MAEDA, M.
KODAI MATH. SEM. REP
25 (1973), 377-378

A NOTE ON NONCOMPACT RIEMANNIAN MANIFOLDS

By Masao Maeda

Let M be a complete connected Riemannian manifold. Every geodesic is always parameterized with respect to arclength. A geodesic $c:[0, \infty) \rightarrow M(c:(-\infty, \infty) \rightarrow M)$ is called a ray (a line, respectively), if any segment of c is minimal. d denotes the metric distence in M. A subset A of M is called totally convex, if for any $p, q \in A$, any geodesic segment joining p and q is contained in A. A point p of M is called a simple point, if $\{p\}$ is a totally convex set. S_{M} denotes the set of all simple points of M. A point p of M is called a pole, if the map $\exp _{p}: T_{p}(M) \rightarrow M$ has maximal rank everywhere. P_{M} denotes the set of all poles of M. If M is simply connected and $p \in P_{M}$, then all geodesics $c:[0, \infty) \rightarrow M$ starting from p are rays. For a point p of M, let $C(p)$ and $Q(p)$ be the cut locus and the first conjugate locus of M, respectively. Then, the function $d_{M}: M \rightarrow R \cup\{\infty\}$ defined by

$$
d_{M}(p):= \begin{cases}\inf _{q \in C(p)} d(p, q) & (\text { when } C(p) \neq \phi), \\ \infty & (\text { when } C(p)=\phi)\end{cases}
$$

is continuous. Hence, let \tilde{M} be the universal covering manifold of M and π be its projection, then by the fact

$$
P_{M}=\pi\left(P_{\widetilde{M}}\right)=\pi\left(d_{\widetilde{M}^{-1}}(\infty)\right)
$$

P_{M} is a closed subset of M.
Now, assuming furthermore that M is noncompact and of positive sectional curvature, it it is proved in [2] that there exists a point $p \in M$ such that $C(p) \cap Q(p)$ $\neq \phi$. This result extends to some manifolds of nonnegative sectional curvature. If M is noncompact and of nonnegative sectional curvature, it is proved in [1] that M is homeomorphic to an n-dimentional Euclidean space E^{n} if and only if $S_{M} \neq \phi$.

Theorem. Let M be a complete connected noncompact Riemannian manifold with nonnegative sectional curvature and not flat. If $S_{M} \neq \phi$, then there exists a point $q \in M$ such that $C(q) \cap Q(q) \neq \phi$.

Proof. We distinguish two cases

1) $P_{M}=M$. Let $c:(-\infty, \infty) \rightarrow M$ be a geodesic and $\left\{s_{i}\right\}$ be a sequence such that $s_{i} \rightarrow-\infty$ as $i \rightarrow \infty$. For each $i, c \mid\left[s_{\imath}, \infty\right)$ is a ray, hence letting $i \rightarrow \infty$, we see that c : $(-\infty, \infty) \rightarrow M$ is a line. Hence, by Toponogov's splitting theorem, M splits as $M=E^{1}$ $\times \bar{M}$ (see Theorem 4.3, [1]). Hence $P_{M}=E^{1} \times P_{\bar{M}}$. By induction, we obtain $M=E^{n}$.

[^0]2) $P_{M} \subsetneq M$. Since M is simply connected, $P_{M} \subset S_{M}$. We show that $P_{M} \varsubsetneqq S_{M}$. If $P_{M}=S_{M}$, there exists a sequence of points $\left\{p_{i}\right\}$ such that $p_{i} \in M-P_{M}$ and $p_{i} \rightarrow p \in P_{M}$ as $i \rightarrow \infty$, because P_{M} is a closed subset of M and $P_{M} \neq M$. For this point $p \in M$, we apply the basic construction in the argument in [1]. That is, there exists a family of compact totally convex set $C_{t}, t \geqq 0$ such that
$$
t_{2} \geqq t_{1} \quad \text { implies } \quad C_{t_{2}} \supset C_{t_{1}}
$$
and
$$
C_{t_{1}}=\left\{q \in C_{t_{2}}: d\left(q, \partial C_{t_{2}}\right) \geqq t_{2}-t_{1}\right\} .
$$

More precisely, C_{t} is given by

$$
C_{t}=\bigcap_{c}\left(M-B_{c_{t}}\right)
$$

where $B_{c t}:=U_{s>0} B_{s}(c(t+s)), B_{s}(q):=\left\{q^{1} \in M: d\left(q, q^{1}\right)<s\right\}$ and the intersection is taken over all rays $c:[0, \infty) \rightarrow M$ starting from p. Since all geodesics starting from p are rays, we easily see that $C_{t}=\overline{B_{t}(p)}$. We choose $t_{0}>0$ such that $B_{t_{0}}(p)$ is a convex neighborhood of p. Choose $t_{1}>0$ such that $t_{1}<t_{0}$. Then we can find i_{0} such that $p_{i_{0}} \in B_{t_{1}}(p)$. Since $p_{i_{0}} \in M-S_{M}$, there exists a geodesic loop γ starting from $p_{i_{0}}$. But $B_{t_{0}}(p)$ is totally convex, it must be $\gamma \subset B_{t_{0}}(p)$. This is a contradiction.

From the above argument, there exists a point $q \in S_{M}-P_{M} . \quad C(q) \neq \phi$, because $q \notin P_{M}$. If $C(q) \cap Q(q)=\phi$, then as is well known, there exists a geodesic loop of length $2 d_{M}(q)$ starting from q. This contradicts $q \in S_{M}$.
Q.E.D.

Corollary. Let M be a manifold homeomorphic to E^{n} and with nonnegative sectional curvature. Then M is isometric to E^{n} if and only if, for all $q \in M, C(q)$ $\cap Q(q)=\phi$. Moreover if $n=2,3$, the assumption that M is homeomorphic to E^{n} is replaced by that M is simply connected.

Proof. By the classification theorem in [1], when $n=2, M$ is homeomorphic to E^{2} and when $n=3, M$ is homeomorphic to E^{3} or $E^{1} \times S^{2}$. For a manifold \bar{M} which is homeomorphic to S^{2}, all points $q \in \bar{M}$ satisfy $C(q) \cap Q(q) \neq \phi$; see Theorem 5.1 of [3]. Q.E.D.

The author thanks Professor T. Ōtsuki for his valuable suggestions.

References

[1] Cheeger, J., and D. Gromoll, On the structure of complete manifolds of nonnegative curvature. Ann. of Math. 96 (1972), 413-443.
[2] Gromoll, D., and W. Meyer, On complete manifolds of positive curvature. Ann. of Math. 90 (1969), 75-90.
[3] Weinstein, A.D., The cut locus and conjugate locus of a Riemannian manifold. Ann. of Math. 87 (1968), 29-41.

Department of Mathematics,
Tokyo Institute of Technology.

[^0]: Received October 20, 1972.

