ON COMPLETE FLAT SURFACES IN HYPERBOLIC 3-SPACE

By Shigeo Sasaki

§ 1. Introduction.

" Any 2-dimensional, connected complete and flat Riemannian manifold M isometrically immersed in the Euclidean space E^{3} is a plane or a cylinder." This theorem was first proved by Pogorelov [3, 4] in 1956 and an elementary proof was given by Massey [2] in 1962. Correspinding to it, the problems to characterize 2dimensional connected, complete and flat Riemannian manifolds isometrically immersed in 3 -sphere S^{3} and in hyperbolic 3 -space H^{3} arise. The author studied the S^{3} case in [7]. In this paper we shall study the H^{3} case. Main theorems are Theorem 3 in $\S 3$ and Theorem 6 in $\S 5$ which tell us that "any complete flat surface in H^{3} is either a horosphere or an equidistant surface of a geodesic line." For the sake of simplicity, all functions are assumed to be smooth, i.e. of class C^{∞}.

§ 2. Basic considerations.

As the model of the hyperbolic 3 -space H^{3} we take the upper half space $x^{3}>0$ in the sense of Poincare's representation. Without any loss of generality, we may assume that the sectional curvature of H^{3} is -1 . In this case the metric tensor of H^{3} is given by

$$
\begin{equation*}
G_{\alpha \beta}=\left(x^{3}\right)^{-2} \delta_{\alpha \beta} . \tag{2.1}
\end{equation*}
$$

Now, let us consider a connected complete surface M (i.e. 2-dimensional Riemannian manifold M immersed) in H^{3} and take a coordinate neighborhood U on M. Then, U can be expressed parametrically in the form $x^{\alpha}=x^{\alpha}\left(u^{1}, u^{2}\right)(\alpha, \beta, \gamma, \delta$ $=1,2,3)$. If we put $X_{2}^{\alpha} \equiv \partial x^{\alpha} / \partial u^{2}(i, j, k, l=1,2)$ and choose the unit normal vector field N^{α} so that $\left|X_{1}, X_{2}, N\right|>0$. Then we have

$$
\begin{equation*}
g_{i j}=G_{\alpha \beta} X_{\imath}^{\alpha} X_{j}^{\beta}, \tag{2.2}
\end{equation*}
$$

Received November 30, 1972.
A few months after I completed this paper, I found that the main theorems were also found independently by Yu. A. Volkov and S.M. Vladimirova a little earlier than me (Cf. Isometric immersions of a Euclidean plane in Lobachevskii space, Math. Notices, Acad. Sci. USSR 10 (1972), 619-622, Russian Original (1971)).

$$
D_{X_{k}} X_{j}^{\alpha}=\left\{\begin{array}{c}
i \tag{2.3}\\
j
\end{array} \quad k\right\} X_{i}^{\alpha}+h_{j k} N^{\alpha},
$$

$$
\begin{equation*}
D_{X_{k}} N^{\alpha}=-h_{k}^{i} X_{v}^{\alpha}, \tag{2.4}
\end{equation*}
$$

where $g_{i j}, h_{i j},\left\{{ }_{j}{ }_{i k}\right\}$ and N^{α} are the first and the second fundamental tensors of M, the Christoffel's symbol with respect to $g_{i j}$ and the unit normal vector of M, and $D_{X_{k}}$ means the covariant derivative in H^{3} in the direction of X_{k}^{α}. (2.3), (2.4) are Gauss' and Weingarten's derived equations.

The integrability conditions of (2.3) and (2.4) are

$$
\begin{equation*}
R_{2 j k l}-h_{j k} h_{i l}+h_{i k} h_{j l}=-g_{j k} g_{i l}+g_{i k} g_{j l} \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\nabla_{l} h_{j k}-\nabla_{k} h_{j l}=0 \tag{2.6}
\end{equation*}
$$

known as Gauss' and Codazzi's equations, where $R_{i j k l}$ is the curvature tensor with respect to $g_{i j}$ and ∇_{k} means the covariant differentiation. When M is flat, (2.5) is equivalent with

$$
(2.5)^{\prime} \quad h_{11} h_{22}-h_{12}^{2}=g_{11} g_{22}-g_{12}^{2} .
$$

Now assume that M is complete. Then, M can be regarded as an isometric immersion of the Euclidean plane E^{2} with rectangular coordinates (u^{1}, u^{2}) and we have

$$
\begin{equation*}
g_{11}=g_{22}=1, \quad g_{12}=0 . \tag{2.7}
\end{equation*}
$$

So (2.5) ${ }^{\prime}$ and (2.6) reduce to

$$
\begin{equation*}
h_{11} h_{22}-h_{12}^{2}=1, \tag{2.8}
\end{equation*}
$$

$$
\begin{equation*}
\partial h_{11} / \partial u^{2}=\partial h_{12} / \partial u^{1}, \partial h_{22} / \partial u^{1}=\partial h_{12} / \partial u^{2} . \tag{2.9}
\end{equation*}
$$

(2.9) tells us that there exists a smooth function $\phi\left(u^{1}, u^{2}\right)$ defined on the whole plane E^{2} such that

$$
\begin{equation*}
h_{11}=\phi_{11}, h_{12}=\phi_{12}, h_{22}=\phi_{22}, \tag{2.10}
\end{equation*}
$$

where we have put $\phi_{i j}=\partial^{2} \phi \mid \partial u^{i} \partial u^{j}$. Thus (2.8) reduces to

$$
\begin{equation*}
\phi_{11} \phi_{22}-\phi_{12}^{2}=1 \tag{2.11}
\end{equation*}
$$

Now, by a theorem of Jörgens [1], the differential equation of elliptic type (2.11) admits as solutions only polynomials of the second degree of the variables u^{1} and u^{2}. So $h_{i j}$'s are constants. If $h_{12}=0$, then

$$
\begin{equation*}
h_{11}=\lambda_{1}, h_{22}=\lambda_{2} \quad\left(h_{12}=0\right), \tag{2.12}
\end{equation*}
$$

where λ_{1}, λ_{2} are principal curvatures, i.e. eigenvalues of the second fundamental tensor and satisfy

$$
\begin{equation*}
\lambda_{1} \lambda_{2}=1 \tag{2.13}
\end{equation*}
$$

In the case $h_{12} \neq 0$, we can reduce it to the first case by a suitable orthogonal transformation of rectangular coordinates u^{1}, u^{2} in E^{2}.

Thus we get the following theorem:
Theorem 1. For each complete flat surface M in H^{3} regarded as an isometric immersion of the Euclidean plane E^{2} with rectangular coordinates (u^{1}, u^{2}), the principal curvatures λ_{1} and λ_{2} are constant and their product is equal to 1 . Conversely, if we take two constants λ_{1} and λ_{2} so that their product is equal to 1 , then there exists a complete flat surface in E^{3} such that its principal curvatures coincide with the given λ_{1} and λ_{2}.

The proof of the latter part follows easily if we define $g_{i j}$ and $h_{i j}$ by (2.7) and (2.12) and apply the first fundamental theorem of surfaces in space forms (Cf. [6]). On M parameter curves are lines of curvature and isothermal.

Corollary. Every complete flat surface in H^{3} can not be a minimal surface.
As both of the first and second fundamental tensors have constant components with respect to a parameter system which covers M, we see, by the fundamental theorem of surfaces in H^{3} again, that the following theorem is true.

Theorem 2. Every complete flat surface M in H^{3} is an orbit space of a 2parametric subgroup of the isometry group $I\left(H^{3}\right)$ of H^{3}.

The constants λ_{1} and λ_{2} have the same sign. If λ_{1} and λ_{2} are negative, we may change parameters and the unit normal vector so that

$$
\bar{u}^{1}=-u^{1}, \bar{u}^{2}=u^{2}, \bar{N}^{\alpha}=-N^{\alpha} .
$$

And the determinant $\left|\bar{X}_{1} \bar{X}_{2} \bar{N}\right|$ of the new Gaussian frame is positive and $\bar{\lambda}_{1}=-\lambda_{1}$, $\bar{\lambda}_{2}=-\lambda_{2}$. Hence, we may hereafter assume without any loss of generality that λ_{1} and λ_{2} are positive.

From the above arguments, we may, without any loss of generality, classify complete flat surfaces into following two types by their principal curvatures:

Umbilical type: $\quad \lambda_{1}=\lambda_{2}=1$,
Non-umbilical type: $\quad \lambda_{2}>1>\lambda_{1}>0 \quad\left(\lambda_{1} \lambda_{2}=1\right)$.

§3. Complete flat totally umbilical surfaces.

(2.1) shows that the Riemannian metrics of H^{3} and E^{3} in the upper half space $x^{3}>0$ are conformal with each other.

In general, for a conformal change of Riemannian metrics $G_{\alpha \beta}=\sigma^{2} G_{\alpha \beta}^{0}$ on a differentiable manifold V^{3} we have

$$
\left\{\begin{array}{c}
\alpha \tag{3.1}\\
\beta
\end{array}\right\}=\left\{\begin{array}{c}
\alpha \\
\beta
\end{array}\right\}_{0}+\delta_{\beta}^{\alpha} \sigma_{\gamma}+\delta_{\gamma}^{\alpha} \sigma_{\beta}-G_{0}^{\alpha \delta} \sigma_{\partial} G_{\beta r}^{o}
$$

where we have put $\sigma_{\alpha}=\partial \log \sigma / \partial x^{\alpha}$. We consider a surface F immersed in V^{3} and denote its unit normal vector, its first and second fundamental tensors with respect to the Riemannian metric $G_{\alpha \beta}^{0}$ by $N_{0}^{\alpha}, g_{i j}^{0}$ and $h_{i j}^{0}$ respectively, and those with respect to the Riemannian metric $G_{\alpha \beta}$ by $N^{\alpha}, g_{i j}$ and $h_{i j}$ respectively. Then there exist following relations as we can easily verify them:

$$
\begin{gather*}
N^{\alpha}=(1 / \sigma) N_{0}^{\alpha}, \tag{3.2}\\
g_{i j}=\sigma^{2} g_{i j}^{0}, \tag{3.3}\\
h_{i j}=\sigma\left\{h_{i j}^{0}-\left(N_{0}^{\alpha} \sigma_{\alpha}\right) g_{i j}^{0}\right\} . \tag{3.4}
\end{gather*}
$$

From (3.4) we see that the following lemma is true. (Cf. [5])
Leema. The totally umbilical property of a surface in a Riemannian manifold V^{3} is invariant under any conformal change of metrics.

When F is totally umbilical, then we see easily that

$$
\begin{equation*}
\Omega=(1 / \sigma)\left(\Omega^{0}-N_{0}^{\alpha} \sigma_{\alpha}\right) . \quad\left(\Omega, \Omega^{0}: \text { mean curvatures }\right) \tag{3.5}
\end{equation*}
$$

By virtue of the Lemma, a complete flat totally umbilical surface M in H^{3} is also a totally umbilical surface in E^{3}. So, it is a piece or the whole of an ordinary sphere or plane in E^{3}. This tells us that M in consideration is one of proper spheres, horo-spheres, equidistant surfaces or H-planes in H^{3} where H-plane means a plane in the sense of hyperbolic geometry. Thus, we have reduced our problem to calculate the function λ for each of these surfaces and to pick up the one for which $\lambda= \pm 1$.

Now, without any loss of generality, we may express any one of surfaces in H^{3} described above by an equation of the type

$$
\begin{equation*}
\left(x^{1}\right)^{2}+\left(x^{2}\right)^{2}+\left(x^{3}-c\right)^{2}=R^{2}(R>0) \tag{3.6}
\end{equation*}
$$

the cases $c>R ; c=R ; R>c>-R(c \neq 0)$ and $c=0$ corresponding to a proper sphere, a horo-sphere, an equidistant surface and an H-plane respectively. If we express (3.6) parametrically by

$$
\begin{equation*}
x^{1}=u^{1}, x^{1}=u^{2}, x^{3}=x^{3}\left(u^{1}, u^{2}\right), \tag{3.6}
\end{equation*}
$$

then we see first that

$$
X_{j}^{\alpha}= \begin{cases}\delta_{j}^{2} & \text { for } \alpha=i(=1 \text { or } 2), \tag{3.7}\\ -x^{j} /\left(x^{3}-c\right) & \text { for } \alpha=3 .\end{cases}
$$

As $\sigma=1 / x^{3}$ and $G_{\alpha \beta}^{o}=\delta_{\alpha \beta}$ in our case

$$
\begin{equation*}
g_{i j}^{0}=G_{\alpha \beta}^{0} X_{\imath}^{\alpha} X_{j}^{\beta}=\delta_{i j}+x^{i} x^{j} /\left(x^{3}-c\right)^{2}, \tag{3.8}
\end{equation*}
$$

$$
N_{0}^{\alpha}= \begin{cases}x^{i} / R & \text { for } \quad \alpha=i(=1 \text { or } 2) \tag{3.9}\\ \left(x^{3}-c\right) / R & \text { for } \quad \alpha=3\end{cases}
$$

(We took the normal direction toward outside as the positive direction of the normal.) Then, as

$$
\begin{equation*}
h_{i j}^{0}=-(1 / R) g_{i j}^{0}, \Omega^{0}=-1 / R, \tag{3.10}
\end{equation*}
$$

we see by (3.5) that

$$
\begin{equation*}
\Omega=-c / R, \tag{3.11}
\end{equation*}
$$

i.e. the mean curvature of the surface (3.6) is $-c / R$. Hence $\lambda= \pm 1$ if and only if the surface in consideration is a horo-sphere. Thus we get the following.

Theorem 3. Any complete flat totally umbilical surface in the hyperbolic 3space is a horo-sphere. It is isometric with the Euclidean plane.
N. B. A similar theorem holds good for any complete flat totally umbilical hypersurface M^{n} in H^{n+1} too.

§ 4. Geometrical construction of complete flat surfaces in $\boldsymbol{H}^{\mathbf{3}}$.

In order to study complete flat non-umbilical surface, we shall study here some geometric properties of complete flat surfaces.

For any curve $x^{\alpha}=x^{\alpha}\left(u^{1}(s), u^{2}(s)\right)$ on M defined in some interval of s, we get easily

$$
D_{T} T^{\alpha}=X_{\imath}^{\alpha}\left(\nabla_{T} T^{i}\right)+\left(h_{\imath \jmath} T^{i} T^{\jmath}\right) N^{\alpha},
$$

where $T^{\alpha}=X_{i}^{\alpha} T^{i}$ is the unit tangent vector. Any u^{1}-curve on M is a geodesic of M as it is the image of a straight line by an isometric immersion of E^{2} into H^{3}. So for a u-curve, we have

$$
\begin{equation*}
D_{T} T^{\alpha}=h_{11} N^{\alpha} . \tag{4.1}
\end{equation*}
$$

Now, the Frenet formulas of the u^{1}-curve are of the form

$$
\begin{align*}
& D_{T} T^{\alpha}=\kappa_{1} H \\
& D_{T} H^{\alpha}=-\kappa_{1} T^{\alpha}+\tau_{1} B^{\alpha} \tag{4.2}\\
& D_{T} B^{\alpha}=-\tau_{1} H^{\alpha},
\end{align*}
$$

Comparing (4.1) with (4.2), we see first $H^{\alpha}=N^{\alpha}$ as $\kappa_{1}>0$ by assumption and h_{11} $=\lambda_{1}>0$. So we get

$$
\begin{gather*}
T^{\alpha}=X_{1}^{\alpha}, H^{\alpha}=N^{\alpha}, B^{\alpha}=-X_{2}^{\alpha}, \tag{4.3}\\
\kappa_{1}=h_{11}=\lambda_{1} .
\end{gather*}
$$

On the other hand, we have

$$
\begin{aligned}
D_{T} H^{\alpha} & =D_{X_{1}} N^{\alpha}=-h_{1}^{2} X_{\imath}^{\alpha} \\
& =-h_{11} T^{\alpha}+h_{12} B^{\alpha} .
\end{aligned}
$$

Comparing this with (4.2) ${ }_{2}$, we get

$$
\begin{equation*}
\tau_{1}=h_{12}=0 \tag{4.2}
\end{equation*}
$$

In the same way, we see that the Frenet's frame of any u^{2}-curve on M is given by

$$
\begin{equation*}
\bar{T}=X_{2}, \bar{H}=N, \bar{B}=X_{1} \tag{4.5}
\end{equation*}
$$

and the curvature and torsion are given by

$$
\begin{equation*}
\kappa_{2}=h_{22}=\lambda_{2}, \tau_{2}=-h_{12}=0 \tag{4.6}
\end{equation*}
$$

respectively. Thus, we get the following
Theorem 4. For each complete flat surface M in H^{3} with the principal curvatures λ_{1} and λ_{2}, the curvature and torsion of a family of lines of curvature are given by (4.4) and those of another family of lines of curvature are given by (4.6).

Now the above argument suggests us a method how to construct complete flat surfaces in H^{3}.

Theorem 5. Let λ_{1} and λ_{2} be two positive constants such that their product is equal to 1 . We first draw a curve Γ_{1} with curvature $\kappa_{1}\left(u_{1}, 0\right)=\lambda_{1}$ and torsion $\tau_{1}\left(u^{1}, 0\right)$ $=0$ in H^{3}, the parameter being the arc length. Using the moving Frenet's frame (T, H, B) of Γ_{1}, we draw, for each fixed value u^{1}, a curve $\Gamma_{2}\left(u^{1}\right)$ with curvature $\kappa_{2}\left(u^{1}, u^{2}\right)=\lambda_{2}$ and torsion $\tau_{2}\left(u^{1}, u^{2}\right)=0$ with initial Frenet's frame

$$
\begin{equation*}
\bar{T}\left(u^{1}, 0\right)=-B\left(u^{1}\right), \bar{H}\left(u^{1}, 0\right)=H\left(u^{1}\right), \bar{B}\left(u^{1}, 0\right)=T\left(u^{1}\right), \tag{4.7}
\end{equation*}
$$

the parameter u^{2} being arc length. Then, the locus of all $\Gamma_{2}\left(u^{1}\right)\left(u^{1} \in R\right)$ is a complete flat surface in H^{3}.

Proof. By the latter half of Theorem 1, there exists complete flat surfaces in H^{3} such that (2.7) and (2.12) hold good and any two of them are congruent under a motion of H^{3}. We take any one of them and denote it by $M . M$ can be regarded as an isometric immersion of E^{2} into H^{3} by a map f.

At each point $f\left(u^{1}, u^{2}\right)$ of M, we define an orthonormal frame (T, H, B) by

$$
\begin{equation*}
T\left(u^{1}, u^{2}\right)=X_{1}\left(u^{1}, u^{2}\right), \quad H\left(u^{1}, u^{2}\right)=N\left(u^{1}, u^{2}\right), \quad B\left(u^{1}, u^{2}\right)=-X_{2}\left(u^{1}, u^{2}\right) . \tag{4.8}
\end{equation*}
$$

We fix the value u^{2}, then they constitute the moving Frenet's frame for the u^{1} curve and the curvature and torsion are given by

$$
\begin{equation*}
\kappa_{1}\left(u^{1}, u^{2}\right)=\lambda_{1}, \tau_{1}\left(u^{1}, u^{2}\right)=0 . \tag{4.9}
\end{equation*}
$$

Especially, the moving Frenet frame ($T\left(u^{1}\right), H\left(u^{1}\right), B\left(u^{1}\right)$) of the u^{1}-curve $u^{2}=0$ relates to the Gauss' frame of M on the curve by

$$
\begin{equation*}
T\left(u^{1}\right)=X_{1}\left(u^{1}, 0\right), H\left(u^{1}\right)=N\left(u^{1}, 0\right), \quad B\left(u^{1}\right)=-X_{2}\left(u^{1}, 0\right) . \tag{4.10}
\end{equation*}
$$

In the same way, the moving frame

$$
\begin{equation*}
\bar{T}\left(u^{1}, u^{2}\right)=X_{2}\left(u^{1}, u^{2}\right), \bar{H}\left(u^{1}, u^{2}\right)=N\left(u^{1}, u^{2}\right), \quad \bar{B}\left(u^{1}, u^{2}\right)=\bar{X}\left(u^{1}, u^{2}\right) \tag{4.11}
\end{equation*}
$$

gives, for each fixed value of u^{1}, the moving Frenet's frame of the u^{2}-curve. The curvature and torsion of the latter curve are given by

$$
\begin{equation*}
\kappa_{2}\left(u^{1}, u^{2}\right)=\lambda_{2}, \quad \tau_{2}\left(u^{1}, u^{2}\right)=0 \tag{4.12}
\end{equation*}
$$

By (4.8), (4.10) and (4.11) we get (4.7). This complets the proof.

§ 5. Complete flat non-totally umbilical surfaces.

As a preparation we remark, by (2.1) and (3.1), that

$$
\left\{\begin{array}{l}
\left\{\begin{array}{cc}
i & k
\end{array}\right\}=0, \quad\left\{\begin{array}{cc}
3 & k
\end{array}\right\}=-\sigma \delta_{j k} \tag{5.1}\\
\left\{\begin{array}{ll}
& i \\
3 & k
\end{array}\right\}=-\delta_{k}^{i} \sigma, \quad\left\{\begin{array}{cc}
3 & k
\end{array}\right\}=0 \\
\left\{\begin{array}{ll}
& i \\
3 & 3
\end{array}\right\}=0, \quad\left\{\begin{array}{cc}
3 \\
3 & 3
\end{array}\right\}=-\sigma
\end{array}\right.
$$

hold good, where $\sigma=1 / x^{3}$.
First, let us consider a half line Γ_{1}

$$
\begin{equation*}
x^{1}=t, x^{2}=0, x^{3}=\tan \omega \cdot t \quad(t>0) \tag{5.2}
\end{equation*}
$$

in the plane $x^{2}=0$, where ω is the angle such that $\tan \omega=\sqrt{1-\lambda_{1}^{2}} / \lambda_{1}$ and $0<\omega<\pi / 2$. Then, the line element $d u^{1}$ and the unit tangent vector T are given by

$$
\begin{equation*}
d u^{1}=\frac{d t}{x^{3} \cos \omega} \tag{5.3}
\end{equation*}
$$

$$
\begin{equation*}
T=\left(x^{3} \cos \omega, 0, x^{3} \sin \omega\right) \tag{5.4}
\end{equation*}
$$

As $x^{2}=0$ is an H-plane and each H-plane is a totally geodesic surface in H^{3}, the unit principal normal vector H lies in the H-plane $x^{2}=0$ and so we see that H $=\left(-x^{3} \sin \omega, 0, x^{3} \cos \omega\right)$ and the unit binormal vector is given by $B=\left(0, x^{3}, 0\right)$. Putting (5.1) and (5.3) into

$$
\frac{\delta T^{\alpha}}{d u^{1}}=\frac{d t}{d u^{1}} \frac{\delta T^{\alpha}}{d u^{1}}=\frac{d t}{d u^{1}} \frac{d T^{\alpha}}{d t}+\left\{\begin{array}{cc}
\alpha & \\
\beta & \gamma
\end{array}\right\} T^{\beta} T^{\gamma}
$$

we can easily verify that

$$
\begin{equation*}
\frac{\delta T^{\alpha}}{d u^{1}}=\kappa_{1} H^{\alpha}, \quad \kappa_{1}=\cos \omega=\lambda_{1} \tag{5.5}
\end{equation*}
$$

holds good, where κ_{1} is the curvature of Γ_{1}. In the same way, we can easily get

$$
\begin{equation*}
\frac{\delta H^{\alpha}}{d u^{1}}=-\kappa_{1} T^{\alpha}, \tau_{1}=0 \tag{5.6}
\end{equation*}
$$

where τ_{1} is the torsion of Γ_{1}.
Secondly, let us consider a circle I_{r}^{\prime} defined by

$$
\begin{equation*}
x^{1}=\gamma \cos \theta, x^{2}=\gamma \sin \theta, x^{3}=k(k=\gamma \tan \omega) \tag{5.7}
\end{equation*}
$$

on a plane (a horo-sphere) $x^{3}=k$, where $\gamma>0$ is a constant. Then, we see that its arc length u^{2} and the unit tangent vector \bar{T} are given by

$$
\begin{equation*}
\frac{d u^{2}}{d \theta}=\cot \omega \quad\left(u^{2}=\theta \cot \omega\right), \tag{5.8}
\end{equation*}
$$

$$
\begin{equation*}
\bar{T}=(-k \sin \theta, k \cos \theta, 0) \tag{5.9}
\end{equation*}
$$

We denote the H-plane with center 0 (the origin) and radius γ / λ_{1} by π_{r}, then Γ_{r} lies on π_{r}. So, the unit principal normal vector \bar{H} is tangent to π_{r}, normal to \bar{T} and is given by

$$
\bar{H}=\left(\frac{-k^{2} \cos \theta}{\sqrt{k^{2}+\gamma^{2}}}, \frac{-k^{2} \sin \theta}{\sqrt{k^{2}+\gamma^{2}}}, \frac{k \gamma}{\sqrt{k^{2}+\gamma^{2}}}\right)
$$

In the similar way as the case of Γ_{1}, we can easily verify that

$$
\frac{\delta \bar{T}^{\alpha}}{d u^{2}}=\kappa_{2} \bar{H}^{\alpha}, \quad \kappa_{2}=\frac{1}{\lambda_{1}}=\lambda_{2}
$$

$$
\begin{equation*}
\frac{\delta H^{\alpha}}{d u^{2}}=-\kappa_{2} \bar{T}^{\alpha}, \quad \tau_{2}=0 \tag{5.10}
\end{equation*}
$$

Thirdly, let us consider a half cone S which is a surface of revolution of the half line Γ_{1} around the x^{3}-axis. Then, it is easy to see that (i) all generating lines have same curvature λ_{1} and torsion 0 and are equidistant curves to the x^{3}-axis and (ii) all circles Γ_{r} are same curvature λ_{2} and torsion 0 and are congruent in H^{3}. Thus, S has similar properties as a circular cylinder in E^{3}.

Now, we may regard the curve Γ_{1} defined by (5.2) as the curve Γ_{1} in Theorem 5. Its arc length u^{1} is given by $u^{1}=\operatorname{cosec} \omega \cdot \log t$. The circle Γ_{γ} corresponds to the curve $\Gamma_{2}\left(u^{1}\right)$ in Theorem 5 for $u^{1}=\operatorname{cosec} \omega \cdot \log \gamma$. As $u^{2}=\theta \cot \omega$, we may easily verify that the Frenet's frame ($\bar{T}, \bar{H}, \bar{B}$) of Γ_{γ} at the point $\theta=0$, coincides with $(-B, H, T)$ of Γ_{1} at the same point. Hence, the cone S is nothing but the com-
plete flat surface corresponding to the given constants λ_{1} and λ_{2} assured in Theorem 5. (We may easily verify directly that the Gaussian curvature of S is everywhere equal to zero.) S is an orbit space of a 2 -parametric subgroup of isometries of the form

$$
\begin{aligned}
& \bar{x}^{1}=\rho\left(x^{1} \cos \gamma+x^{2} \sin \gamma\right), \\
& \bar{x}^{2}=\rho\left(-x^{1} \sin \gamma+x^{2} \cos \gamma\right), \\
& \bar{x}^{3}=\rho x^{3}
\end{aligned}
$$

$\rho>0$ and γ being parameters.
Suppose T be an isometry of H^{3}, i.e. a composite of some inversions with respect to some H-planes, then $T(S)$ is again a half cone whose axis is orthogonal to the plane $x^{3}=0$ with vertex on $x^{3}=0$ or $T(S)$ is one half of a cyclide with two vertices on the plane $x^{3}=0$. The latter carries a family of congruent equidistant curves corresponding to the family of generating lines of the half cone S and a family of congruent proper circles corresponding to the family of circles $\Gamma_{\gamma}(0<\gamma$ $<\infty)$ on S. There is no distinction between the half cone S and the half cyclide $T(S)$ in hyperbolic geometry. Each of them is an equidistant surface from a geodesic line in H^{3} and can be regarded as an analogue of a circular cylinder in the sense of hyperbolic geometry. Thus, we get the following

Theorem 6. Any complete flat non-totally umbilical surface in H^{3} is an equidistant surface from a geodesic line in H^{3}.

References

[1] Jörgens, K., Über die Lösungen der Differentıalgleıchung $r t-s^{2}=1$. Math. Ann. 127 (1954), 130-134.
[2] Massey, W.S., Surfaces of Gaussian curvature zero in Euclidean 3-space. Tôhoku Math. J. 14 (1962), 73-79.
[3] Pogorelov, A.W., Contınuous maps of bounded variations. Dokl. Akad. Nauk SSSR 111 (1956), 757-759.
[4] , An extension of Gauss' theorem on the spherical representation of surface of bounded exterior curvature. ibid., 945-947.
[5] SASAKI, S., Some thorems on conformal transformations of Riemannian spaces. Proc. Phys.-Math. Soc. Japan (3) 18 (1936), 572-578.
[6] -, A proof of the fundamental theorem of hypersurfaces in a space-form. Tensor, N.S. 24 (1972), 363-373.
[7] - On complete surfaces with Gaussian curvature zero in 3-sphere. Colloquium Mathematicum 26 (1972), 165-174.

Mathematical Institute,
Tôhoku University.

