MAEDA, M. KÖDAI MATH. SEM. REP 25 (1973), 377–378

A NOTE ON NONCOMPACT RIEMANNIAN MANIFOLDS

By Masao Maeda

Let M be a complete connected Riemannian manifold. Every geodesic is always parameterized with respect to arclength. A geodesic $c: [0, \infty) \rightarrow M$ $(c: (-\infty, \infty) \rightarrow M)$ is called a ray (a line, respectively), if any segment of c is minimal. d denotes the metric distence in M. A subset A of M is called totally convex, if for any $p, q \in A$, any geodesic segment joining p and q is contained in A. A point p of Mis called a simple point, if $\{p\}$ is a totally convex set. S_M denotes the set of all simple points of M. A point p of M is called a pole, if the map $\exp_p: T_p(M) \rightarrow M$ has maximal rank everywhere. P_M denotes the set of all poles of M. If M is simply connected and $p \in P_M$, then all geodesics $c: [0, \infty) \rightarrow M$ starting from p are rays. For a point p of M, let C(p) and Q(p) be the cut locus and the first conjugate locus of M, respectively. Then, the function $d_M: M \rightarrow R \cup \{\infty\}$ defined by

$$d_{M}(p) := \begin{cases} \inf_{q \in C(p)} d(p,q) & (\text{when } C(p) \neq \phi), \\ \infty & (\text{when } C(p) = \phi) \end{cases}$$

is continuous. Hence, let \tilde{M} be the universal covering manifold of M and π be its projection, then by the fact

$$P_{\boldsymbol{M}} = \pi(P_{\widetilde{\boldsymbol{M}}}) = \pi(d_{\widetilde{\boldsymbol{M}}}^{-1}(\infty))$$

 P_M is a closed subset of M.

Now, assuming furthermore that M is noncompact and of positive sectional curvature, it it is proved in [2] that there exists a point $p \in M$ such that $C(p) \cap Q(p) \neq \phi$. This result extends to some manifolds of nonnegative sectional curvature. If M is noncompact and of nonnegative sectional curvature, it is proved in [1] that M is homeomorphic to an n-dimentional Euclidean space E^n if and only if $S_M \neq \phi$.

THEOREM. Let M be a complete connected noncompact Riemannian manifold with nonnegative sectional curvature and not flat. If $S_M \neq \phi$, then there exists a point $q \in M$ such that $C(q) \cap Q(q) \neq \phi$.

Proof. We distinguish two cases

1) $P_M = M$. Let $c: (-\infty, \infty) \to M$ be a geodesic and $\{s_i\}$ be a sequence such that $s_i \to -\infty$ as $i \to \infty$. For each $i, c \mid [s_i, \infty)$ is a ray, hence letting $i \to \infty$, we see that $c: (-\infty, \infty) \to M$ is a line. Hence, by Toponogov's splitting theorem, M splits as $M = E^1 \times \overline{M}$ (see Theorem 4.3, [1]). Hence $P_M = E^1 \times P_{\overline{M}}$. By induction, we obtain $M = E^n$.

Received October 20, 1972.

2) $P_M \cong M$. Since *M* is simply connected, $P_M \subset S_M$. We show that $P_M \cong S_M$. If $P_M = S_M$, there exists a sequence of points $\{p_i\}$ such that $p_i \in M - P_M$ and $p_i \rightarrow p \in P_M$ as $i \rightarrow \infty$, because P_M is a closed subset of *M* and $P_M \equiv M$. For this point $p \in M$, we apply the basic construction in the argument in [1]. That is, there exists a family of compact totally convex set $C_i, t \ge 0$ such that

$$t_2 \geq t_1$$
 implies $C_{t_2} \supset C_{t_1}$

and

$$C_{t_1} = \{q \in C_{t_2} : d(q, \partial C_{t_2}) \geq t_2 - t_1\}.$$

More precisely, C_t is given by

$$C_t = \cap (M - B_{c_t})$$

where $B_{c_l} := \bigcup_{s>0} B_s(c(t+s))$, $B_s(q) := \{q^1 \in M: d(q, q^1) < s\}$ and the intersection is taken over all rays $c: [0, \infty) \to M$ starting from p. Since all geodesics starting from p are rays, we easily see that $C_t = \overline{B_t(p)}$. We choose $t_0 > 0$ such that $B_{t_0}(p)$ is a convex neighborhood of p. Choose $t_1 > 0$ such that $t_1 < t_0$. Then we can find i_0 such that $p_{i_0} \in B_{t_1}(p)$. Since $p_{i_0} \in M - S_M$, there exists a geodesic loop γ starting from p_{i_0} . But $B_{t_0}(p)$ is totally convex, it must be $\gamma \subset B_{t_0}(p)$. This is a contradiction.

From the above argument, there exists a point $q \in S_M - P_M$. $C(q) \neq \phi$, because $q \notin P_M$. If $C(q) \cap Q(q) = \phi$, then as is well known, there exists a geodesic loop of length $2d_M(q)$ starting from q. This contradicts $q \in S_M$. Q.E.D.

COROLLARY. Let M be a manifold homeomorphic to E^n and with nonnegative sectional curvature. Then M is isometric to E^n if and only if, for all $q \in M$, $C(q) \cap Q(q) = \phi$. Moreover if n=2, 3, the assumption that M is homeomorphic to E^n is replaced by that M is simply connected.

Proof. By the classification theorem in [1], when n=2, M is homeomorphic to E^2 and when n=3, M is homeomorphic to E^3 or $E^1 \times S^2$. For a manifold \overline{M} which is homeomorphic to S^2 , all points $q \in \overline{M}$ satisfy $C(q) \cap Q(q) \neq \phi$; see Theorem 5.1 of [3]. Q.E.D.

The author thanks Professor T. Otsuki for his valuable suggestions.

References

- CHEEGER, J., AND D. GROMOLL, On the structure of complete manifolds of nonnegative curvature. Ann. of Math. 96 (1972), 413-443.
- [2] GROMOLL, D., AND W. MEYER, On complete manifolds of positive curvature. Ann. of Math. 90 (1969), 75-90.
- [3] WEINSTEIN, A.D., The cut locus and conjugate locus of a Riemannian manifold. Ann. of Math. 87 (1968), 29-41.

DEPARTMENT OF MATHEMATICS, TOKYO INSTITUTE OF TECHNOLOGY.

378