NIINO, K.
KODAI MATH. SEM. REP.
25 (1973), 385-391

ON THE GROWTH OF ALGEBROID FUNCTIONS OF FINITE LOWER ORDER

By Kiyoshi Nino

Dedicated to Professor Yukinari Tôki on his 60th birthday

1. In 1932 Paley [5] conjectured that
an entire function $g(z)$ of order λ satisfies

$$
\frac{\lim _{r \rightarrow \infty}}{} \frac{\log M(r, g)}{T(r, g)} \leqq\left\{\begin{array}{cc}
\frac{\pi \lambda}{\sin \pi \lambda} & \left(\lambda \leqq \frac{1}{2}\right) \\
\pi \lambda & \left(\lambda>\frac{1}{2}\right) .
\end{array}\right.
$$

This conjecture was proved by Valiron [7] for $\lambda<1 / 2$. The first complete proof was given by Govorov [2]. A little later Petrenko [6] proved this conjecture for meromorphic functions of finite lower order. And D. F. Shea (cf. [1]) gave an improvement of Petrenko's theorem.

The purpose of this paper is to extend Shea's theorem to n-valued algebroid functions of finite lower order. Let $f(z)$ be an n-valued algebroid function, $f_{j}(z)$ the j-th determination of $f(z)$ and $T(r, f)$ the characteristic function of $f(z)$. We set

$$
\begin{aligned}
& M(r, a, f)=\max _{|z|=r} \max _{1 \leq \jmath \leq n} \frac{1}{\left|f_{j}(z)-a\right|}, \quad a \neq \infty, \\
& M(r, f)=M(r, \infty, f)=\max _{|z|=r} \max _{1 \leq \leqq \leq n}\left|f_{j}(z)\right|
\end{aligned}
$$

and

$$
\beta(a, f)=\lim _{r \rightarrow \infty} \frac{\log M(r, a, f)}{T(r, f)}
$$

We shall prove the following extension of Shea's theorem:
Theorem 1. Let $f(z)$ be an n-valued transcendental algebroid function of finite lower order μ and $\Delta(\infty)=\Delta$ the Valiron deficiency of $f(z)$ at ∞. Then we have

$$
\beta(\infty, f) \leqq n \pi \mu\{\Delta(2-\Delta)\}^{1 / 2}
$$

if $\mu \geqq 1 / 2$ or $\mu<1 / 2$ and $\sin (\pi \mu / 2) \geqq(4 / 2)^{1 / 2}$, and
Received October 31, 1972.

$$
\beta(\infty, f) \leqq n \pi \mu\{\Delta \cot \pi \mu+\tan (\pi \mu / 2)\}
$$

if $\mu<1 / 2$ and $\sin (\pi \mu / 2)<(4 / 2)^{1 / 2}$.
As an immediate consequence of Theorem 1, we have the following extension of Petrenko's theorem :

Theorem 2. If $f(z)$ is an n-valued transcendental algebroid function of finite lower order μ, then for arbitrary complex a we have

$$
\beta(a, f) \leqq\left\{\begin{aligned}
\frac{n \pi \mu}{\sin \pi \mu} & \left(\mu \leqq \frac{1}{2}\right) \\
n \pi \mu & \left(\mu>\frac{1}{2}\right) .
\end{aligned}\right.
$$

Finally we shall obtain
Theorem 3. For every fixed complex number a, every fixed numbers μ and λ such that $1 / 2<\mu \leqq \lambda \leqq \infty$ and every fixed integer n such that $2 \leqq n \leqq 5$, there is an n valued algebroid function $f_{\mu, 2, a}(z)$ of lower order μ and order λ such that

$$
\beta\left(a, f_{\mu, \lambda, a}\right)=n \pi \mu .
$$

2. Preliminaries. Let $f(z)$ be an n-valued transcendental algebroid function defined by an irreducible equation

$$
A_{0}(z) f^{n}+A_{1}(z) f^{n-1}+\cdots+A_{n-1}(z) f+A_{n}(z)=0
$$

where A_{0}, \cdots, A_{n} are entire functions without common zeros. Let $f_{j}(z)$ be the j-th determination of $f(z)$. We put

$$
A(z)=\max _{0 \leq j \leq n}\left|A_{j}(z)\right|, \quad \mu(r, A)=\frac{1}{2 n \pi} \int_{0}^{2 \pi} \log A\left(r e^{i \theta}\right) d \theta
$$

and

$$
f^{*}(z)=\max _{1 \leq J \leq n}\left|f_{j}(z)\right|
$$

Then Valiron [8, p. 21, 22] showed that

$$
\begin{equation*}
T(r, f)=\mu(r, A)+O(1) \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{j=1}^{n} \log \left|f_{j}(z)\right| \leqq \log \left|\frac{A(z)}{A_{0}(z)}\right|+O(1) \tag{2.2}
\end{equation*}
$$

Since

$$
\stackrel{+}{\log } f^{*}(z) \leqq \sum_{j=1}^{n} \log ^{+}\left|f_{j}(z)\right|
$$

we have from (2.2)

$$
\begin{equation*}
\stackrel{+}{\log } M(r, f)=\max _{|z|=r} \stackrel{+}{\log } f^{*}(z) \leqq \log M\left(r, \frac{A}{A_{0}}\right)+O(1) \tag{2.3}
\end{equation*}
$$

Therefore is follows from (2.1) and (2.3) that
3. Proof of Theorem 1. Now we shall give a proof of Theorem 1 along Fuch's idea [1, pp. 23-32], borrowing his several estimates. In the first place we start from the following lemma, which is derived from Petrenko's formula;

Lemma. ([1, p. 26]) Let $g(z)$ be a meromorphic function and $\left\{b_{j}\right\}$ its poles. Then we have, for $\gamma>1$ and $2 S<u<R / 2$,

$$
\begin{aligned}
\log |g(u)|< & \frac{r^{2}}{2 \pi} \int_{S}^{R} \frac{u^{r} r^{r-1}}{\left(u^{\gamma}+r^{\gamma}\right)^{2}} d r \int_{-\pi / \gamma}^{\pi / r} \log \left|g\left(r e^{i \theta}\right)\right| d \theta \\
& +\sum_{S \leqq\left|b_{j}\right| \leqq R} \log \frac{\left|b_{j}\right|^{r}+u^{\gamma}}{\left.| | b_{j}\right|^{\gamma}-u^{\gamma} \mid}+\gamma K\left\{\left(\frac{S}{u}\right)^{\gamma} T(2 S, g)+\left(\frac{u}{R}\right)^{\gamma} T(R, g)\right\}
\end{aligned}
$$

where K is an absolute constant.
In the sequel K denote an absolute constant, not always the same at each occurence.

Applying Lemma to meromorphic functions $A_{j}(z) / A_{0}(z)$ and using $T\left(r, A_{j} / A_{0}\right)$ $\leqq n \mu(r, A)+O(1)$, we have for $1 \leqq j \leqq n$

$$
\begin{aligned}
\log \left|\frac{A_{j}(u)}{A_{0}(u)}\right|< & \frac{\gamma^{2}}{2 \pi} \int_{S}^{R} \frac{u^{\gamma} r^{r-1}}{\left(u^{\gamma}+r^{\gamma}\right)^{2}} d r \int_{-\pi / r}^{\pi / r} \log \left|\frac{A_{j}\left(r e^{i \theta}\right)}{A_{0}\left(r e^{i \theta}\right)}\right| d \theta \\
& +\sum_{S \leqq\left|b_{j}\right| \leqq R} \log \frac{\left|b_{j}\right|^{\gamma}+u^{\gamma}}{\left.| | b_{j}\right|^{\gamma}-u^{\gamma} \mid}+\gamma K n\left\{\left(\frac{S}{u}\right)^{r} \mu(2 S, A)+\left(\frac{u}{R}\right)^{\gamma} \mu(R, A)\right\}
\end{aligned}
$$

where b_{\jmath} are zeros of $A_{0}(z)$. We increase the right-hand side by replacing

$$
\frac{1}{2 \pi} \int_{-\pi / r}^{\pi / r} \log \left|\frac{A_{j}\left(r e^{i \theta}\right)}{A_{0}\left(r e^{i \theta}\right)}\right| d \theta \quad \text { by } \quad m\left(r, \frac{A}{A_{0}}\right)
$$

and take the maximum over j in the left-hand side. Then we obtain

$$
\begin{aligned}
\log \left|\frac{A(u)}{A_{0}} \frac{u}{(u)}\right|< & <\gamma^{2} \int_{S}^{R} \frac{u^{r} r^{r-1} m\left(r, A / A_{0}\right)}{\left(u^{\gamma}+r^{r}\right)^{2}} d r \\
& +\sum_{S \leqq\left|b_{j}\right| \leqq R} \log \frac{\left|b_{j}\right|^{r}+u^{r}}{\left.| | b_{j}\right|^{\gamma}-u^{r} \mid}+\gamma K n\left\{\left(\frac{S}{u}\right)^{r} \mu(2 S, A)+\left(\frac{u}{R}\right)^{r} \mu(R, A)\right\}
\end{aligned}
$$

By applying this formula to $A\left(e^{i a} z\right) / A_{0}\left(e^{i a} z\right)$ (a : real) we see that $\log \left|A(u) / A_{0}(u)\right|$ may be replaced by $\log M\left(u, A / A_{0}\right)$:
$\log M\left(u, \frac{A}{A_{0}}\right)<r^{2} \int_{S}^{R} \frac{u^{r} r^{r-1} m\left(r, A / A_{0}\right)}{\left(u^{\gamma}+r^{r}\right)^{2}} d r$
(3.1)

$$
+\sum_{S \leqq\left|b_{j}\right| \leqq R} \log \frac{\left|b_{j}\right|^{\gamma}+u^{\gamma}}{\left.| | b_{j}\right|^{\gamma}-u^{\gamma} \mid}+\gamma K n\left\{\left(\frac{S}{u}\right)^{\gamma} \mu(2 S, A)+\left(\frac{u}{R}\right)^{\gamma} \mu(R, A)\right\} .
$$

We now choose $\gamma>\max (1,2 \mu)$. By the reasoning [1, pp. 27-29] we deduce from (3.1) that

$$
\begin{align*}
& \int_{2 S}^{R / 2} u^{\mu_{-1}} \log M\left(u, \frac{A}{A_{0}}\right) d u \\
< & \frac{\pi \mu}{\sin (\pi \mu / \gamma)} \int_{2 S}^{R / 2} u^{-\mu-1} m\left(u, \frac{A}{A_{0}}\right) d u \tag{3.2}\\
& +\pi \mu \tan \frac{\pi \mu}{2 \gamma} \int_{2 S}^{R / 2} u^{-\mu-1} N\left(u, \frac{1}{A_{0}}\right) d u \\
& +\gamma K n\left\{S^{-\mu} \mu(2 S, A)+R^{-\mu} \mu(2 R, A)\right\}
\end{align*}
$$

Note also that we have

$$
m\left(u, \frac{A}{A_{0}}\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|\frac{A\left(u e^{i \theta}\right)}{A_{0}\left(u e^{i \theta}\right)}\right| d \theta
$$

$$
\begin{align*}
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|\frac{A\left(u e^{i \theta}\right)}{A_{0}\left(u e^{i \theta}\right)}\right| d \theta \tag{3.3}\\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|A\left(u e^{i \theta}\right)\right| d \theta-\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|A_{0}\left(u e^{i \theta}\right)\right| d \theta \\
& =n \mu(n, A)-N\left(u, 1 / A_{0}\right)+O(1)
\end{align*}
$$

and by the definition of Valiron deficiency

$$
\begin{equation*}
N\left(u, \frac{1}{A_{0}}\right)>(1-\Delta(\infty)-\varepsilon) n \mu(u, A) \quad \text { for } \quad u>S_{0}(\varepsilon) \tag{3.4}
\end{equation*}
$$

By our choice of $\gamma, \pi \mu / \gamma<\pi / 2$, so that

$$
\tan \frac{\pi \mu}{2 \gamma}-1 / \sin \frac{\pi \mu}{\gamma}=-\cot \frac{\pi \mu}{\gamma}<0
$$

Therefore it follows from (3.2), (3.3) and (3.4) that

$$
\int_{2 S}^{R / 2} u^{\mu_{-1}} \log M\left(u, \frac{A}{A_{0}}\right) d u
$$

$$
\begin{equation*}
<n \pi \mu\left\{(\Delta(\infty)+\varepsilon) \cot \frac{\pi \mu}{\gamma}+\tan \frac{\pi \mu}{2 \gamma}\right\} \int_{2 S}^{R / 2} u^{-\mu-1} \mu(u, A) d u \tag{3.5}
\end{equation*}
$$

$$
+\gamma K n\left\{S^{-\mu} \mu(2 S, A)+R^{-\mu} \mu(2 R, A)\right\} .
$$

Hence applying to (3.5) the reasoning of [1, pp. 30-32] and taking (2.4) into account, we can see that the statement of Theorem 1 is true.

Thus the proof of Theorem 1 is complete.
4. Proof of Theorem 3. Let $h_{\mu, 2}(z)$ be an entire function of order λ and of lower order μ defined in the following manner:
$h_{\mu, \lambda}(z)$ is the Mittag-Leffler function

$$
E_{\lambda}(z)=\sum_{n=0}^{\infty} \frac{z^{n}}{\Gamma(n / \lambda+1)} \quad\left(\lambda>\frac{1}{2}\right)
$$

if $\lambda=\mu>1 / 2$, is the entire function $E_{\mu, \lambda}(z)$ constructed by Petrenko [6, pp. 409-412] if $1 / 2<\mu<\lambda \leqq \infty$, and is $\exp \exp z$ if $\mu=\lambda=\infty$. Then it is known that

$$
\begin{equation*}
\beta\left(\infty, h_{\mu, 2}\right)=\pi \mu \tag{4.1}
\end{equation*}
$$

(cf. [6, pp. 408-413]).
For a moment we assume that an equation

$$
\begin{equation*}
f^{n}+h_{\mu, \lambda}(z) f^{n-1}+1=0 \tag{4.2}
\end{equation*}
$$

is irreducible. Let $f_{\mu, \lambda}(z)$ be an entire algebroid function defined by (4.2). Then we have

$$
\begin{align*}
T\left(r, f_{\mu, \lambda}\right)+O(1) & =\mu(r, A)=\frac{1}{2 n \pi} \int_{0}^{2 \pi} \log \max \left\{1,\left|h_{\mu, \lambda}\left(r e^{i \theta}\right)\right|\right\} d \theta \tag{4.3}\\
& =\frac{1}{n} T\left(r, h_{\mu, \lambda}\right) .
\end{align*}
$$

Hence the order of $f_{\mu, \lambda}(z)$ is λ and its lower order is μ. We denote by $f_{j}(z)$ the j-th determination of $f_{\mu, \lambda}(z)$ and put $f^{*}(z)=\max \left\{\left|f_{j}(z)\right|: 1 \leqq j \leqq n\right\}$. Since $h_{\mu, \lambda}(z)$ $=-\sum f_{j}(z)$, we have $\left|h_{\mu, \lambda}(z)\right| \leqq n f^{*}(z)$ and consequently

$$
\begin{equation*}
\stackrel{+}{\log } M\left(r, h_{\mu, \lambda}\right) \leqq \stackrel{+}{\log } M\left(r, f_{\mu, \lambda}\right)+\log n \tag{4.4}
\end{equation*}
$$

Therefore it follows from (4.1), (4.3) and (4.4) that

$$
\pi \mu=\lim _{r \rightarrow \infty} \frac{\log ^{+} M\left(r, h_{\mu, \lambda}\right)}{T\left(r, h_{\mu, \lambda}\right)} \leqq \lim _{r \rightarrow \infty} \frac{\log ^{+} M\left(r, f_{\mu, \lambda}\right)}{n T\left(r, f_{\mu, 2}\right)}=\frac{1}{n} \beta\left(\infty, f_{\mu, \lambda}\right)
$$

and consequently

$$
\beta\left(\infty, f_{\mu, \lambda}\right) \geqq n \pi \mu
$$

On the other hand Theorem 2 implies $\beta\left(\infty, f_{\mu, \lambda}\right) \leqq n \pi \mu$. Thus we obtain

$$
\beta\left(\infty, f_{\mu, \lambda}\right)=n \pi \mu,
$$

which is the desired.
For $a \neq \infty$, we consider the following algebroid function:

$$
f_{\mu, \lambda, a}(z)=\frac{1}{f_{\mu, \lambda}(z)}+a .
$$

Then it is clearly deduced that

$$
\beta\left(a, f_{\mu, 2, a}\right)=n \pi \mu .
$$

Now, in order to complete our proof of Theorem 3 we have to show that for $n=2$ to 5 the equations (4.2) are irreducible. We first have

Lemma. A function $f_{\mu, \lambda}(z)$ satisfying the equation (4.2) is neither single-valued nor n-1-valued.

Proof. Suppose, to the contrary, that a function $f_{\mu, \lambda}(z)$ satisfying (4.2) is singlevalued or n - 1 -valued. Then the equation (4.2) is reducible and we have the following factorization:

$$
f^{n}+h_{\mu, 2} f^{n-1}+1=\left(f+e^{g}\right)\left(f^{n-1}+a_{n-2} f^{n-2}+\cdots+a_{1} f+e^{-g}\right),
$$

where g and $a_{j}(j=1, \cdots, n-2)$ are suitable entire functions. By factorization theorm we have

$$
\begin{align*}
h_{\mu, \lambda}(z) & =e^{-(n-1) \theta(z)}\left\{e^{n g(z)}+(-1)^{n}\right\} \\
& =e^{g(z)}+(-1)^{n} e^{-(n-1) \theta(z)} . \tag{4.5}
\end{align*}
$$

Let $G(z)$ be the function in the right-hand side. If $g(z)$ is transcendental, then $G(z)$ is of infinite order and of regular growth. Hence by the definition of $h_{\mu, \lambda}$ we have $h_{\mu, 2}(z)=\exp \exp z$, which has no zero. However $G(z)$ has zeros (cf. [4, p. 103]), which is a contradiction. If $g(z)$ is a polynomial, then $G(z)$ is of finite order and of regular growth. Hence $h_{\mu, \lambda}(z)$ is the Mittag-Leffler function $E_{\lambda}(z)$, which is bounded for $\pi / 2 \lambda<|\arg z|<\pi$ (cf. [3, p. 19]). However $G(z)$ is unbounded there. In fact we put $g(z)=a_{p} z^{p}+\cdots\left(a_{p} \neq 0\right)$ and $a_{p}=\left|a_{p}\right| e^{\imath \phi}, z=r e^{i \theta}$. Then we have for every fixed θ satisfying $\cos (p \theta+\psi) \neq 0$

$$
\operatorname{Re} g(z)=\left|a_{p}\right| r^{p} \cos (p \theta+\psi)\{1+o(1)\} \quad(r \rightarrow \infty)
$$

Therefore for every fixed θ satisfying $\cos (p \theta+\psi)>0$ we have

$$
|G(z)| \geqq e^{\operatorname{Reg}(z)}-e^{-(n-1) \operatorname{Reg}(z)} \rightarrow \infty \quad(r \rightarrow \infty)
$$

and for every fixed θ satisfying $\cos (p \theta+\psi)<0$

$$
|G(z)| \geqq e^{-(n-1) \operatorname{Reg}(z)}-e^{\operatorname{Reg}(z)} \rightarrow \infty \quad(r \rightarrow \infty) .
$$

Thus we have a contradiction. Q.E.D.
We continue the proof of Theorem 3. It follows from this Lemma that for $n=2,3$ the equations (4.2) are irreducible.

Assume that for $n=4$ the equation (4.2) is reducible. Then by Lemma we have that

$$
f^{4}+h_{\mu, 2} f^{3}+1=\left(f^{2}+a f+e^{g}\right)\left(f^{2}+b f+e^{-g}\right)
$$

where a, b and g are suitable entire functions. It follows from this identity that

$$
b=-a e^{-2 g}, a^{2}=e^{3 g}\left(1+e^{-2 g}\right) \text { and } h_{\mu, \lambda}=a+b .
$$

Since the function $1+e^{-2 g(z)}$ has simple zeros if $g(z) \not \equiv$ const. (cf. [4, p. 103]), we obtain $g(z) \equiv$ const., and consequently $h_{\mu, \lambda} \equiv$ const., which is a contradiction.

Next assume that for $n=5$ the equation (4.2) is reducible. Then by Lemma we have

$$
f^{5}+h_{\mu, 2} f^{4}+1=\left(f^{2}+a f+e^{g}\right)\left(f^{3}+b_{2} f^{2}+b_{1} f+e^{-g}\right),
$$

where a, b_{j} and g are suitable entire functions. This identity yields that

$$
b_{1}=-a e^{-2 g}, b_{2}=a^{2} e^{-3 g}-e^{-2 g}, a^{3}-2 e^{g} a+e^{4 g}=0 \quad \text { and } \quad h_{\mu, \lambda}=a+b_{2} .
$$

Hence the function $a(z)$ has no zero. Since $a(z)$ is single-valued, we have $a(z)=e^{H(z)}$ with a suitable entire function $H(z)$. Therefore it follows that
that is,

$$
e^{3 H(z)}-2 e^{H(z)} e^{g(z)}+e^{4 g(z)}=0,
$$

$$
e^{2 H(z)-g(z)}+e^{3 g(z)-H(z)}=2
$$

which is unable if $2 H(z)-g(z) \not \equiv$ const. or $3 g(z)-H(z) \not \equiv$ const.. Hence we have $H(z)$ \equiv const., $g(z) \equiv$ const. and consequently $h_{\mu, \lambda}(z) \equiv$ const., which is a contradiction.

Thus the proof of Theorem 3 is complete.

References

[1] Fuchs, W. H. J., Topics in Nevanlinna theory. Proceeding of the NRL Conference on Classical Function Theory (1970), 1-32.
[2] Govolov, N. V., Paley's hypothesis. Functional Analysis and its Application 3 (1969), 115-118.
[3] Hayman, W. K., Meromorphic functions. Oxford Math. Monogr. (1964).
[4] Ozawa, M., On ultrahyperelliptic surfaces. Kōdai Math. Sem. Rep. 17 (1965), 103-108.
[5] Paley, R.E.A.C., A note on integral functions. Proc. Cambridge Philos. Soc. 28 (1932), 262-265.
[6] Petrenko, V.P., Growth of meromorphic functions of finite lower order. Math. USSR-Izvestija 3 (1969), 391-432.
[7] Valiron, G., Sur le minımum du module des fonctions entières d'ordre inférieur à un. Mathematica 11 (1935), 264-269.
[8] Valiron, G., Sur la dérivée des fonctions algébroïdes. Bull. Soc. Math. France 59 (1931), 17-39.

Faculty of Engineering,
Yokohama National University.

