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ON THE GROWTH RATE OF COMPOSITIONS

OF ENTIRE FUNCTIONS

BY KIYOSHI NIINO

1. Let f(z) be an entire function, M(r, f) its maximum modulus on \z\-r
and T(r, /) its Nevanlinna characteristic function. Recently Gross and Yang [4]
proved the following:

Suppose that f(z), g(z) are entire functions such that

(1.1) T(ar,g) = o{T(r,f)} as r-^^

for some constant a>l. Then for any non-constant entire function h(z\

T(r,h°g)=o{T(r,h°f)} as r-+oo

In this paper we shall consider the asymptotic behavior of the ratio
log M(r, Aog)/logM(r, h°f) replacing T(r, •) by logM(r, •) in the above condi-
tion (1. 1).

Our results are the following:

THEOREM 1. Let g(z) and f(z) be entire functions such that

(1.2) lim
r, /)

for some constant α>l. Then for any non-constant entire function h(z),

THEOREM 2. Let g(z) and f(z) be entire functions such that

n ox r logM(r, βf) π
(L3) ίSlogAKn/) = f t

Then for any non-constant entire function h(z),

°g)
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THEOREM 3. Let g(z) and f(z) be entire functions satisfying (1. 3). Suppose
that f(z) is of finite order. Then for any non-constant entire function A(z),

log M(r, hog)
Aim i - iΓϊ/ — r — ~^ — v
r̂ oo logM(r,Ao/)

The next Theorem deals with the possibility still left open in Theorem 2.

THEOREM 4. There exist entire function g(z) and f(z) such that

log M(r, (?) Λ , Ϋ,— . log M(r, expog)
hm i - r ~ — jr = 0 # wfl hm - - - -i - r ~ — jr -: - M - -=r .
r^c« log Λf(r, /) r^oo log Af(r, expo/)

2. Lemmas. We start from the following lemmas which will be used in the
proof of our Theorems.

LEMMA 1 ([3, 5, 6, 7]). Let h(z) and f(z) be entire with /(0)=0. Let p satisfy
0<p<l and let c(p) = (l-p)*l4p. Then for r^O,

M(r, h°f)

LEMMA 2 ([1, 3]). Let h(z) and f(z) be entire. Then

M(r, Ao/)^M((l + o(l))M(r, /), A) as

outside a set of r of finite logarithmic measure which depends, as does 0(1),
on f(z).

LEMMA 3. For any transcendental entire function f(z), there exists an entire
function g(z) such that

,0 1 N r log M(r, π(2. 1) hm i - M — jr — 0 and hmi - M jr — — : - ̂  — -^ — .
log Af(r, /) r-oo log Af(r, /)

Pr00/. Let f(z) be a transcendental entire function. Then Hadamard's three-
circle theorem asserts that log M(r, f) is a convex, increasing function of log r.
Hence, by the well-known property of logarithmically convex function,

(2. 2)

where r0>0 and ^(0 is a non-negative, non-decreasing function of t. Since /(z) is
transcendental, we have

log M(r, /) = log M(n, /)+ Γ -̂
Jr0 *

(2.3) \im-r—~dt=-oo and
r-^oo lOg r Jro t

We put

(2.4) 0(r)= sup τ-̂ ^ (rβ>e) when
βlOg lOg ί i-.cc lOg t
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and

(2.5)

Then it follows from (2.3), (2.4) and (2.5) that φ(r) is non-decreasing and

(2.6) Iim0(r)=oo and li
7 ~»oo r -o

Put

Then we obtain

(2.7) l im Ί - , „ =0
r-co logM(r,/)

and

(2 8)

In fact, it follows from (2. 3) and (2. 6) that

r0

which implies (2.7). Next taking (2.4) and (2.5) into account, we get

with a suitable constant K Hence (2. 8) follows from (2. 2), (2. 3) and the above
inequality.

Now, the definition of Φ(r) and (2.6) yield that Φ(r) is increasing and convex
in logr and 0(r)^O(logr) (r->oo). Hence Clunie's theorem [2] asserts that there
exists an entire function g(z) such that

| 2 |=r

and

(2. 9) log M(r, g)-Φ(r) (r-> oo).

and consequently

log Λf (r, expogr) =exp (log M(r, g))

(2. 10)

^ (log M(r, g))2~
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Therefore (2.1) follows from (2. 7), (2.8), (2. 9) and (2.10).

3. Proof of Theorem 1. Choose io>0 such that a>l/ρ>l and assume, for con-
venience, that /(0)=0. The case /(0)^0 can be dealt with as in the proof of
Theorem 1 in [3]. Then

P— logM(αr, g) __ log M(r//o, 0) logΛffc 0)
lim - rj; 77- ̂  lim

log M(r, /) r^ log M(r, /) ££ log M(/>r, /)

log M(r, 0)

and so from the condition (1. 2)

/q ι x r log M(n (?)
(a J-) lim *-. - , x,,/ - 7τ = 0.

r-co log c(p)M(pr, /)

Hence there is r0>0 such that for all r>r0

(3.2) M(r, g)<c(p)M(pr9 f).

log M(r, /?) is an increasing convex function of log r, so that log M(r, h)/\og r is
finally increasing and hence Lemma 1 and (3. 2) yield

log M(r, Λog) log M(M(r, gf), A) log M(r, g)
O/) - \ogM(c(p)M(pr, /), Λ) ~ log c(p}M(pr, /)

for all large r. Therefore Theorem 1 follows from this inequality and (3. 1).

4. Proof of Theorem 2. The condition (1. 3) implies

tλ Λ\ r log M(r, g) π
(41) ί£log(Λ«r,Λ/2Γ0

and so there exists r0>0 such that for all r>r0

(42) M(

It follows from Lemma 2 that there is a set £ of finite logarithmic measure
such that

log M(r, Λo/)^log M((l + 0(l))M(r, /), A) r-> co; rφ £".

Hence using (4. 1) and (4. 2) and noting that log M(r, A)/log r is increasing we
obtain

log M(r, hog) log M(Λf(r, g), A) ^ log M(r, g)
logM(r, AO/) - logM((l+0(l))M(r, /), A) ~ log (l+(?(l))M(r, /)

->0 as r—>oo; r$£^
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and consequently

Hm logMfoAog) =Q

which is the desired result.

5. Proof of Theorem 3. We may suppose, without loss of generality, that
/(0) = 0 (cf. [3]). Let λ be the order of /(z). Take β such that β>λ-l. Since
log M(r, /) is convex in log r, we get

(5.1) log M(r, /)~log M(r-r~^ /) (r->oo)

(cf. [3]). Hence (1. 3) and (5.1) imply

,r 2] Γ log M(r, g) 0
\° 6} Πm " j / Z(ΪJ.Λ^ 71 /Γ/.. .._Λ ^ \ / Λ \ ^*

We put p=(r—r-t)lr. Then we have c(»>r-2(:l+/J)/4. Hence it follows from Lemma 1
and (5.2) that

log M(r, hog) log M(M(r, g\ H)
logM(r, Λo/) ~ log M(r-*<1+»M(r-r-i>, /)/4,

log M(r, 0)
- log

from which Theorem 3 follows.

0 (r->oo),

6. Proof of Pheorem 4. Let /(z) be a transcendental entire function such that

* log M(r, expo/) '

The existence of such a function /(z) was shown by Clunie [3], For the entire
function /(z), from Lemma 3, there exists an entire function g(z) satisfying (2. 1).
The entire functions /(z) and g(z) are our desired functions. In fact, (2. 1) and
(6. 1) imply

-— log M(r, expog) „ log M(r, expog) — , log M(r, /) _
™ log M(r, expo/) ̂ ^ log M(n /) J55 log M(r, expo/)

Thus the proof of Theorem 4 is complete.
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