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I. In 1932 Paley [5] conjectured that
an entire function g(z) of order λ satisfies

<!\
21'Hm logMQ-.g) ^ I s i n π λ

ϊ=^ T(r,g) ~

This conjecture was proved by Valiron [7] for λ<l/2. The first complete proof
was given by Govorov [2]. A little later Petrenko [6] proved this conjecture for
meromorphic functions of finite lower order. And D. F. Shea (cf. [1]) gave an im-
provement of Petrenko's theorem.

The purpose of this paper is to extend Shea's theorem to n-valued algebroid
functions of finite lower order. Let f(z) be an ^-valued algebroid function, fj(z) the
-th determination of f(z) and Ί\r, /) the characteristic function of f(z). We set

) = max max

Λf(r, /)=Λf(r, oo, /)=max max |
|«|=r

and

We shall prove the following extension of Shea's theorem :

THEOREM 1. Let f(z) be an n-valued transcendental algebroid function of finite
lower order μ and J(oo) = J the Valiron deficiency of f(z) at oo. Then we have

if μ^l/2 or μ<l/2 and sin (πμ/2)^(J/2)1/2, and
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β(°°t f)^nπμ{Δ cot πy/ + tan (πμ/2)}

if μ<l/2 and sin (πμ/2)<(J/2)1/2.

As an immediate consequence of Theorem 1, we have the following extension
of Petrenko's theorem:

THEOREM 2. If f(z) is an n-valued transcendental algebroid function of finite
lower order μ, then for arbitrary complex a we have

nπμ
sin πμ

nπμ H)
Finally we shall obtain

THEOREM 3. For every fixed complex number a, every fixed numbers μ and λ
such that l/2<μ^λ^oo and every fixed integer n such that 2^n^5, there is an n-
valued algebroid function fμ, λ, a(z) of lower order μ and order λ such that

2. Preliminaries. Let f(z) be an ^-valued transcendental algebroid function
defined by an irreducible equation

where A0, " ,An are entire functions without common zeros. Let fj(z) be the
determination of f(z). We put

\, μ(r, A) = log A(rei9)dθ

and

Then Valiron [8, p. 21, 22] showed that

(2.1) Ί\r,f)=μ(r,A)+0(ΐ)

and

(2.2)

Since
;=ι

A(z}
+0(1).

we have from (2.2)
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(2. 3) log M(r, /) = max log /*(*)^log M/V, -̂ -
|«|=r \ /l O

Therefore is follows from (2.1) and (2. 3) that

(2.4)

3. Proof of Theorem 1. Now we shall give a proof of Theorem 1 along Fuch's
idea [1, pp. 23-32], borrowing his several estimates. In the first place we start
from the following lemma, which is derived from Petrenko's formula;

LEMMA. ([1, p. 26]) Let g(z) be a meromorphic function and {£/} its poles. Then
we have, for γ>\ and 2S<u<R/2,

urrr

/ r(u'

+ Σ log

dr

where K is an absolute constant.

In the sequel K denote an absolute constant, not always the same at each
occurence.

Applying Lemma to meromorphic functions Aj(z)/A0(z) and using T(r,AjlA^
^nμ(r, A)+O(Ϊ), we have for l^ j^n

log
AQ(u)

- — \ ———- dr\ log
Aj(reiθ)

where b3 are zeros of A0(z). We increase the right-hand side by replacing

' A /2*0-,.

and take the maximum over j in the left-hand side. Then we obtain

A(u)
log

By applying this formula to A(eiaz)IA0(eiaz) (a: real) we see that log \A(u)/A0(u)\
may be replaced by log M(u, A/A0):
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R urrr-lm(r, AIAQ) Ί

s (u>+rrγ dr
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(3.1)

We now choose γ>max (l,2μ). By the reasoning [1, pp. 27-29] we deduce
from (3.1) that

R/2

25

(3.2)

2S

, -
Λ

Note also that we have

A \ 1 r 2 « . +

(3.3)

= «Xw, A)-N(u,

and by the definition of Valiron deficiency

(3.4) N(U, ~\>(l-Δ(oo

By our choice of γ, πμlγ<π/2, so that

dθ

for

- - -
2γ / γ γ

Therefore it follows from (3. 2), (3. 3) and (3. 4) that

pfl/2S R/2 /

u-μ~l log Mi«,

f πu πu ] ΪR/2

(3. 5) < nπμ I (J(oo) -f e) cot — + tan y- | \ u~μ~lμ(u, A)du
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+γKn{S-μμ(2S, A)+R-μμ(2R, A)}.

Hence applying to (3. 5) the reasoning of [1, pp. 30-32] and taking (2.4) into account,
we can see that the statement of Theorem 1 is true.

Thus the proof of Theorem 1 is complete.

4. Proof of Theorem 3. Let hμ,λ(z) be an entire function of order λ and of
lower order μ defined in the following manner:

hμ,λ(z) is the Mittag-Leffler function

K)
if 2=μ>l/2, is the entire function Eμ,λ(z) constructed by Petrenko [6, pp. 409-412]
if l/2<μ<λ^oo, and is expexp z if μ=λ=oo. Then it is known that

(4.1) β(°o,hμ,J = πμ

(cf. [6, pp. 408-413]).

For a moment we assume that an equation

(4.2) fn+hpt2(z)fn'1 + l=0

is irreducible. Let fμ, λ(z) be an entire algebroid function defined by (4. 2). Then
we have

=μ(r, A)=^~ log max {1, \hμ,λ(re"}\}dθ

(4.3)

Hence the order of fμ,2(z) is λ and its lower order is μ. We denote by fj(z) the
'-th determination of fμ,λ(z) and put /*(z)=max{|//z)|: l^j^n}. Since hμtλ(z)
= — Σ/X*)> we have \hμt2(z)\^nf*(z) and consequently

(4. 4) log M(r, hμ, a)^log M(r, fμ, a)+log n.

Therefore it follows from (4. 1), (4. 3) and (4. 4) that

and consequently

j8(°°,//.,i)

On the other hand Theorem 2 implies β(oo,fμtλ)^nπμ. Thus we obtain
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which is the desired.
For aφoo, we consider the following algebroid function:

Then it is clearly deduced that

Now, in order to complete our proof of Theorem 3 we have to show that for
n=2 to 5 the equations (4.2) are irreducible. We first have

LEMMA. A function fμ, λ(z) satisfying the equation (4. 2) is neither single-valued
nor nΛ-valued.

Proof. Suppose, to the contrary, that a function fμ, λ(z) satisfying (4. 2) is single-
valued or ^-1-valued. Then the equation (4. 2) is reducible and we have the follow-
ing factorization:

where g and a} ( j = I , •• ,n—2) are suitable entire functions. By factorization theorm
we have

hμ, λ(z) = e~ <«-ι>» w (enaw + ( _ i)nj
(4.5)

— g0Cz) _|_ ( _ ;Πng-(w-l)0GOβ

Let G(z) be the function in the right-hand side. If g(z) is transcendental, then G(z)
is of infinite order and of regular growth. Hence by the definition of hμ, λ we have
hμ tjl(2)=exp exp z, which has no zero. However G(z) has zeros (cf. [4, p. 103]),
which is a contradiction. If g(z) is a polynomial, then G(z) is of finite order and
of regular growth. Hence hμ,λ(z) is the Mittag-Leffler function Eλ(z\ which is
bounded for π/2λ< \argz\<π (cf. [3, p. 19]). However G(z) is unbounded there. In
fact we put g(z)=αpz

p+ ••• (αpφty and αp=\αp\e**,z=reiθ. Then we have for every
fixed θ satisfying c

Re g(z) = \αp\r*cos(pθ+ψ){l+o(l)} (r->co).

Therefore for every fixed θ satisfying cos(pθ+ψ)>0 we have

|G(2)|^£ReίK2;)— e-<n-1:>*eo™-*oo (r->oo)

and for every fixed θ satisfying cos(pθ+ψ)<0

\G(z)\ ^e-^n-1)ne9^-eReg^^oo (r->oo).

Thus we have a contradiction. Q.E.D.
We continue the proof of Theorem 3. It follows from this Lemma that for

n=2, 3 the equations (4.2) are irreducible.
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Assume that for n=k the equation (4.2) is reducible. Then by Lemma we
have that

where a, b and g are suitable entire functions. It follows from this identity that

*°) and hμ,λ=a+b.

Since the function l+^~2flf(0) has simple zeros if g(2)^const. (cf. [4, p. 103]), we ob-
tain g(z)= const., and consequently hμ,λ= const, which is a contradiction.

Next assume that for n=5 the equation (4.2) is reducible. Then by Lemma
we have

where a, bj and g are suitable entire functions. This identity yields that

=0 and hμ,ι

Hence the function a(z) has no zero. Since a(z) is single- valued, we have a(z)=eHW

with a suitable entire function H(z). Therefore it follows that

) — 0,

that is,

which is unable if 2H(z)-g(z}^ const, or 30(z)—fl(z)£ const. Hence we have H(z)
Ξconst, g(2)=const and consequently hμ,λ(z)= const, which is a contradiction.

Thus the proof of Theorem 3 is complete.
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