

$$
\begin{aligned}
m(r, 0, g) & \geqq \frac{1}{\pi} \int_{0}^{\alpha_{1}} \log \frac{1}{\left|g\left(r e^{i \theta}\right)\right|} d \theta \\
& \geqq \frac{1}{\pi} \int_{0}^{\pi / 3} \log \frac{1}{\left|g\left(r e^{i \theta}\right)\right|} d \theta .
\end{aligned}
$$

The last integral is by Shea's representation

$$
\begin{aligned}
& \frac{\sqrt{3}}{2} \frac{1}{\pi} \int_{0}^{\infty} \frac{N(s r, 0)}{s^{2}} \frac{s+1}{s^{2}+s+1} d s \\
\geqq & \frac{\sqrt{3}}{2 \pi} N(r, 0) \int_{0}^{\infty} \frac{s+1}{s^{2}\left(s^{2}+s+1\right)} d s .
\end{aligned}
$$

By an easy calculation

$$
m(r, 0, g) \geqq \frac{\sqrt{3}}{2 \pi} N(r, 0)\left(1-\frac{\sqrt{3}}{9} \pi\right)
$$

Hence

$$
\begin{aligned}
\delta(0, g) & \geqq \frac{A(1)}{1+A(1)}, \\
A(1) & =\frac{\sqrt{3}}{2 \pi}\left(1-\frac{\sqrt{3}}{9} \pi\right) .
\end{aligned}
$$

3. Proof of Theorem 2.

In the first place assume $q=2 p+1$. Let

$$
\psi(x, y)=\frac{1}{2} \log \left(1+2 y \cos x+y^{2}\right)+\sum_{j=1}^{q}(-1)^{\prime} \frac{y^{j}}{j} \cos j x .
$$

Then

$$
\begin{aligned}
& \frac{\partial \psi(x, y)}{\partial x}=\frac{(-1)^{q+1} y^{q+1}}{1+2 y \cos x+y^{2}}(\sin (q+1) x+y \sin q x) \\
& \frac{\partial \psi(x, y)}{\partial y}=\frac{(-1)^{q} y^{q}}{1+2 y \cos x+y^{2}}(\cos (q+1) x+y \cos q x)
\end{aligned}
$$

Hence $\partial \psi / \partial x \geqq 0$ for $0 \leqq x \leqq \pi /(q+1), y \geqq 0$, which shows that $\psi(x, y)$ is monotone increasing for x there. $\partial \psi \mid \partial y \leqq 0$ for $y \leqq 0,0 \leqq x \leqq \pi / 2(q+1)$ and hence $\psi(x, y)$ is monotone decreasing for y there. Since $\psi(x, 0)=0, \psi(x, y)<0$ for $y>0$ and $0 \leqq x \leqq \pi / 2(q+1)$. Let $z=r e^{i \theta}, a_{\mu}=\left|a_{\mu}\right| e^{i \phi \mu}, y_{\mu}=r| | a_{\mu} \mid$. Look at values of $\psi\left(\theta-\psi_{\mu}, y\right)$ in $0 \leqq \theta \leqq \pi / 2(q+1)$ $-\beta$. By the assumption $\left|\phi_{\mu}\right| \leqq \beta$. Then for $\phi_{\mu} \geqq 0$

$$
\begin{aligned}
\psi\left(\theta-\phi_{\mu}, y_{\mu}\right) & =\psi\left(-\theta+\phi_{\mu}, y_{\mu}\right) \\
& \leqq \psi\left(\theta+\phi_{\mu}, y_{\mu}\right) \leqq \psi\left(\theta+\beta, y_{\mu}\right)<0 .
\end{aligned}
$$

Let $\hat{g}(w)$ be

$$
\prod_{k=0}^{\infty}\left(1+\frac{w}{\left|a_{k}\right|}\right) \exp \left(\sum_{j=1}^{q}(-1)^{\rho} \frac{1}{j}\left(\frac{w}{\left|a_{k}\right|}\right)^{\rho}\right)
$$

Then for $0 \leqq \theta \leqq \pi / 2(q+1)-\beta, z=r e^{i \theta}$

$$
\log |g(z)| \leqq \log \left|\hat{g}\left(z e^{i \beta}\right)\right| .
$$

Hence for Θ in $\beta \leqq \Theta \leqq \pi / 2(q+1), w=|z| e^{i \theta}, \Theta-\beta=\theta$

$$
\log |g(z)| \leqq \log |\hat{g}(w)|
$$

Therefore

$$
\begin{aligned}
& 1-\delta(0, g)=\varlimsup_{r \rightarrow \infty} \frac{N(r, 0, g)}{m(r, g)} \\
&=\varlimsup_{r-\infty} \frac{N(r, 0, g)}{N(r, 0, g)+m(r, 0, g)}, \\
& m(r, 0, g) \geqq \frac{1}{\pi} \int_{0}^{\pi / 2(q+1)-\beta} \log \frac{1}{\left|g\left(r e^{i \theta}\right)\right|} d \theta \\
& \geqq \frac{1}{\pi} \int_{\beta}^{\pi / 2(q+1)} \log \frac{1}{\left|\hat{g}\left(r e^{i \theta}\right)\right|} d \Theta \\
&=\frac{1}{\pi} \int_{1}^{\infty} \frac{N(s r, 0)}{s^{q+1}}\left\{\frac{s+\sin (q \pi / 2(q+1))}{s^{2}+2 s \cos (\pi / 2(q+1))+1}\right. \\
&\left.\quad-\frac{s \sin (q+1) \beta+\sin q \beta}{s^{2}+2 s \cos \beta+1}\right\} d s
\end{aligned}
$$

Further

$$
\begin{aligned}
& m(r, 0, g) \geqq \frac{N(r, 0)}{\pi} \int_{1}^{\infty} \frac{1}{s^{q+1}}\left\{\frac{s+\cos (\pi / 2(q+1))}{s^{2}+2 s \cos (\pi / 2(q+1))+1}\right. \\
&\left.-\frac{s \sin (q+1) \beta+\sin q \beta}{s^{2}+2 s \cos \beta+1}\right\} d s
\end{aligned}
$$

since the integrand of the above integral is positive for $s>0$ by $\beta<\pi / 2(q+1)$. Let us put the right hand side term by $N(r, 0) A(q, \beta)$. Then $A(q, \beta)>0$ and

$$
\delta(0, g) \geqq \frac{A(q, \beta)}{1+A(q, \beta)}
$$

Next consider the case $q=2 p, p \geqq 1$. In this case $\partial \psi(x, y) / \partial x \leqq 0$ for $0 \leqq x \leqq \pi /(q+1)$ and hence $\psi(x, y)$ is monotone decreasing there. Since $\partial \psi(\pi / 2 q, y) / \partial y \leqq 0$ for $y \geqq 0$, $\psi(\pi / 2 q, y)$ is monotone decreasing for $y \geqq 0 . \quad \psi(\pi / 2 q, 0)=0$ implies that $\psi(x, y)<0$ for $y>0$ in $\pi / 2 q \leqq x \leqq \pi /(q+1)$. Further

$$
\frac{s \sin (q+1) x+\sin q x}{1+2 s \cos x+s^{2}}
$$

is monotone decreasing for $\pi / 2 q \leqq x \leqq \pi /(q+1)-\beta$. In this case we shall consider $\beta+\pi / 2 q \leqq \theta \leqq \pi(q+1), z=r e^{i \theta}$. By the above analysis we have

$$
\log \left|g\left(r e^{i \theta}\right)\right| \leqq \log \left|\hat{g}\left(r e^{i \theta}\right)\right|<0
$$

where $\hat{g}(w)$ is

$$
\prod_{k=1}^{\infty}\left(1+\frac{w}{\left|a_{k}\right|}\right) \exp \left(\sum_{j=1}^{q} \frac{(-1)^{\jmath}}{j}\left(\frac{w}{\left|a_{k}\right|}\right)^{\prime}\right)
$$

with $w=z e^{-i \beta}$. Hence

$$
\begin{aligned}
& m(r, 0, g) \geqq \geqq \frac{1}{\pi} \int_{\beta+\pi / 2 q}^{\pi /(q+1)} \log \frac{1}{\left|g\left(r e^{i \theta}\right)\right|} d \theta \\
& \geqq \geqq \frac{1}{\pi} \int_{\beta+\pi / 2 q}^{\pi /(q+1)} \log \frac{1}{\left|\hat{g}\left(r e^{i \theta}\right)\right|} d \theta \\
&=\frac{1}{\pi} \int_{\pi / 2 q}^{\pi /(q+1)-\beta} \log \frac{1}{\left|\hat{g}\left(r e^{i \phi}\right)\right|} d \phi, \quad \phi=\theta-\beta, \\
&=-\int_{0}^{\infty} \frac{N(s r, 0)}{s^{q+1}}\left\{\frac{s \sin (\pi-(q+1) \beta)+\sin (q \pi /(q+1)-q \hat{\beta})}{\left.s^{2}+2 s \cos \pi /(q+1)-\beta\right)+1}\right. \\
&\left.\quad-\frac{s \sin ((q+1) \pi / 2 q)+\sin (\pi / 2)}{s^{2}+2 s \cos (\pi / 2 q)+1}\right\} d s \\
& \equiv \frac{1}{\pi} \int_{0}^{\infty} \frac{N(s r, 0)}{s^{q+1}} H(s, q, \beta) d s .
\end{aligned}
$$

Here $H(s, q, \beta)>0$ for $s>0$, since

$$
\frac{s \sin (q+1) x+\sin q x}{s^{2}+2 s \cos x+1}
$$

is monotone decreasing for $\pi / 2 q \leqq x \leqq \pi /(q+1)-\beta$. Thus

$$
\begin{array}{r}
m(r, 0, g) \geqq \frac{N(r, 0)}{\pi} \int_{1}^{\infty} \frac{H\left(s, q^{\prime}, \beta\right)}{s^{q+1}} d s \\
\equiv N(r, 0) A(q, \beta), A(q, \beta)>0 .
\end{array}
$$

Therefore

$$
\delta(0, g) \geqq \frac{A(q, \beta)}{1+A(q, \beta)} .
$$

This gives the desired result.
In the above proof we have only consider a single suitable sector. Hence $A(q, \beta)$ is not good enough for $q \rightarrow \infty$. If we count all the possible sectors, then we can get a better estimation for $A(q, \beta)$. Our result in the cases of genus one or two is better than Edrei, Fuchs and Hellerstein's in the opening of the sector and the value of $A(q, \beta)$. However our result for any even genus case is not satisfactory. It is conjectured that we can improve it to

$$
\left|\arg a_{k}\right| \leqq \beta, \beta<\frac{\pi}{2(q+1)}
$$

as in the odd case.

4. Proof of Corollary.

Let ω be $\exp (2 \pi i / q)$. Consider

$$
\begin{aligned}
G(z) & =g(z) g(\omega z) \cdots g\left(\omega^{q-1} z\right) \\
& =I I E\left(\frac{z^{q}}{a_{\mu^{q}}}, 1\right)
\end{aligned}
$$

where

$$
E(x, p)=(1-x) \exp \left(\sum_{j=1}^{p} \frac{1}{j} x^{\jmath}\right)
$$

Let $H(w)$ be

$$
\Pi E\left(\frac{w}{a_{\mu}{ }^{q}}, 1\right)
$$

then $\quad G(z)=H\left(z^{q}\right)$. Since $\quad N(r, 0, G(z))=N\left(r^{q}, 0, H(z)\right)$ and $\quad m(r, G(z))=m\left(r^{q}, H(z)\right)$, $m(r, 0, G(z))=m\left(r^{q}, 0, H(z)\right)$.
Since

$$
\sum \frac{1}{\left|a_{\mu}\right|^{q}}=\infty, \quad \sum \frac{1}{\left|a_{\mu}\right|^{q+1}}<\infty
$$

the genus of $H(w)$ is equal to one. Hence by Theorem 2

$$
1-\delta(0, H) \leqq \frac{1}{1+A(1, \beta)}
$$

since

$$
\left|\arg {a_{\mu}}^{q}-2 \pi k\right| \leqq \beta, \beta<\frac{\pi}{4}
$$

Further

$$
\begin{aligned}
1-\delta(0, H) & =\varlimsup_{r \rightarrow \infty} \frac{N(r, 0, H)}{m(r, H)} \\
& =\varlimsup_{r \rightarrow \infty} \frac{N\left(r^{q}, 0, H(z)\right)}{m\left(r^{q}, H(z)\right)}=\varlimsup_{r \rightarrow \infty} \frac{N(r, 0, G(z))}{m(r, G(z))} \\
& =1-\delta(0, G)
\end{aligned}
$$

Hence, by $N(r, 0, G)=q N(r, 0, g)$ and $m(r, G) \leqq q m(r, g)$, we have

$$
\begin{aligned}
1-\delta(0, g) & \leqq 1-\delta(0, G) \\
& \leqq \frac{1}{1+A(1, \beta)}
\end{aligned}
$$

This gives the desired result.
This proof is the same as in [2], Lemma 6. The result in this Corollary is better than that of the case of even genus in Theorem 2 in the opening of one sector together with the value of A.

5. Proof of Theorem 3.

Assume $q=2 p+1$. Then

$$
\begin{aligned}
& m(r, g) \geqq m(r, 0, g) \\
\geqq & \frac{1}{\pi} \int_{0}^{\infty} \frac{N(s r, 0)}{s^{q-1}}\left\{\frac{s+\sin (q \pi / 2(q+1))}{s^{2}+2 s \cos (\pi / 2(q+1))+1}-\frac{s \sin (q+1) \beta+\sin q \beta}{s^{2}+2 s \cos \beta+1}\right\} d s \\
\geqq & \frac{1}{\pi} \int_{0}^{1} \frac{N(s r, 0)}{s^{q+1}} \frac{d s}{s^{2}+2 s \cos \beta+1}\left(\sin \frac{q \pi}{2(q+1)}-\sin q \beta\right) \\
\geqq & M r^{q} \int_{0}^{r} \frac{N(t, 0)}{t^{q+1}} d t, \\
& M=\frac{\sin (q \pi / 2(q+1))-\sin q \beta}{2 \pi(1+\cos \beta)}>0 .
\end{aligned}
$$

Since

$$
\int_{0}^{r} \frac{N(t, 0)}{t^{q_{i 1}}} d t \rightarrow \infty
$$

as $r \rightarrow \infty$ by

$$
\sum \frac{1}{\left|a_{\mu}\right|^{q}}=\infty
$$

we have

$$
\lim _{r \rightarrow \infty} \frac{m(r, g)}{r^{q}}=\infty .
$$

Assume $q=2 p$. Then similarly

$$
m(r, g) \geqq \frac{1}{\pi} \int_{\beta}^{\pi / 2(q+1)} \log \left|\hat{g}\left(r e^{i \theta}\right)\right| d \theta .
$$

Thus we have similarly

$$
\begin{aligned}
& m(r, g) \geqq M r^{q} \int_{0}^{r} \frac{N(t, 0)}{t^{q+1}} d t \\
& \lim _{r \rightarrow \infty} \frac{m(r, g)}{r^{q}}=\infty
\end{aligned}
$$

This implies $\mu \geqq q$. Hence we have the desired result.

References

[1] Edrei, A., and W. H. J. Fuchs, On the growth of meromorphic functions with several deficient values. Trans. Amer. Math. Soc. 93 (1959), 292-328.
[2] , and S. Hellestein, Radial distribution and deficiencies of the values of a meromorphic function. Pacific Journ. Math. 11 (1961), 135-151.
[3] Hellerstein, S., and J. Williamson, Entire functions with negative zeros and a problem of R. Nevanlinna. Journ. Analyse Math. 22 (1969), 233-267.
[4] Shea, D.F., On the Valiron deficiencies of meromorphic functions of finite order. Trans. Amer. Math. Soc. 124 (1966), 201-227.

Department of Mathematics, Tokyo Institute of Technology.

[^0]: Received January 18, 1973.

