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PSEUDO-UMBILICAL SUBMANIFOLDS OF CODIMENSION
3 WITH CONSTANT MEAN CURVATURE

By BaNG-YEN CHEN AND KENTARO YANO

Let M* be an n-dimensional submanifold” of an m-dimensional euclidean space
E™ (n<m) with the mean curvature vector H=+0. If the second fundamental
tensor in the normal direction H is proportional to the first fundamental tensor
of the submanifold M", then M™ is said to be pseudoumbilical. The mean cur-
vature vector H is said to be parallel if the covariant derivative of H along M™"
has no normal component, and H is said to be nonparallel if the covariant de-
rivative of H along M"™ has nonzero normal component everywhere.

In previous papers [2], [3], the authors proved that if M™ is pseudo-umbilical
in E™ and the mean curvature vector is nonzero and parallel, then M" is contained
in a hypersphere of £™ as a minimal hypersurface. It is easy to see that if the
mean curvature vector H is parallel, then the mean curvature is constant. If the
codimension m—#» is two, then the constancy of the mean curvature implies the
parallelism of the mean curvature vector [1]. In [4], the authors studied submani-
folds of codimension two which are umbilical with respect to a non-parallel normal
direction and showed that such manifolds are the loci of moving (%—1)-spheres,
(see also [5]).

In the present paper, we shall study pseudo-umbilical submanifolds of codimen-
sion 3 with constant mean curvature, the mean curvature vector of which is non-

parallel.

§1. Preliminaries.

We consider a submanifold M™ of codimension 3 of an (#+3)-dimensional
euclidean space E™** and represent it by

(1) X=X(EI: 52, Tt En)y

where X is the position vector from the origin of £”*% to a point of the submani-
fold M™ and {¢"} is a local coordinate system on M™ where, here and in the sequel,
the indices 4,1, j, &, --- run over the range {1, 2, -+, n}.

We put

Received January 13, 1973.
1) Manifolds, mappings, functions, ... are assumed to be sufficiently differentiable and
we shall restrict ourselves only to manifolds of dimension #=3.
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(2) X,=0:X, 0;=0/0&,

then X, are » linear independent vectors tangent to M"™. We denote by C, D, E
three mutually orthogonal unit normals to M™.

Now denoting by F, the operator of covariant differentiation with respect to
Riemannian metric g;;=X;-X, of M", we have equations of Gauss

V;Xiza,Xi—{ f .}Xh
j i
(3)

=h;C+kiuD+fiE,

where {,*;} are Christoffel symbols formed with ¢; and %;;, kj; and f;; the second
fundamental tensors with respect to normals C, D and E respectively. The mean
curvature vector is then given by

(4) =47, X,

where ¢7¢ are contravariant components of the metric tensor.
If there exist, on the submanifold M", two functions «, 8 and a unit vector
field »; such that

(5) hji=ag i+ Pov;,

then the submanifold M™ is said to be quasi-umbilical with respect to the normal
direction C. In particular, if =0 identically, then M™" is said to be umbilical with
respect to the normal direction C. If M™ is umbilical with respect to the mean
curvature vector H, then the submanifold M™ is said to be pseudo-umbilical.

The equations of Weingarten are given by

(6) ViC=—h"X, +l]D +ij’
(7) VjD—_— —kthh—‘le +njE,
(8) VjE‘—' —fj"Xh——ij—njD,

where &,*=h;g", k,*=Fkug"™ and f,*=f;¢'" and /,, m, and #, are the third funda-
mental tensors.

In the sequel, we denote the normal components of V;C, V;,D and V;E by V,*C,
V,*D and F,*E respectively.

The normal vector field C is said to be parallel if we have V,*C=0, that is, /,
and m, vanish identically and it is said to be non-parallel if V,*C never vanishes,
that is, Ll*+mm' never vanishes, where !=/,g% and m'=mg.

We have equations of Gauss:

(9) Kyji" =hi"hji— hithi+ kiR ji— k3 ki + ff 1= " F s
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where K ;" is the Riemann-Christoffel curvature tensor, those of Codazzi:

(10) Vihji— Vb — lek ji 4 Uik — min f 5+ 10, f1e=0,
(11) Vi gi—Vikis+ Lk js— Libis — e f 50+ 15 [, =0,
(12) Vif 16—V, f va+ muhgs—m b+ nik jo— nky, =0,
and those of Ricci:

(13) Vilj— Vil hitk jo— Ry R+ musn s — mmg =0,
(14) Vemj— Vi + RS 5o — by e+l j—n 3l =0,
(15) Ving—Ving+ki'f o — Ry eo + lym; — L jme =0,

Denoting by K;=K,;;* and K=g¢/'K,; the Ricci tensor and the scalar curvature
respectively, we define a tensor field L;; of type (0,2) by

_ K Kgyi
n—2 2n—1)n—-2)"

(16) L= +

The conformal curvature tensor Ci;"* is then given by
a7 Crji" =Ky +0%L j;— 0" Lis + Li*gj:— L, g1,

where o are Kronecker deltas and Li*= L.
A Riemannian manifold M™ is locally conformal to a euclidean space and is
called a conformally flat space if and only if we have

(18) Cisi=0,
(19) VxLji—ViLzi=0.

It is well known known that (18) holds automatically for »=3 and (19) is a
consequence of (18) for n>3.

§2. Pseudo-umbilical submanifolds of codimension 3.

Throughout the rest of this paper, we assume that " is a pseudo-umbilical
submanifold of a euclidean (r+3)-space £”*® with nonzero constant mean curvature.
Since the mean curvature vector H is nowhere zero, we may choose the normal C
in the direction of H, i.e.,

(20) H=aC, a=|H|.
Then by the assumption we have
1) hj=agj,  a=constant#0,

(22) k=0,  fi'=0.
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In the sequel, we denote by H, and H; the symmetric #x# matrices given by
(k") and (f;*) respectively.

LemMA 1. Let M™ be a pseudo-umbilical submanifold of E"* with constant
mean curvature a+0. If the two matrices H, and Hs commute at a point pe M",
then either the covariant derivative V;C of C has no normal component or the two
matrices H, and H, are proportional at p.

Proof. Suppose that M" is pseudo-umbilical in E™** and with constant mean
curvature a#0. Then (21) holds. Hence from (10) and (21), we have

(23) Uik ji—likii+maf ji—my [ =0,
that is,
(24) lkk/’—ljkkh+mkf/‘—m,fk”=0.

Now suppose that H,=(k,*) and Hy=(f,") commute at peM". Then H, and
H; are simultaneously diagonalizable. Hence if we choose a local coordinate system
{¢"} around p in M™ such that X, form an orthonormal basis of the tangent space
Tp(M™) and are in the principal directions with respect to the normal direction D
at p, then X,, are also in the principal directions with respect to the normal direc-
tion E. Thus, if we denote by A, and 4 the eigenvalues of H, and H; respectively,
then (24) reduces to

(25) bAj+mpp,=0, for k#j.
Since we have 2i+2+ - +2.=0, pi+p2+ -+ +p=0, (25) implies
(26) ldj+mip,=0, for all %&£ and j.

If 7,*C+0 at p, then, without loss of generality, we can assume that /,#0.
Thus {from (26), we see that

(27 A= “*nli e
1

This implies that the two matrices H, and H; are proportional. This completes
the proof of the lemma.

LemMMA 2. Let M™ be a pseudo-umbilical submanifold of E™*® with constant
mean curvature a+0. If ihe two matrices H, and H; commute and V,*C+0 at p,
then we can suitably choose the normal directions D and E in such a way that we
have

(28) k;i=0 and m,=0
at peM™, unless H, and H; vanish simultaneously.

Proof. Under the hypothesis of the lemma, we see, from Lemma 1, that i,
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and H, are proportional. Hence we may assume that
(29) Hy,=cH,;, at p,
for some real ¢. Put ¢c=—tan# and
D=(cos 0)D+(sin 0)E,
30)
E=—(sin §)D+(cos §)E.

Then we see that the second fundamental tensor in the normal direction D vanishes.
Hence we may assume that H; vanishes, ie., k;=0 at p. Substituting this into
(24), we obtain

1) My fr—m, fi=0

at p. If we choose a local coordinate system {£"} around p in such a way that X,
are orthogonal and in the principal directions of the normal E, then we obtain

(32) mep,=0,  k+7,
at p, where p, denote eigenvalues of H;. Hence by applying (22), we have
(33) myp,;=0, for all k& and 7,

at p. This implies that we have either m,=0 or p,=0. This shows that we have
either m,=0 or H;=0 at p. This completes the proof of the lemma.

LEMMA 3. Let M™ be a pseudo-umbilical submanifold of E™® with constant
mean curvature a=+0. If the two matrices Hy, and H, commute, V,*C+0 and E-V,*C
=0 at p, then we have

(34) k;=0 (ie., H,=0), m,=0,
t
(35) - p=i¢lif—¢o, P=11'+0,
and
n
(36) fu=2 (a5 1)
at p.
Proof. Under the hypothesis, we have /,#0, m,=0 and, from (23),
(37) l]ckji—‘ljklm,:O,
from which

(38) kji=pljl,
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for some 8 and consequently by
k' =plLI'=0,

from which =0 and hence we obtain (34).
On the other hand, from (14), (21) and (34), we have

nilj—n =0,
we find
(39) n,=vl,,
where v=#n,/!/l? and P=/[/'. If v=0, then n,=0. Hence (11) and (34) give
(40) lvagji—li0gk=0,
from which, transvecting ¢,
(n—1al,=0,

which is a contradiction. Thus we have (35).
From (15), (34), (35) and (39), we find

(41) V(i) —Vi(vli) =0.
From (13), (34), (35) and (41), we obtain
vilj— vl =0,
where v;=Fw. Hence

D;lt

(42) v,= *17‘1]-

Now substituting (21), (34) and (35) into (11), we find
llagji—v f i) —lilagei—v fre) =0,
from which, transvecting /¥,
Blagji—v f1)=10s
for some »;. Since the left hand side is symmetric in j and i, we have
43) Hagji—v fi)=oljl,
for some p. Transvecting ¢/¢ to (43), we find
(44) an=p.
Thus (43) becomes
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no
(45) uf ji= agj— - Uiy

This completes the proof of the lemma.

LemMmA 4. Under the hypothesis of Lemma 3, we have

(46) Vil.=r9i+1lvi+ 1w,

where

%) p= Vll 7+ L]l.
w1 207 2milz |

Proof. From (12), (13), (21), (34) and (45), we find
ykf]z V]fln—_< —>l]l +< 7 2 >lkl1,
ZJ(Vklz)"" lk(le)

from which, using (36) and (42),

}Jtl

E (g ji— o) = — ( ‘z‘ )llz <J 7 >lklz,
— T LT+ ().

Transvecting /* to this equation, we find

I
A P = — (m - )zjzﬂuz (, ;);

l2

lz L) +n(P L),

from which
le1,=dlzgjz <lt‘7¢ —12——d>l l
(48)
1 1
~ (7, 5 Yok 14T,

where

_ Dtl':

wl?

On the other hand, from (13) and (34), we find



PSEUDO-UMBILICAL SUBMANIFOLDS OF CODIMENSION 3 497
(49) Vil;—Vil;=0.
From (48) and (49), we have

<z417, liz +m751,>1z - (14171 7%- + zw,)z,.

or
(50) (=200 A+ 1Vl = (=27l + 1V 1),

from which, transvecting /¢,

(=24 1V )= (=207 + 1V ),
or

(51) mzj=2u7jz-% @i,
Substituting (51) into (48), we have

le1,= alzgji+ <— ’ZZTZLVLI— (l>ljl7,

+13 7l >zi+lé zj{zml—ll @ )zt],

or
2 2 3
(52) Vil;=al gji+T[(le)li+(Vil)lj]_‘ i ItV +a \ljl,.
Put
2o 3 L
53) vn=2ry [212 e+ a]ll,

then (53) gives (46). This proves the lemma.

§3. Conformally flat spaces.

For a submanifold M” of E™+% if the second fundamental tensors H,=(k,"),
H,=(k/*) and H;=(f;*) are simultaneously diagonalizable, then we say that the
normal connection of M™ in E™+3%is trivial. It is easy to see that a pseudo-umbilical
submanifold M™ of E™** with non-zero mean curvature has trivial normal connec-
tion if and only if H, and H; commute, where H; and H; are those given in the
previous section. For a pseudo-umbilical submanifold of codimension 2 with non-
zero mean curvature, the normal connection is always trivial.

THEOREM 1. Let M™ be a pseudo-umbilical submanifold of E™*® with constant
mean curvature a+0. If the normal conmection is trivial and the mean curvature
vector is non-parallel, then the submanifold M™ is conformally flat for n=3.



498 BANG-YEN CHEN AND KENTARO YANO

Proof. If M™ is a pseudo-umbilical submanifold of E"** with constant mean
curvature a+0 such that the normal connection is trivial and the mean curvature
vector is non-parallel, then by Lemmas 2 and 3, we can suitably choose D and E
in such a way that (34), (35) and (36) hold. In particular, we have

(54) hji=agj, k=0,  fu=295+pli,
1,#0, m;=0,
where
(44 na
(55) A= O HETE

We consider the cases #>3 and »=3 separately.
Case 1. n>3. By substituting (54) into (9), we find
(56) K" =(a®+2°)(049 i — 0'yqx1)

+ Apl (08 5 — 6" )ls + (Ueg 53— Ligra)I?],

from which

(57) Kji=[(n—1)(a®*+25) + 29 i+ (n—2)Apl;l,
and

(58) K=nn—1)(a’+2%)+2(n—1)ap*

Thus, from (16), (57), and (58), we have
(59) L= —% (a4 A2)g s — Al

Substituting (56) and (59) into (17), we easily find that the conformal curvature
tensor Cis" vanishes identically. This shows that the submanifold M" is confor-
mally flat for »>3.

Case 1I. n»=3. Substituting (54) into (12), we find
(60) A9 ji — AjGni+ pd sl — pilili+ pl j(Vadi) — ple(V i) =0,

by virtue of (49), where 2=/ and pep="Fipu.
Substituting (46) into (60) and using (47), we find

Ae— prle)gsi— A= prige
(61)

2 2
+[ﬂklj—ﬂjlk——;ilijl'FTﬂlekl]li=0,

from which we obtain
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(62) xk=ﬂrlk
and
2 2p
(63) ﬂklj"lljlk-lele+Tlekl=0-

From (63), we have

2 2
(/,lk +Tp V]J)l; = (pj +Tﬂ' le)lk,
from which

2
(64) yk+7‘i Vd=0ly,

¢ being a function.
Now, from (59), we have

Vij,;= —).ngﬁ—lkluljli—ﬂpkljlz
— Vel )l — 2pud j(Viks),
or, using (46), (62) and (64),

Viji = Xprlkgji el yzrlkljlt

4(-%’-‘ sz+az,¢>1jzt
— AVl )l —2pdily grs + L+ 10k,
from which
22
PeLsi=FiLi=—7 [P}l — (P10
—'2[1[2)]611—2)]*1)5][1,
that is,

Viji—Viji=0,

by virtue of (53). This shows that M™ is a conformally flat space.

we have proved the theorem completely.

§4. Locus of (n—1)-spheres.

The purpose of this section is to prove the following:

499

Consequently

THEOREM 2. Let M™ be a pseudo-umbilical submanifold of E™** with constant
mean curvaturve a+0. If the mean curvature vector is non-parallel and the novmal
conmection is trivial, then the submanifold M™ is not contained in any hypersphere
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of E™*® and it is the locus of moving (n—1)-spheres where an (n—1)-sphere means
a hypersphere of a euclidean n-space.

Proof. Let M™ be a pseudo-umbilical submanifold of £"** with constant mean
curvature a#0, such that the mean curvature vector is non-parallel and the normal
connection is trivial. Then by Lemmas 1,2 and 3, we have

VJX,;=agﬂC+—fj~(gji—-g-—ljlt>E,

V;C=—aX;+1;D,
(65)
VjD= —le+vle,

E=—SX—v1, D+%zjﬁxt.

Since P;l;—V;l,=0, l;dz*=0 is integrable. We represent one of integral manifolds
M=t by

X=X(E"(")

and put
Xo=0X=ByX;, Bpt=0s", 0p= a/aﬂb’
1
Nh=71hy geo =B Byg
and

V.By*=HyN",

V.By* denoting the van der Waerden-Bortolotti covariant derivative of B,* along

M1, where, here and in the sequel, indices a, b, ¢, -+ run over the range
1,2 -, n—1}.
From
[;By¢=0

and Lemma 4, we have

3
< V;le 0 +ljvi+liv,~>BJBb"’+chb=0,

from which
lt
(66) Hp=— %17 Jev = Pged

with g= —v/tnlv. Thus, from (65), we have, along M"-},
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Ve Xp= Vc(BbiXi) =HuNX;+ Bchbi(Vin)

=agaC+ % g+ ,Bgch

where N=N¢X,. This shows that the integral manifold M"-! is totally umbilical
in £7*3, Thus M™! is contained in a hypersphere of a linear n-subspace of E"*3,
Therefore M™ is the locus of the moving (z—1)-spheres. The remaining part of
the theorem follows immediately from Theorem 5 of [3]. This completes the proof
of the theorem.
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