PSEUDO-UMBILICAL SUBMANIFOLDS OF CODIMENSION 3 WITH CONSTANT MEAN CURVATURE

By Bang-Yen Chen and Kentaro Yano

Let M^{n} be an n-dimensional submanifold ${ }^{11}$ of an m-dimensional euclidean space $E^{m}(n<m)$ with the mean curvature vector $H \neq 0$. If the second fundamental tensor in the normal direction H is proportional to the first fundamental tensor of the submanifold M^{n}, then M^{n} is said to be pseudoumbilical. The mean curvature vector H is said to be parallel if the covariant derivative of H along M^{n} has no normal component, and H is said to be nonparallel if the covariant derivative of H along M^{n} has nonzero normal component everywhere.

In previous papers [2], [3], the authors proved that if M^{n} is pseudo-umbilical in E^{m} and the mean curvature vector is nonzero and parallel, then M^{n} is contained in a hypersphere of E^{m} as a minimal hypersurface. It is easy to see that if the mean curvature vector H is parallel, then the mean curvature is constant. If the codimension $m-n$ is two, then the constancy of the mean curvature implies the parallelism of the mean curvature vector [1]. In [4], the authors studied submanifolds of codimension two which are umbilical with respect to a non-parallel normal direction and showed that such manifolds are the loci of moving ($n-1$)-spheres, (see also [5]).

In the present paper, we shall study pseudo-umbilical submanifolds of codimension 3 with constant mean curvature, the mean curvature vector of which is nonparallel.

§ 1. Preliminaries.

We consider a submanifold M^{n} of codimension 3 of an ($n+3$)-dimensional euclidean space $E^{n_{+3}}$ and represent it by

$$
\begin{equation*}
X=X\left(\xi^{1}, \xi^{2}, \cdots, \xi^{n}\right), \tag{1}
\end{equation*}
$$

where X is the position vector from the origin of E^{n+3} to a point of the submanifold M^{n} and $\left\{\xi^{n}\right\}$ is a local coordinate system on M^{n} where, here and in the sequel, the indices h, i, j, k, \cdots run over the range $\{1,2, \cdots, n\}$.

We put

[^0]\[

$$
\begin{equation*}
X_{\imath}=\partial_{i} X, \quad \partial_{i}=\partial / \partial \xi^{\imath}, \tag{2}
\end{equation*}
$$

\]

then X_{\imath} are n linear independent vectors tangent to M^{n}. We denote by C, D, E three mutually orthogonal unit normals to M^{n}.

Now denoting by ∇_{3} the operator of covariant differentiation with respect to Riemannian metric $g_{j i}=X_{j} \cdot X_{\imath}$ of M^{n}, we have equations of Gauss

$$
\nabla_{\jmath} X_{i} \equiv \partial_{\jmath} X_{i}-\left\{\begin{array}{c}
h \\
j
\end{array} \quad i\right\}_{h}
$$

$$
\begin{equation*}
=h_{j i} C+k_{j i} D+f_{j i} E, \tag{3}
\end{equation*}
$$

where $\left\{{ }_{0}{ }_{i}\right\}$ are Christoffel symbols formed with $g_{j i}$ and $h_{j i}, k_{j i}$ and $f_{j i}$ the second fundamental tensors with respect to normals C, D and E respectively. The mean curvature vector is then given by

$$
\begin{equation*}
H=\frac{1}{n} g^{j i} \nabla_{3} X_{\imath}, \tag{4}
\end{equation*}
$$

where $g^{j i}$ are contravariant components of the metric tensor.
If there exist, on the submanifold M^{n}, two functions α, β and a unit vector field v_{i} such that

$$
\begin{equation*}
h_{j i}=\alpha g_{j i}+\beta v_{j} v_{i}, \tag{5}
\end{equation*}
$$

then the submanifold M^{n} is said to be quasi-umbilical with respect to the normal direction C. In particular, if $\beta=0$ identically, then M^{n} is said to be umbilical with respect to the normal direction C. If M^{n} is umbilical with respect to the mean curvature vector H, then the submanifold M^{n} is said to be pseudo-umbilical.

The equations of Weingarten are given by

$$
\begin{align*}
& \nabla_{j} C=-h_{j}{ }^{h} X_{h} \quad+l_{j} D+m_{j} E, \tag{6}\\
& \nabla_{j} D=-k_{j}{ }^{h} X_{h}-l_{j} C \quad+n_{j} E, \tag{7}\\
& \nabla_{j} E=-f_{j}{ }^{h} X_{h}-m_{j} C-n_{j} D, \tag{8}
\end{align*}
$$

where $h_{\jmath}{ }^{h}=h_{j t} g^{t h}, k_{\jmath}{ }^{h}=k_{j t} g^{t h}$ and $f_{\jmath}{ }^{h}=f_{j t} g^{t h}$ and l_{\jmath}, m_{\jmath} and n_{\jmath} are the third fundamental tensors.

In the sequel, we denote the normal components of $\nabla_{j} C, \nabla_{j} D$ and $\nabla_{j} E$ by $\nabla_{j}{ }^{\perp} C$, $\nabla_{j}{ }^{\perp} D$ and $\nabla_{j}{ }^{\perp} E$ respectively.

The normal vector field C is said to be parallel if we have $\nabla_{j}{ }^{\perp} C=0$, that is, l_{j} and m_{ρ} vanish identically and it is said to be non-parallel if $\nabla_{J}{ }^{\perp} \mathrm{C}$ never vanishes, that is, $l_{t} l^{t}+m_{t} m^{t}$ never vanishes, where $l^{t}=l_{i} g^{i t}$ and $m^{t}=m_{i} g^{i t}$.

We have equations of Gauss:

$$
\begin{equation*}
K_{k j i}{ }^{h}=h_{k}{ }^{h} h_{j i}-h_{j}{ }^{h} h_{k i}+k_{k}{ }^{h} k_{j i}-k_{j}{ }^{h} k_{k i}+f_{k}{ }^{h} f_{j i}-f_{j}{ }^{h} f_{k i}, \tag{9}
\end{equation*}
$$

where $K_{k j i}{ }^{h}$ is the Riemann-Christoffel curvature tensor, those of Codazzi:

$$
\begin{align*}
& \nabla_{k} h_{j i}-\nabla_{j} h_{k i}-l_{k} k_{j i}+l_{j} k_{k i}-m_{k} f_{j i}+m_{\jmath} f_{k i}=0, \tag{10}\\
& \nabla_{k} k_{j i}-\nabla_{j} k_{k i}+l_{k} h_{j i}-l_{j} h_{k i}-n_{k} f_{j i}+n_{j} f_{k i}=0, \tag{11}\\
& \nabla_{k} f_{j i}-\nabla_{j} f_{k i}+m_{k} h_{j i}-m_{j} h_{k i}+n_{k} k_{j i}-n_{j} k_{k i}=0, \tag{12}
\end{align*}
$$

and those of Ricci:

$$
\begin{align*}
& \nabla_{k} l_{j}-\nabla_{j} l_{k}+h_{k}{ }^{t} k_{j t}-h_{j}{ }^{t} k_{k t}+m_{k} n_{j}-m_{j} n_{k}=0, \tag{13}\\
& \nabla_{k} m_{j}-\nabla_{j} m_{k}+h_{k}{ }^{t} f_{j t}-h_{j}{ }^{t} f_{k t}+n_{k} l_{j}-n_{j} l_{k}=0, \tag{14}\\
& \nabla_{k} n_{j}-\nabla_{j} n_{k}+k_{k}{ }^{f} f_{j t}-k_{j}{ }^{t} f_{k t}+l_{k} m_{j}-l_{j} m_{k}=0 . \tag{15}
\end{align*}
$$

Denoting by $K_{j i}=K_{t j i}{ }^{t}$ and $K=g^{j i} K_{j i}$ the Ricci tensor and the scalar curvature respectively, we define a tensor field $L_{j i}$ of type $(0,2)$ by

$$
\begin{equation*}
L_{j i}=-\frac{K_{j i}}{n-2}+\frac{K g_{j i}}{2(n-1)(n-2)} . \tag{16}
\end{equation*}
$$

The conformal curvature tensor $C_{k j i}{ }^{h}$ is then given by

$$
\begin{equation*}
C_{k j i}{ }^{h}=K_{k j i}{ }^{h}+\delta_{k}^{h} L_{j i}-\delta_{j}^{h} L_{k i}+L_{k}{ }^{h} g_{j i}-L_{j}{ }^{h} g_{k v}, \tag{17}
\end{equation*}
$$

where δ_{k}^{h} are Kronecker deltas and $L_{k}{ }^{h}=L_{k t} g^{t h}$.
A Riemannian manifold M^{n} is locally conformal to a euclidean space and is called a conformally flat space if and only if we have

$$
\begin{gather*}
C_{k j i}^{h}=0, \tag{18}\\
\nabla_{k} L_{j i}-\nabla_{j} L_{k i}=0 . \tag{19}
\end{gather*}
$$

It is well known known that (18) holds automatically for $n=3$ and (19) is a consequence of (18) for $n>3$.

§ 2. Pseudo-umbilical submanifolds of codimension 3.

Throughout the rest of this paper, we assume that M^{n} is a pseudo-umbilical submanifold of a euclidean $(n+3)$-space $E^{n_{+3}}$ with nonzero constant mean curvature. Since the mean curvature vector H is nowhere zero, we may choose the normal C in the direction of H, i.e.,

$$
\begin{equation*}
H=\alpha C, \quad \alpha=|H| . \tag{20}
\end{equation*}
$$

Then by the assumption we have

$$
\begin{equation*}
h_{j i}=\alpha g_{j i}, \quad \alpha=\text { constant } \neq 0, \tag{21}
\end{equation*}
$$

$$
\begin{equation*}
k_{t}{ }^{t}=0, \quad f_{t}^{t}=0 \tag{22}
\end{equation*}
$$

In the sequel, we denote by H_{2} and H_{3} the symmetric $n \times n$ matrices given by ($k_{j}{ }^{h}$) and ($f_{j}{ }^{h}$) respectively.

Lemma 1. Let M^{n} be a pseudo-umbilical submanifold of $E^{n_{+3}}$ with constant mean curvature $\alpha \neq 0$. If the two matrices H_{2} and H_{3} commute at a point $p \in M^{n}$, then either the covariant derivative $\nabla_{j} C$ of C has no normal component or the two matrices H_{2} and H_{3} are proportional at p.

Proof. Suppose that M^{n} is pseudo-umbilical in E^{n+3} and with constant mean curvature $\alpha \neq 0$. Then (21) holds. Hence from (10) and (21), we have

$$
\begin{equation*}
l_{k} k_{j i}-l_{j} k_{k i}+m_{k} f_{j i}-m_{\jmath} f_{k i}=0 \tag{23}
\end{equation*}
$$

that is,

$$
\begin{equation*}
l_{k} k_{\jmath}{ }^{h}-l_{j} k_{k}{ }^{h}+m_{k} f_{\jmath}{ }^{h}-m_{\jmath} f_{k}{ }^{h}=0 \tag{24}
\end{equation*}
$$

Now suppose that $H_{2}=\left(k_{j}{ }^{h}\right)$ and $H_{3}=\left(f_{j}{ }^{h}\right)$ commute at $p \in M^{n}$. Then H_{2} and H_{3} are simultaneously diagonalizable. Hence if we choose a local coordinate system $\left\{\xi^{h}\right\}$ around p in M^{n} such that X_{h} form an orthonormal basis of the tangent space $T_{p}\left(M^{n}\right)$ and are in the principal directions with respect to the normal direction D at p, then X_{h} are also in the principal directions with respect to the normal direction E. Thus, if we denote by λ_{2} and μ_{i} the eigenvalues of H_{2} and H_{3} respectively, then (24) reduces to

$$
\begin{equation*}
l_{k} \lambda_{j}+m_{k} \mu_{j}=0, \text { for } k \neq j \tag{25}
\end{equation*}
$$

Since we have $\lambda_{1}+\lambda_{2}+\cdots+\lambda_{n}=0, \mu_{1}+\mu_{2}+\cdots+\mu_{n}=0$, (25) implies

$$
\begin{equation*}
l_{k} \lambda_{j}+m_{k} \mu_{j}=0, \text { for all } k \text { and } j \tag{26}
\end{equation*}
$$

If $\nabla_{0}{ }^{\perp} C \neq 0$ at p, then, without loss of generality, we can assume that $l_{1} \neq 0$. Thus from (26), we see that

$$
\begin{equation*}
\lambda_{j}=-\frac{m_{1}}{l_{1}} \mu_{g} \tag{27}
\end{equation*}
$$

This implies that the two matrices H_{2} and H_{3} are proportional. This completes the proof of the lemma.

Lemma 2. Let M^{n} be a pseudo-umbilical submanifold of E^{n+3} with constant mean curvature $\alpha \neq 0$. If ihe two matrices H_{2} and H_{3} commute and $\nabla_{j}{ }^{\perp} C \neq 0$ at p, then we can suitably choose the normal directions D and E in such a way that we have

$$
\begin{equation*}
k_{j i}=0 \text { and } m_{\jmath}=0 \tag{28}
\end{equation*}
$$

at $p \in M^{n}$, unless H_{2} and H_{3} vanish simultaneously.
Proof. Under the hypothesis of the lemma, we see, from Lemma 1, that H_{2}
and H_{3} are proportional. Hence we may assume that

$$
\begin{equation*}
H_{2}=c H_{3} \text {, at } p \text {, } \tag{29}
\end{equation*}
$$

for some real c. Put $c=-\tan \theta$ and

$$
\bar{D}=(\cos \theta) D+(\sin \theta) E,
$$

$$
\begin{equation*}
\bar{E}=-(\sin \theta) D+(\cos \theta) E . \tag{30}
\end{equation*}
$$

Then we see that the second fundamental tensor in the normal direction \bar{D} vanishes. Hence we may assume that H_{2} vanishes, i.e., $k_{j i}=0$ at p. Substituting this into (24), we obtain

$$
\begin{equation*}
m_{k} f_{j}{ }^{h}-m_{\jmath} f_{k}{ }^{h}=0 \tag{31}
\end{equation*}
$$

at p. If we choose a local coordinate system $\left\{\xi^{h}\right\}$ around p in such a way that X_{h} are orthogonal and in the principal directions of the normal E, then we obtain

$$
\begin{equation*}
m_{k} \mu_{\jmath}=0, \quad k \neq j, \tag{32}
\end{equation*}
$$

at p, where μ_{ρ} denote eigenvalues of H_{3}. Hence by applying (22), we have

$$
\begin{equation*}
m_{k} \mu_{j}=0, \text { for all } k \text { and } j, \tag{33}
\end{equation*}
$$

at p. This implies that we have either $m_{j}=0$ or $\mu_{j}=0$. This shows that we have either $m_{j}=0$ or $H_{3}=0$ at p. This completes the proof of the lemma.

Lemma 3. Let M^{n} be a pseudo-umbilical submanifold of E^{n+3} with constant mean curvature $\alpha \neq 0$. If the two matrices H_{2} and H_{3} commute, $\nabla_{\jmath}{ }^{\perp} C \neq 0$ and $E \cdot \nabla_{j}{ }^{\perp} C$ $=0$ at p, then we have

$$
\begin{align*}
& \left.k_{j i}=0 \quad \text { (i.e., } H_{2}=0\right), \quad m_{\jmath}=0, \tag{34}\\
& n_{J}=\nu l_{\jmath}, \quad \nu=\frac{n_{t} l^{t}}{l^{2}} \neq 0, \quad l^{2}=l_{t} l^{l} \neq 0, \tag{35}
\end{align*}
$$

and

$$
\begin{equation*}
f_{j i}=\frac{\alpha}{\nu}\left(g_{j i}-\frac{n}{l^{2}} l_{j} l_{2}\right) \tag{36}
\end{equation*}
$$

at p.
Proof. Under the hypothesis, we have $l_{\jmath} \neq 0, m_{\jmath}=0$ and, from (23),

$$
\begin{equation*}
l_{k} k_{j i}-l_{j} k_{k \imath}=0, \tag{37}
\end{equation*}
$$

from which

$$
\begin{equation*}
k_{j i}=\beta l_{j} l_{2} \tag{38}
\end{equation*}
$$

for some β and consequently by

$$
k_{t}{ }^{t}=\beta l_{t} l^{t}=0,
$$

from which $\beta=0$ and hence we obtain (34).
On the other hand, from (14), (21) and (34), we have

$$
n_{k} l_{j}-n_{j} l_{k}=0,
$$

we find

$$
\begin{equation*}
n_{\jmath}=\nu l_{\jmath}, \tag{39}
\end{equation*}
$$

where $\nu=n_{t} l^{t} l^{2}$ and $l^{2}=l_{t} t^{t}$. If $\nu=0$, then $n_{J}=0$. Hence (11) and (34) give

$$
\begin{equation*}
l_{k} \alpha g_{j i}-l_{j} \alpha g_{k \imath}=0, \tag{40}
\end{equation*}
$$

from which, transvecting $g^{j i}$,

$$
(n-1) \alpha l_{k}=0,
$$

which is a contradiction. Thus we have (35).
From (15), (34), (35) and (39), we find

$$
\begin{equation*}
\nabla_{k}\left(\nu l_{j}\right)-\nabla_{j}\left(\nu l_{k}\right)=0 . \tag{41}
\end{equation*}
$$

From (13), (34), (35) and (41), we obtain

$$
\nu_{k} l_{j}-\nu_{j} l_{k}=0,
$$

where $\nu_{k}=\nabla_{k} \nu$. Hence

$$
\begin{equation*}
\nu_{J}=\frac{\nu_{t} l^{t}}{l^{2}} l_{\jmath} . \tag{42}
\end{equation*}
$$

Now substituting (21), (34) and (35) into (11), we find

$$
l_{k}\left(\alpha g_{j i}-\nu f_{j i}\right)-l_{j}\left(\alpha g_{k i}-\nu f_{k i}\right)=0
$$

from which, transvecting l^{k},

$$
l^{2}\left(\alpha g_{j i}-\nu f_{j i}\right)=l_{j} v_{i}
$$

for some v_{i}. Since the left hand side is symmetric in j and i, we have

$$
\begin{equation*}
l^{2}\left(\alpha g_{j i}-\nu f_{j i}\right)=\rho l_{j} l_{2} \tag{43}
\end{equation*}
$$

for some ρ. Transvecting $g^{j i}$ to (43), we find

$$
\begin{equation*}
\alpha n=\rho . \tag{44}
\end{equation*}
$$

Thus (43) becomes

$$
\begin{equation*}
\nu f_{j i}=\alpha g_{j i}-\frac{n \alpha}{l^{2}} l_{j} l_{\imath} . \tag{45}
\end{equation*}
$$

This completes the proof of the lemma.
Lemma 4. Under the hypothesis of Lemma 3, we have

$$
\begin{equation*}
\nabla_{j} l_{2}=\gamma g_{j i}+l_{j} v_{i}+l_{i} v_{j}, \tag{46}
\end{equation*}
$$

where

$$
\begin{equation*}
\gamma=\frac{\nu_{l} l^{l}}{n \nu}, v_{i}=\frac{2}{l} \nabla_{i} l-\left[\frac{3}{2 l^{2}}\left(l^{l} \nabla_{l} l\right)+\frac{\nu_{l} l^{l}}{2 n \nu l^{2}}\right] l_{l} . \tag{47}
\end{equation*}
$$

Proof. From (12), (13), (21), (34) and (45), we find

$$
\begin{aligned}
\nu_{k} f_{j i}-\nu_{j} f_{k i}= & -\left(\nabla_{k} \frac{n \alpha}{l^{2}}\right) l_{j} l_{\imath}+\left(\nabla_{\jmath} \frac{n \alpha}{l^{2}}\right) l_{k} l_{2} \\
& -\frac{n \alpha}{l^{2}} l_{j}\left(\nabla_{k} l_{i}\right)+\frac{n \alpha}{l^{2}} l_{k}\left(\nabla_{j} l_{i}\right),
\end{aligned}
$$

from which, using (36) and (42),

$$
\begin{aligned}
\frac{\nu_{l} l^{2}}{\nu l^{2}}\left(l_{k} g_{j i}-l_{j} g_{k i}\right)= & -\left(\nabla_{k} \frac{n}{l^{2}}\right) l_{j} l_{2}+\left(\nabla_{j} \frac{n}{l^{2}}\right) l_{k} l_{2} \\
& -\frac{n}{l^{2}} l_{j}\left(\nabla_{k} l_{i}\right)+\frac{n}{l^{2}} l_{k}\left(\nabla_{j} l_{\imath}\right) .
\end{aligned}
$$

Transvecting l^{k} to this equation, we find

$$
\begin{aligned}
\frac{\nu_{l} l^{2}}{\nu l^{2}}\left(l^{2} g_{j i}-l_{j} l_{i}\right)= & -\left(l^{2} \nabla_{t} \frac{n}{l^{2}}\right) l_{j} l_{i}+l^{2}\left(\nabla_{j} \frac{n}{l^{2}}\right) l_{i} \\
& -\frac{n}{l^{2}} l_{j}\left(l^{l} \nabla_{t} l_{i}\right)+n\left(\nabla_{j} l_{i}\right),
\end{aligned}
$$

from which

$$
\nabla_{j} l_{\imath}=a l^{2} g_{j i}+\left(l^{l} \nabla_{t} \frac{1}{l^{2}}-a\right) l_{j} l_{\imath}
$$

$$
\begin{equation*}
-l^{2}\left(\nabla_{j} \frac{1}{l^{2}}\right) l_{\imath}+\frac{1}{l^{2}} l_{j}\left(l^{l} \nabla_{l} l_{2}\right), \tag{48}
\end{equation*}
$$

where

$$
a=\frac{\nu_{l} l^{l}}{n \nu l^{2}} .
$$

On the other hand, from (13) and (34), we find

$$
\begin{equation*}
\nabla_{j} l_{i}-\nabla_{i} l_{j}=0 \tag{49}
\end{equation*}
$$

From (48) and (49), we have

$$
\left(l^{4} \nabla_{j} \frac{1}{l^{2}}+l^{t} \nabla_{t} l_{j}\right) l_{\imath}=\left(l^{4} \nabla_{\imath} \frac{1}{l^{2}}+l^{t} \nabla_{t} l_{\imath}\right) l_{3}
$$

or

$$
\begin{equation*}
\left(-2 l \nabla_{j} l+l^{t} \nabla_{t} l_{j}\right) l_{i}=\left(-2 l \nabla_{i} l+l^{t} \nabla_{t} l_{i}\right) l_{j} \tag{50}
\end{equation*}
$$

from which, transvecting l,

$$
\left(-2 l \nabla_{j} l+l^{t} \nabla_{t} l_{j}\right) l^{2}=\left(-2 l l^{t} \nabla_{t} l+l l^{t} \nabla_{t} l\right) l_{j}
$$

or

$$
\begin{equation*}
l^{t} \nabla_{t} l_{j}=2 l \nabla_{j} l-\frac{1}{l}\left(l^{t} \nabla_{t} l\right) l_{j} . \tag{51}
\end{equation*}
$$

Substituting (51) into (48), we have

$$
\begin{aligned}
\nabla_{j} l_{\imath}= & a l^{2} g_{j i}+\left(-\frac{2}{l^{3}} l^{\imath} \nabla_{t} l-a\right) l_{j} l_{i} \\
& +\frac{2}{l}\left(\nabla_{j} l\right) l_{i}+\frac{1}{l^{2}} l_{j}\left[2 l \nabla_{i} l-\frac{1}{l}\left(l^{t} \nabla_{l} l\right) l_{\imath}\right]
\end{aligned}
$$

or

$$
\begin{equation*}
\nabla_{j} l_{i}=a l^{2} g_{j i}+\frac{2}{l}\left[\left(\nabla_{j} l\right) l_{i}+\left(\nabla_{i} l\right) l_{j}\right]-\left[\frac{3}{l^{2}}\left(l^{t} \nabla_{t} l\right)+a\right] l_{j} l_{l} \tag{52}
\end{equation*}
$$

Put

$$
\begin{equation*}
v_{i}=\frac{2}{l} \nabla_{i} l-\left[\frac{3}{2 l^{2}}\left(l^{t} \nabla_{t} l\right)+\frac{1}{2} a\right] l_{i} \tag{53}
\end{equation*}
$$

then (53) gives (46). This proves the lemma.

§3. Conformally flat spaces.

For a submanifold M^{n} of E^{n+3}, if the second fundamental tensors $H_{1}=\left(h_{j}{ }^{h}\right)$, $H_{2}=\left(k_{j}^{h}\right)$ and $H_{3}=\left(f_{j}{ }^{h}\right)$ are simultaneously diagonalizable, then we say that the normal connection of M^{n} in E^{n+3} is trivial. It is easy to see that a pseudo-umbilical submanifold M^{n} of E^{n+3} with non-zero mean curvature has trivial normal connection if and only if H_{2} and H_{3} commute, where H_{2} and H_{3} are those given in the previous section. For a pseudo-umbilical submanifold of codimension 2 with nonzero mean curvature, the normal connection is always trivial.

Theorem 1. Let M^{n} be a pseudo-umbilical submanifold of E^{n+3} with constant mean curvature $\alpha \neq 0$. If the normal connection is trivial and the mean curvature vector is non-parallel, then the submanifold M^{n} is conformally flat for $n \geqq 3$.

Proof. If M^{n} is a pseudo-umbilical submanifold of E^{n+3} with constant mean curvature $\alpha \neq 0$ such that the normal connection is trivial and the mean curvature vector is non-parallel, then by Lemmas 2 and 3 , we can suitably choose D and E in such a way that (34), (35) and (36) hold. In particular, we have

$$
\begin{gather*}
h_{j i}=\alpha g_{j i}, \quad k_{j i}=0, \quad f_{j i}=\lambda g_{j i}+\mu l_{j} l_{2}, \tag{54}\\
l_{j} \neq 0, \quad m_{j}=0,
\end{gather*}
$$

where

$$
\begin{equation*}
\lambda=\frac{\alpha}{\nu}, \quad \mu=-\frac{n \alpha}{\nu l^{2}} . \tag{55}
\end{equation*}
$$

We consider the cases $n>3$ and $n=3$ separately.
Case I. $n>3$. By substituting (54) into (9), we find

$$
\begin{align*}
K_{k j i}^{h}= & \left(\alpha^{2}+\lambda^{2}\right)\left(\delta_{k}^{h} g_{j i}-\delta_{j}^{h} g_{k i}\right) \tag{56}\\
& +\lambda \mu\left[\left(\delta_{k}^{h} l_{j}-\delta_{j}^{h} l_{k}\right) l_{i}+\left(l_{k} g_{j i}-l_{j} g_{k i}\right) l^{h}\right],
\end{align*}
$$

from which

$$
\begin{equation*}
K_{j i}=\left[(n-1)\left(\alpha^{2}+\lambda^{2}\right)+\lambda \mu l^{2}\right] g_{j i}+(n-2) \lambda \mu l_{j} l_{2} \tag{57}
\end{equation*}
$$

and

$$
\begin{equation*}
K=n(n-1)\left(\alpha^{2}+\lambda^{2}\right)+2(n-1) \lambda \mu l^{2} \tag{58}
\end{equation*}
$$

Thus, from (16), (57), and (58), we have

$$
\begin{equation*}
L_{j i}=-\frac{1}{2}\left(\alpha^{2}+\lambda^{2}\right) g_{j i}-\lambda \mu l_{j} l_{v} . \tag{59}
\end{equation*}
$$

Substituting (56) and (59) into (17), we easily find that the conformal curvature tensor $C_{k j i}{ }^{h}$ vanishes identically. This shows that the submanifold M^{n} is conformally flat for $n>3$.

Case II. $n=3$. Substituting (54) into (12), we find

$$
\begin{equation*}
\lambda_{k} g_{j i}-\lambda_{j} g_{k i}+\mu_{k} l_{j} l_{i}-\mu_{j} l_{k} l_{i}+\mu l_{j}\left(\nabla_{k} l_{i}\right)-\mu l_{k}\left(\nabla_{j} l_{i}\right)=0, \tag{60}
\end{equation*}
$$

by virtue of (49), where $\lambda_{k}=\nabla_{k} \lambda$ and $\mu_{k}=\nabla_{k} \mu$.
Substituting (46) into (60) and using (47), we find

$$
\begin{equation*}
\left(\lambda_{k}-\mu \gamma l_{k}\right) g_{j i}-\left(\lambda_{j}-\mu \gamma l_{j}\right) g_{k \imath} \tag{61}
\end{equation*}
$$

$$
+\left[\mu_{k} l_{j}-\mu_{j} l_{k}-\frac{2 \mu}{l} l_{k} \nabla_{j} l+\frac{2 \mu}{l} l_{j} \nabla_{k} l\right] l_{i}=0
$$

from which we obtain

$$
\begin{equation*}
\lambda_{k}=\mu \gamma l_{k} \tag{62}
\end{equation*}
$$

and

$$
\begin{equation*}
\mu_{k} l_{j}-\mu_{j} l_{k}-\frac{2 \mu}{l} l_{k} \nabla_{j} l+\frac{2 \mu}{l} l_{j} \nabla_{k} l=0 . \tag{63}
\end{equation*}
$$

From (63), we have

$$
\left(\mu_{k}+\frac{2 \mu}{l} \nabla_{k} l\right) l_{j}=\left(\mu_{j}+\frac{2 \mu}{l} \nabla_{j} l\right) l_{k}
$$

from which

$$
\begin{equation*}
\mu_{k}+\frac{2 \mu}{l} \nabla_{k} l=\sigma l_{k} \tag{64}
\end{equation*}
$$

σ being a function.
Now, from (59), we have

$$
\begin{aligned}
\nabla_{k} L_{j i}= & -\lambda \lambda_{k} g_{j i}-\lambda_{k} \mu l_{j} l_{i}-\lambda \mu_{k} l_{j} l_{i} \\
& -\lambda \mu\left(\nabla_{k} l_{j}\right) l_{i}-\lambda \mu l_{j}\left(\nabla_{k} l_{i}\right),
\end{aligned}
$$

or, using (46), (62) and (64),

$$
\begin{aligned}
\nabla_{k} L_{j i}= & -\lambda \mu \gamma l_{k} g_{j i}-\mu^{2} \gamma l_{k} l_{j} l_{\imath} \\
& -\lambda\left(-\frac{2 \mu}{l} \nabla_{k} l+\sigma l_{k}\right) l_{j} l_{\imath} \\
& -\lambda \mu\left(\nabla_{k} l_{j}\right) l_{i}-\lambda \mu l_{j}\left[\gamma g_{k i}+l_{k} v_{i}+l_{i} v_{k}\right],
\end{aligned}
$$

from which

$$
\begin{aligned}
\nabla_{k} L_{j i}-\nabla_{j} L_{k \imath}= & \frac{2 \lambda \mu}{l}\left[\left(\nabla_{k} l\right) l_{j}-\left(\nabla_{j} l\right) l_{k}\right] l_{\imath} \\
& -\lambda \mu\left[v_{k} l_{j}-v_{j} l_{k}\right] l_{2},
\end{aligned}
$$

that is,

$$
\nabla_{k} L_{j i}-\nabla_{j} L_{k i}=0,
$$

by virtue of (53). This shows that M^{n} is a conformally flat space. Consequently we have proved the theorem completely.

§ 4. Locus of (n-1)-spheres.

The purpose of this section is to prove the following:
Theorem 2. Let M^{n} be a pseudo-umbilical submanifold of E^{n+3} with constant mean curvature $\alpha \neq 0$. If the mean curvature vector is non-parallel and the normal connection is trivial, then the submanifold M^{n} is not contained in any hypersphere
of E^{n+3} and it is the locus of moving $(n-1)$-spheres where an ($n-1$)-sphere means a hypersphere of a euclidean n-space.

Proof. Let M^{n} be a pseudo-umbilical submanifold of E^{n+3} with constant mean curvature $\alpha \neq 0$, such that the mean curvature vector is non-parallel and the normal connection is trivial. Then by Lemmas 1,2 and 3, we have

$$
\nabla_{j} X_{i}=\alpha g_{j i} C+\frac{\alpha}{\nu}\left(g_{j i}-\frac{n}{l^{2}} l_{j} l_{2}\right) E,
$$

(65)

$$
\nabla_{j} C=-\alpha X_{j}+l_{j} D,
$$

$$
\nabla_{j} D=-l_{j} C+\nu l_{j} E,
$$

$$
\nabla_{j} E=-\frac{\alpha}{\nu} X_{j}-\nu l_{j} D+\frac{n \alpha}{\nu l^{2}} l_{j} l^{l} X_{\imath} .
$$

Since $\nabla_{j} l_{i}-\nabla_{i} l_{j}=0, l_{i} d x^{2}=0$ is integrable. We represent one of integral manifolds M^{n-1} by

$$
X=X\left(\xi^{h}\left(\eta^{a}\right)\right)
$$

and put

$$
\begin{gathered}
X_{b}=\partial_{b} X=B_{b}{ }^{2} X_{i}, \quad B_{b}{ }^{i}=\partial_{b} \xi^{2}, \quad \partial_{b}=\partial / \partial \eta^{b}, \\
N^{h}=\frac{1}{l} l^{h}, \quad g_{c b}=B_{c^{3}} B_{b}{ }^{2} g_{j i}
\end{gathered}
$$

and

$$
\nabla_{c} B_{b}{ }^{h}=H_{c b} N^{h},
$$

$\nabla_{c} B_{b}{ }^{h}$ denoting the van der Waerden-Bortolotti covariant derivative of $B_{b}{ }^{h}$ along M^{n-1}, where, here and in the sequel, indices a, b, c, \cdots run over the range $\{1,2, \cdots, n-1\}$.

From

$$
l_{i} B_{b}{ }^{i}=0
$$

and Lemma 4, we have

$$
\left(\frac{\nu_{l} l^{t}}{n \nu} g_{j i}+l_{j} v_{i}+l_{i} v_{j}\right) B_{c}{ }^{j} B_{b}^{i}+l H_{c b}=0,
$$

from which

$$
\begin{equation*}
H_{c b}=-\frac{\nu_{\nu} l^{l}}{n l \nu} g_{c b}=\beta g_{c b}, \tag{66}
\end{equation*}
$$

with $\beta=-\nu_{t} l^{t} n l \nu$. Thus, from (65), we have, along M^{n-1},

$$
\begin{aligned}
\nabla_{c} X_{b}=\nabla_{c}\left(B_{b}^{i} X_{i}\right) & =H_{c b} N^{i} X_{i}+B_{c}^{j} B_{b}^{i}\left(\nabla_{j} X_{i}\right) \\
& =\alpha g_{c b} C+\frac{\alpha}{\nu} g_{c b} E+\beta g_{c b} N
\end{aligned}
$$

where $N=N^{i} X_{2}$. This shows that the integral manifold M^{n-1} is totally umbilical in E^{n+3}. Thus M^{n-1} is contained in a hypersphere of a linear n-subspace of E^{n+3}. Therefore M^{n} is the locus of the moving ($n-1$)-spheres. The remaining part of the theorem follows immediately from Theorem 5 of [3]. This completes the proof of the theorem.

Bibliography

[1] Chen, Bang-yen, Minımal hypersurfaces in an m-sphere. Proc. Amer. Math. Soc. 29 (1971), 375-380.
[2] and Kentaro Yano, Integral formulas for submanifolds and their applications. J. of Differential Geometry 5 (1971), 467-477.
[3] AND $—$ Pseudo-umbilical submanifolds in a Riemannian manifold of constant curvature. Differential Geometry, in honor of K. Yano, Kinokuniya, Tokyo (1972), 61-71.
[4] AND , Submanifolds umbilical with respect to a non-parallel normal direction. J. of Differential Geometry (to appear).
[5] Ōtsuki, Tominosuke, Pseudo-umbilical submanifolds with M-index $\leqq 1$ in euclidean spaces. Kōda1 Math. Sem. Rep. 20 (1968), 296-304.

Michigan State University.

[^0]: Received January 13, 1973.

 1) Manifolds, mappings, functions, \ldots are assumed to be sufficiently differentiable and we shall restrict ourselves only to manifolds of dimension $n \geqq 3$.
