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ON COMPLETE FLAT SURFACES IN HYPERBOLIC 3-SPACE

BY SHIGEO SASAKI

§ 1. Introduction.

" Any 2-dimensional, connected complete and flat Riemannian manifold M iso-
metrically immersed in the Euclidean space EB is a plane or a cylinder." This
theorem was first proved by Pogorelov [3,4] in 1956 and an elementary proof was
given by Massey [2] in 1962. Correspinding to it, the problems to characterize 2-
dimensional connected, complete and flat Riemannian manifolds isometrically im-
mersed in 3-sphere S3 and in hyperbolic 3-space H3 arise. The author studied the
S3 case in [7]. In this paper we shall study the H3 case. Main theorems are
Theorem 3 in §3 and Theorem 6 in § 5 which tell us that " any complete flat sur-
face in H3 is either a horosphere or an equidistant surface of a geodesic line."
For the sake of simplicity, all functions are assumed to be smooth, i.e. of class
C00.

§ 2. Basic considerations.

As the model of the hyperbolic 3-space H3 we take the upper half space #3>0
in the sense of Poincare's representation. Without any loss of generality, we may
assume that the sectional curvature of H3 is — 1. In this case the metric tensor
of H3 is given by

(2.1) Gaβ=(x3)-2δaβ.

Now, let us consider a connected complete surface M (i.e. 2-dimensional Rie-
mannian manifold M immersed) in H3 and take a coordinate neighborhood U on
M. Then, U can be expressed parametrically in the form xa=xa(u1, u2) (a, β, γ, δ
= 1,2,3). If we put X?=dxa/du'1 ( i , j , k, 1=1,2) and choose the unit normal vector
field N" so that \Xι,X2,N\>0. Then we have

(2.2) giί=GapXfXf,
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(2.3) DXkX/

(2.4)

where gijf hijy {/fc} and Na are the first and the second fundamental tensors of M,
the ChristoffeΓs symbol with respect to gi} and the unit normal vector of M, and
Dχk means the covariant derivative in H* in the direction of Xf. (2.3), (2.4) are
Gauss' and Weingarten's derived equations.

The integrability conditions of (2. 3) and (2.4) are

(2. 5) RijM—hjkhu+hikhji = — Qjkgu+gucQji

and

(2.6) F|A,*-F*Ayι = 0

known as Gauss' and Codazzi's equations, where R^i is the curvature tensor with
respect to gij and FΛ means the covariant differentiation. When M is flat, (2. 5) is
equivalent with

(2. 5)' hnhzz — /& = 011022 — 0Ϊ2

Now assume that M is complete. Then, M can be regarded as an isometric
immersion of the Euclidean plane E2 with rectangular coordinates (w1, u2) and we
have

(2.7) 011 = 028 = 1, 012 = 0.

So (2.5)' and (2.6) reduce to

(2.8) ΛnAM-A'u=l,

(2. 9) dAn/dw^dAia/dw1, dh22ldu1 = dh12/du2.

(2.9) tells us that there exists a smooth function ^(w1, &2) defined on the whole
plane E2 such that

(2.10) An =0n, ^12 = φ!2t h22 = φ22,

where we have put φij^&φlduϊdu*. Thus (2.8) reduces to

(2.11) 011^22-^2=1.

Now, by a theorem of Jδrgens [1], the differential equation of elliptic type
(2.11) admits as solutions only polynomials of the second degree of the variables
u1 and u2. So hi/s are constants. If Aι2=0, then

(2.12) Aπ=^ι,A..=λ (Ala=0),
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where λι, 22 are principal curvatures, i.e. eigenvalues of the second fundamental
tensor and satisfy

(2.13) JMa=l.

In the case hi2^Q, we can reduce it to the first case by a suitable orthogonal trans-
formation of rectangular coordinates u1, u2 in E2.

Thus we get the following theorem:

THEOREM 1. For each complete flat surface M in H3 regarded as an isome-
tric immersion of the Euclidean plane E2 with rectangular coordinates (u1, u2), the
principal curvatures λi and λ2 are constant and their product is equal to 1. Conversely,
if we take two constants λι and λ2 so that their product is equal to 1, then there
exists a complete flat surface in E3 such that its principal curvatures coincide with
the given λι and λ2.

The proof of the latter part follows easily if we define gi3 and hy by (2.7)
and (2.12) and apply the first fundamental theorem of surfaces in space forms (Cf.
[6]). On M parameter curves are lines of curvature and isothermal.

COROLLARY. Every complete flat surface in H3 can not be a minimal surface.

As both of the first and second fundamental tensors have constant components
with respect to a parameter system which covers M, we see, by the fundamental
theorem of surfaces in H3 again, that the following theorem is true.

THEOREM 2. Every complete flat surface M in H3 is an orbit space of a 2-
parametric subgroup of the isometry group I(H3) of H3.

The constants λ\ and λ2 have the same sign. If λi and λ2 are negative, we may
change parameters and the unit normal vector so that

ύl = -u\ ύ2=u2, Na= -Na.

And the determinant \XιX2N\ of the new Gaussian frame is positive and Iι= — λi,
Z2=—22. Hence, we may hereafter assume without any loss of generality that λι
and λ2 are positive.

From the above arguments, we may, without any loss of generality, classify
complete flat surfaces into following two types by their principal curvatures:

Umbilical type: λι=λ2 = l,
Non-umbilical type: Λ2>l>,ίι>0 (λιλ*=ΐ).

§3. Complete flat totally umbilical surfaces.

(2.1) shows that the Riemannian metrics of H3 and E3 in the upper half space
#3>0 are conformal with each other.

In general, for a conformal change of Riemannian metrics Gaβ=σ2G0

aβ on a
differentiate manifold V3 we have
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(3. 1)

where we have put σa=dlogσ/dxa. We consider a surface F immersed in V3 and
denote its unit normal vector, its first and second fundamental tensors with respect
to the Riemannian metric G°aβ by N0

a, g\j and h\5 respectively, and those with respect
to the Riemannian metric Gaβ by Na,gij and htj respectively. Then there exist
following relations as we can easily verify them:

(3.2) N* = (llσ)Nf,

(3.3) 0</=σV</,

(3.4) hiJ=σWJ-(N0

aσMJ}.

From (3.4) we see that the following lemma is true. (Cf. [5])

LEEMA. The totally umbilical property of a surface in a Riemannian manifold
Vs is invariant under any conformal change of metrics.

When F is totally umbilical, then we see easily that

(3.5) Ω=(llσ)(Ω°-N0

aσa). (Ω, Ω°: mean curvatures)

By virtue of the Lemma, a complete flat totally umbilical surface M in H3 is
also a totally umbilical surface in E3. So, it is a piece or the whole of an ordinary
sphere or plane in E3. This tells us that M in consideration is one of proper
spheres, horo-spheres, equidistant surfaces or //"-planes in H3 where //"-plane means
a plane in the sense of hyperbolic geometry. Thus, we have reduced our problem
to calculate the function λ for each of these surfaces and to pick up the one for
which λ—±l.

Now, without any loss of generality, we may express any one of surfaces in
H3 described above by an equation of the type

(3. 6) (xlγ+(x*γ+(x*-cγ=R\R>ty,

the cases c>R\ c—R\ R>c>—R(c^Q) and c=0 corresponding to a proper sphere,
a horo-sphere, an equidistant surface and an //"-plane respectively. If we express
(3. 6) parametrically by

(3. 6)' x1 = u\ x1 = uz

ί x*=x\u\ w2),

then we see first that

for α=i (=1 or 2),

(3'7) Xί=\ „( . ϊ fnr ,I — xjl(x3—c) lor α=o.

As <7=1/Λ?8 and G0

aβ=daβ in our case

/o o\ Λo /~*o V« "V(p. o; îj — θ α^^Lt L̂
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{x*IR for α=t (=1 or 2),
(3.9)

(x*-c)/R for α=3.

(We took the normal direction toward outside as the positive direction of the nor-
mal.) Then, as

(3. 10) «,=

we see by (3. 5) that

(3.11) Ω=-c/R,

i.e. the mean curvature of the surface (3.6) is —c/R. Hence Λ=±l if and only
if the surface in consideration is a horo-sphere. Thus we get the following.

THEOREM 3. Any complete flat totally umbilical surface in the hyperbolic 3-
space is a horo-sphere. It is isometric with the Euclidean plane.

N. B. A similar theorem holds good for any complete flat totally umbilical
hypersurface Mn in Hn+1 too.

§4. Geometrical construction of complete flat surfaces in If8.

In order to study complete flat non-umbilical surface, we shall study here some
geometric properties of complete flat surfaces.

For any curve xa=xa(uί(s), u2(s)) on M defined in some interval of s, we get
easily

where Ta=XiTi is the unit tangent vector. Any e^-curve on M is a geodesic of
M as it is the image of a straight line by an isometric immersion of E2 into H*.
So for a w-curve, we have

(4.1) DTT
a=huNa.

Now, the Frenet formulas of the w1 -curve are of the form
Σ/T L = f

(4.2)

Comparing (4.1) with (4.2), we see first Ha=Na as /cι>0 by assumption and hn

=^>0. So we get

(4. 3) Ta=Xf, Ha=N", Ba= -X2

a,

(4. 4)ι *1=An=^ι.
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On the other hand, we have

DTH
a=DZlN*=-h\Xi

= -huT
a+hι2B

a.

Comparing this with (4. 2)2, we get

(4.2)2 n=A ι a=0.

In the same way, we see that the Frenet's frame of any ^2-curve on M is
given by

(4.5) T=X2,H=N,B=X1

and the curvature and torsion are given by

(4. 6) K2 = k22 = λ2, Γ2= —Aι2=0

respectively. Thus, we get the following

THEOREM 4. For each complete flat surface M in HB with the principal curva-
tures λi and λ2, the curvature and torsion of a family of lines of curvature are given
by (4.4) and those of another family of lines of curvature are given by (4. 6).

Now the above argument suggests us a method how to construct complete flat
surfaces in H*.

THEOREM 5. Let λι and λ2 be two positive constants such that their product is
equal to 1. We first draw a curve A with curvature κι(uι,Ό)=λι and torsion τι(ulff)
=0 in Hs, the parameter being the arc length. Using the moving Frenefs frame
(T, H, B) of Γlf we draw, for each fixed value u1, a curve Γ2(ul) with curvature
κ2(ul, u2)=λ2 and torsion τ2(ul, u2)=Q with initial Frenefs frame

(4.7) T(u\ 0) = - B(ul\ Π(u\ V)=H(ul\ B(u\ 0) = T(ul\

the parameter u2 being arc length. Then, the locus of all Γ2(ul) (ulς.R) is a com-
plete flat surface in HB.

Proof. By the latter half of Theorem 1, there exists complete flat surfaces in
H* such that (2.7) and (2.12) hold good and any two of them are congruent under
a motion of H*. We take any one of them and denote it by M. M can be regard-
ed as an isometric immersion of E2 into H* by a map /.

At each point f(ul,u2) of M, we define an orthonormal frame (T, H, B) by

(4.8) T^tU^X^u^u2}, H(u\u2}=N(u\u2\ B(u\u2}=-X2(ul,u2}.

We fix the value u2, then they constitute the moving Frenet's frame for the u1-
curve and the curvature and torsion are given by

(4.9) Kl(u\u2}=λllτl(u\u2}=^.
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Especially, the moving Frenet frame (T(ul), H(u1}, B(u1)) of the z^-curve u2=0 relates
to the Gauss' frame of M on the curve by

(4.10) T(ul)=X1(u\ 0), H(u1)=N(u\ 0), B(u1)^-X2(u\ 0).

In the same way, the moving frame

(4.11) TV, u2)=X2(uί, u2), H(u\ u2)=N(u\ u2), B(u\ u2)=X(u\ u2)

gives, for each fixed value of u1, the moving Frenet's frame of the z/2-curve. The
curvature and torsion of the latter curve are given by

(4.12) κ2(ul, u2)=λ2, τ2(u\ u2)=0.

By (4.8), (4.10) and (4.11) we get (4.7). This complets the proof.

§ 5. Complete flat non-totally umbilical surfaces.

As a preparation we remark, by (2.1) and (3.1), that

(5.1)

hold good, where σ=l/xs.
First, let us consider a half line

(52) xϊ=t #2=0 #

I
13

f '
I 3

!>°' IΛ)=
1

k

',
3

3
~~ fc<τ' 3 k

0 3

3 3

(t>ΰ)

in the plane x2=Q, where ω is the angle such that tanω= V l — λ l / λ i and 0<ω<π/2.
Then, the line element du1 and the unit tangent vector T are given by

(5.3)

(5.4)

dt
ύcos ω

, 0, xssmω).

As #*=0 is an //"-plane and each //"-plane is a totally geodesic surface in //"8, the
unit principal normal vector H lies in the //"-plane x2—0 and so we see that H
=(—#3sin (w, 0, x3 cos ω) and the unit binormal vector is given by £=(0, XB, 0).
Putting (5.1) and (5.3) into

dt δTa dt dTadTa

 = =

J//1 ~ du1 du1 ~ du1 dt
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we can easily verify that

(5 5) — = ̂ HK

 Kl=ca& <*> = *!
du1 '

holds good, where K! is the curvature of Γlt In the same way, we can easily get

(5-6) ~ =

where n is the torsion of Λ.
Secondly, let us consider a circle Γr defined by

on a plane (a horo-sphere) #3—&, where γ>Q is a constant. Then, we see that its
arc length u2 and the unit tangent vector T are given by

du2

(5.8) -r—=cotα> (u2=θcotω),
dθ

(5.9) T =(-k sin 0, βcos 0, 0).

We denote the //"-plane with center 0 (the origin) and radius γfλi by πγ, then Γγ
lies on πr. So, the unit principal normal vector H is tangent to πr, normal to T
and is given by

-£2cos0 -k2 sin0 £f

In the similar way as the case of A, we can easily verify that

(5.10)

δH°
Λ2 — > - -

Thirdly, let us consider a half cone S which is a surface of revolution of the
half line Γ\ around the #3-axis. Then, it is easy to see that (i) all generating lines
have same curvature λι and torsion 0 and are equidistant curves to the #3-axis and
(ii) all circles Γr are same curvature Λ2 and torsion 0 and are congruent in HΆ.
Thus, S has similar properties as a circular cylinder in EB.

Now, we may regard the curve Γi defined by (5.2) as the curve Λ in Theorem
5. Its arc length u1 is given by u1=cosecω logt. The circle Γγ corresponds to the
curve Γ2(u1) in Theorem 5 for ^1=cosecω log^. As u2=θcotω, we may easily
verify that the Frenet's frame (T, Π,B] of Γr at the point 0=0, coincides with
(—B,H, T) of Γi at the same point. Hence, the cone S is nothing but the com-



COMPLETE FLAT SURFACES IN HYPERBOLIC 3-SPACE 457

plete flat surface corresponding to the given constants λi and 22 assured in Theorem
5. (We may easily verify directly that the Gaussian curvature of S is everywhere
equal to zero.) S is an orbit space of a 2-parametric subgroup of isometries of the
form

x1 = p(χl cos γ + x2 sin γ),

x2 = ρ( — xl sin γ + x2 cos γ),

and γ being parameters.
Suppose T be an isometry of HB, i.e. a composite of some inversions with

respect to some ffplanes, then T(S) is again a half cone whose axis is orthogonal
to the plane #3=0 with vertex on x3=0 or T(S) is one half of a cyclide with two
vertices on the plane #3=0. The latter carries a family of congruent equidistant
curves corresponding to the family of generating lines of the half cone S and a
family of congruent proper circles corresponding to the family of circles Γγ (0<γ
<oo) on S. There is no distinction between the half cone S and the half cyclide
T(S) in hyperbolic geometry. Each of them is an equidistant surface from a geo-
desic line in H* and can be regarded as an analogue of a circular cylinder in the
sense of hyperbolic geometry. Thus, we get the following

THEOREM 6. Any complete flat non-totally umbilical surface in H* is an equidis-
tant surface from a geodesic line in H3.
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